

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 46 – 56, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Systematic Process
to Design Product Line Architecture*

Soo Dong Kim, Soo Ho Chang, and Hyun Jung La

Department of Computer Science, Soongsil University,
1-1 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743

sdkim@comp.ssu.ac.kr {shchang, hjla}@otlab.ssu.ac.kr

Abstract. Product Line Engineering is being accepted as a representative
software reuse methodology by using core assets and product line architecture
is known as a key element of core assets. However, current research on product
line engineering has room to provide specific and detailed guidelines of
designing product line architectures and reflecting variability in the
architecture. In this paper, we present a reference model and a process to design
the architecture with detailed instructions. Especially architectural variability is
codified by describing decision model representing variation.

1 Introduction

Product Line Engineering (PLE) has been widely accepted as a representative
software reuse methodology using core assets. Architecture plays a key role in
scoping applications and it defines overall structures for applications. A core asset in
PLE provides a framework for developing various products in the product line. As a
key element of core assets, product line architecture (PLA) should also be generic to
be applied to various products.

Although processes or methods to design PLA have been suggested in various
research works, there is a large room for improvement, providing specific and
detailed process of defining PLA and reflecting architectural variability. Especially,
how the essential elements of architecture design such as driver, view, and styles can
be applied to PLA should be specified in detail.

In this paper, we first present a reference model of PLA and propose a systematic
process to design PLA. Each activity of the process is elaborated with detailed
instructions. In addition, architectural variability is codified by describing decision
model representing variation points

2 Related Works

Bosch proposes a design method for system family software architectures [1]. When
designing family architecture, architects design architecture based on archetype that is

* This work was supported by Korea Research Foundation Grant. (KRF-2004-005-D00172)

.

,

 A Systematic Process to Design Product Line Architecture 47

core abstractions of the system, assess architecture for quality requirements using
scenarios, and then transform quality requirements to functionality to improve the
quality attributes of architecture. For transformation, system family architecture may
require achieving variable requirements, optionality of parts of the architecture, and
conflicts between components as well as imposing architectural style, architectural
pattern, and design pattern.

QADA is a method standing for Quality-Driven Architecture Design Analysis
method [2]. The method consists of activities; Requirements engineering, Conceptual
architecture design and analysis, Concrete architecture design and analysis. In
conceptual architecture analysis, analysis and representation of variability is focused
using variation point description and product-line pattern.

Ceron and his colleagues propose processes for developing reference architecture
and deriving the architecture as well as architectural meta-model [3]. The meta-model
appends architectural variability to P1471 [4]. The process for developing reference
architecture consists of three activities; Scoping, Choosing architectural style,
Providing variability. Applying functional and non-functional features into
architecture, this work also points out conflict problems of variability, a stability of
common requirements and architectural style in reference architecture as well.

Thiel suggests a process framework that supports the design of high-quality
product family architectures, called QUASAR [5]. QUASAR is organized with three
workflows; Preparation, Modeling and Evaluation that analyze the achievement of
architectural qualities. To integrate variability with PLA design, this work gives
guidelines for documenting variability about where variation points are in
architectural views, how to instantiate them, and resolution rules.

These related works define more or less implicitly what is included in PLA and
suggest overall process for designing PLA. Especially, they mention needs to
represent and document variability in designing PLA. Hence, we can make more
practical design process by supplementing detail instructions. To enhance importance
of designing variability, we can classify types of the architectural variability and
represent variability more concretely by using architectural decision model.

3 Meta-model of Product Line Architecture

Based on our survey, we now present our meta-model of PLA by taking the common
elements of the related works and refining them as in Fig. 1.

Elements of PLA are distinguished into abstract elements and concrete elements.
The abstract one is conceptual elements to which PLA should conform or refer,
whereas the concrete one is elements which constitute PLA as physical parts. From
the meta-model, we specify each element as followings.

Architectural View: Based on the requirements and PL analysis model derived from
the requirements, we choose perspectives to illuminate PL, called as a view shown in
the figure [6]. Although many kinds of view types are proposed, there is no standard
on architectural view [7]. However, we choose the three kinds of view, Module View,
C&C View and Allocation View, as specialized view types of PL architectural view
since they are generally accepted [2] [3] [6].

48 S.D. Kim, S.H. Chang, and H.J. La

Product Line Product Line
ArchitectureArchitecture

StyleStyle
{abstract}{abstract}

InterInter--componentcomponent
RelationshipRelationship

ArchitecturalArchitectural
Decision ModelDecision Model

{abstract}{abstract}

VariationVariation
PointPoint

VariantVariant

ViewView
{abstract}{abstract}

EffectEffect

«instance of»

CompositionComposition

DependencyDependency

ComponentComponent

«refers to»

C&CC&C
ViewView

ModuleModule
ViewView

AttachedAttached
TaskTask

CompoundCompound

SimpleSimple

«conforms to»

AllocationAllocation
ViewView

AssociationAssociation

HardwareHardware
ComponentComponent

SoftwareSoftware
ComponentComponent

1..*1..*

1..*1..*

Fig. 1. Meta-model of PLA

Architectural Style: An architectural style is a specialization of elements and relation
types [6] and helps simplify the architecting process [8]. From the notion, architecture
design begins with choosing most appropriate architectural styles and components
and inter-component relationships in architecture are more or less directly derived
from the selected styles. Therefore, it is fair to state that the components and
relationships effectively implement functional and nonfunctional requirements within
architectural styles. Architectural styles can be defined as abstract elements to which
architecture conforms rather than constituents of PLA. A style is a partial instance of
a view, and a set of several architecture styles can realize a view [6] [9].

Component and Inter-component Relationship: PLA consists of Components and
Inter-component Relationships. Components implement functional and non-functional
requirements. While functional requirements are directly designed, non-functional
requirements may derive additional functional requirements which realize the quality
attributes and are implemented into the components. A component is specialized into
simple and compound components as their composition relationships. A component is
also specialized into software and hardware component.

Inter-component relationship may have several stereotypes depending on
architectural views by which the relationships are represented. In the meta-model, the
relationship is specified as dependency, composition, or association. Generally a
dependency is for message passing between components, composition is for
relationships between simple and compound components, and an association is for
persistent relationships between hardware components.

Architectural Decision Model (ADM): Since decision model is specification of
variability in PL, it is not a design element only for PLA but a reference from which
variability is designed into PLA. Hence, the relationship between PLA and ADM is
shown as refers to, as in Fig. 1. We call the decision model capturing architectural
variability Architectural Decision Model (ADM). Variation Point, Variant, Effect, and
Attached Task are constituent to the architectural decision model [10] [11].

To elaborate architectural variability, we propose following candidate variants
types for architectural variation points;

 A Systematic Process to Design Product Line Architecture 49

! Architectural Style: Since a style represents part of architecture, architecture may
contain a set of styles. Besides, architecture should be stable [3]. Therefore, a
variation point of an architectural style set may have a few style variations. That is,
a few styles in the set may vary from product to product such as optional or
alternative.
! Component: Variations of components in architecture can be classified to optional

and alternative. Optional variability is for the case in which a component is used or
not. Alternative is for the case in which another component can be substituted for
one component. Note that variations may be occurred in components such as
logics, workflows, or data [12]. However it is not architectural variability but intra-
component variability. Therefore descriptions of the intra-component variability are
out of the scope of this paper.
! Relationship: Within the one style, message passing among components may be

changed by applications. We define that variation occurs in inter-component
relationship. Note that this variation point should be distinguished from
architectural style variability.

4 Process and Instructions

We now present a process to design PLA in Fig. 2. The process consists of five
activities and each activity has its detailed steps.

Activity1.
Define

Architectural Driver

Activity1.
Define

Architectural Driver

Activity2.
Define

Architectural Style

Activity2.
Define

Architectural Style

Activity3.
Instantiate

Architectural Style

Activity3.
Instantiate

Architectural Style

Activity5.
Evaluate PLA

Activity5.
Evaluate PLA

Architectural Driver
Specification (ADS)

Architectural
Decision Model (ADM)

Product Line
Architecture (PLA)

ComponentC&V Model *

activityactivity artifactartifact

Architectural Style
Specification (ASS)

Activity4.
Integrate

Architectural Styles

Activity4.
Integrate

Architectural Styles

Product Line
Requirement

C&V Model

C&V Model *

Fig. 2. Process and Artifacts for PLA Design

Since these activities are included in the phase for PLA design, domain analysis is
preceded and component design is followed. PLA design phase begins with analysis
model delivered from domain analysis phase and carries over a PLA to component
design phase.

50 S.D. Kim, S.H. Chang, and H.J. La

The five activities are Define Architectural Driver, Define Architectural Style,
Instantiate Architectural Style, Integrate Architectural Styles and Evaluate
Architecture. Each activity is decomposed by steps and provides instructions and
templates with the steps.

4.1 Activity 1. Define PL Architectural Driver

Overview: This activity is to derive a set of PL architectural drivers for a product
line. An architectural driver is a requirement which has influence on the design of
architecture [1] [13]. Therefore, acquiring right architectural drivers is an essential
prerequisite for well-designed architecture. In this activity, both common and variable
drivers are identified since there can be variation on product architectures.

Input and Output: As shown in Fig. 3, the input to this activity is both product line
requirement specifications (PRS) and C&V model. A PRS specifies functional and
nonfunctional requirement. Each type of requirement for variation can be mandatory,
alternative or optional. C&V model is an analysis model of PRS, and the model
specifies both common and variable requirements in systematic way. Examples of
C&V model are feature analysis [14].

We assume that PRS is available before this process is applied. That is functional
and nonfunctional requirements are separately defined and the PRS is relatively
complete and consistent. If not, techniques of requirement engineering [15] can be
applied to derive a high quality PRS. We also assume that C&V modeling has been
completed before this process.

The output artifact of this activity is Architectural Driver Specification (ADS)
which specifies architectural drivers and their priorities.

Product Line
Requirement Specification

(PRS)

Product LineProduct Line
Requirement SpecificationRequirement Specification

(PRS)(PRS)

FunctionalFunctional
RequirementRequirement

ExtraExtra--FunctionalFunctional
RequirementRequirement

ArchitectureArchitecture
IndependentIndependent
RequirementRequirement

ArchitectureArchitecture
Relevant Relevant

RequirementRequirement

Step 2

Commonality & Variability
Model

Commonality & VariabilityCommonality & Variability
ModelModel

CommonCommon
FeaturesFeatures

VariableVariable
FeaturesFeatures

ArchitecturalArchitectural
DriversDrivers

Step 3

Conforms

ArchitecturalArchitectural
DriverDriver

SpecificationSpecification

Step 1

Step 4

Fig. 3. Information Flow from PL Requirement to PLA

Instruction: This activity is carried out in four steps as in Fig. 3. The first step is to
extract architecture-relevant requirements from PRS. As shown in Fig. 3, not all
nonfunctional requirements are architecture-relevant. Hence, we need to extract
nonfunctional requirements that have some impact on the design of PLA. In general,
quality attributes and constrains are architecture-relevant. For example, reliability as a
quality attribute may be applied into architecture as data mirroring.

The second step is to define architectural drivers from the architecture-relevant
requirements. That is, architecture-relevant requirements are analyzed and itemized as
architectural drivers. Each architecture driver is given a name for further references in
subsequent activities.

 A Systematic Process to Design Product Line Architecture 51

The third step is to classify architectural drivers according to the common and
variable features from C&V model. An architectural driver itself can be variable in
two forms; alternative and optional.

The fourth step is to prioritize drivers according to the commonality and
significance. Architectural drivers are the main source for choosing architectural
styles and therefore different drivers may yield different styles. When a product line
has several drivers, resulting architectural styles may be complicated. As a logical
way to resolve the possible complications of styles, we suggest to prioritize drivers
using product line dependent criteria. Each driver is given with its priority, name,
description and variability type which can be mandatory, optional, or alternative.

4.2 Activity 2. Define Architectural Styles

Overview: This activity is to derive architectural styles. By using architectural style
that eases the design process by providing routine solution for recurring problems, we
can reuse design and code, easily understand a system’s organization, and gain insight
into style-specific analysis of solution characteristics [16]. In this activity,
architectural styles which satisfy with architectural drivers and make PLA effective
are defined.

Input and Output: To define an appropriate architectural style, this activity requires
ADS. One output is an Architectural Style Specification (ASS) which addresses
architectural views, styles, and rationales that are shared by PL applications. The
other output is a part of an ADM which specifies architectural variation on PL
architectural style set. ADM describes all architectural variability and only part of
ADM, Style Set Variability, is defined in this activity.

Instruction: This activity is to choose appropriate architectural styles according to
derived architectural drivers and consists of three steps as followings.

The first step is to select architectural views by which PLA is illustrated. At least
one view should be chosen from the three views [6]. Note that a view may focus on
several architectural drivers and an architectural driver may also be realized in one or
more views. With this step, a view list with architectural drivers is listed and ranked
as priority of the drivers.

The second step is to choose architectural style for each view. We firstly explore
and list candidate architectural styles for each architectural driver and then, decide
architectural style as our strategies, project policies, or constraints. The rank of
architectural drivers can affect resolving conflicts among architectural styles.

The third step is to specify ADM for variation on the architectural style set. Style
set variability which is identified and specified in this step is stemmed from variations
on architectural drivers. Different architectural drivers drive different architectural
styles covering each driver as shown Fig. 4.

For one architectural view, several architectural drivers have their styles.
Especially an architectural driver which has variation has one or more style depending
on variation type. From the Fig. 4, we can extract architectural style set {style a, style
b, …, style i-1|style i-b, ..}. The style set has variation on style i.

According to variation type of architectural driver in ADS, variants of style set
variability are defined as variable driver and its style. Variation type is equally

52 S.D. Kim, S.H. Chang, and H.J. La

transformed from variation type of ADS. Effect and task can be specified in this step,
and further refined in refining overlapped area step in activity 4.

Fig. 4. Architectural Style Set Variability of PLA

4.3 Activity 3. Instantiate Architectural Style

Overview: This activity is to realize ASS and ADM. Architectural styles are
represented by architectural units and their relationships. In this activity, a
specification of architectural style set is transformed into concrete parts of
architecture. During style instantiation, variation on a style is also applied into the
instantiated styles.

Input and Output: The input to this activity is both an ASS and an ADM which are
defined in activity 2. The output artifact of this activity is an embodied architectural
style set which are represented by actual components and their relationships. ADM is
also refined as appending Architectural Style Variability.

Instruction: This activity is carried out in three steps. The first step is to extract
component. Types of components in architecture can be divided into types; software
and hardware components. Software components are applied into logical view such as
module view and process view such as C&C view. To extract the component, we may
use a clustering method in [17]. Hardware components are represented in physical view
such as allocation view and the component may be server, DBMS, and other hardware
units. To extract these physical components, we may use strategic constraints.

The second step is to apply the extracted components into architectural style. For
one architectural style, we arrange the extracted components and then elicit
relationships among arranged components. Depending on types of components,
dependency, composition, or association can be applied with specific stereo-types.

The third step is to append architectural style variability to ADM. Architectural
style variability is discovered in component or inter-component relationship. Fig. 5
shows an example of architectural style variability on a share-date style of Sale
Domain.

During instantiating architectural style, one component may not be used or
replaced with other component by one application. In addition one relationship
between components may be omitted or changed depending on applications. These
variations may be represented in ADM.

Architectural Architectural
Driver Driver bb

Architectural Architectural
Driver Driver ii--aa

Architectural Architectural
Driver Driver ii--bb

ArchitecturalArchitectural
Driver Spec.Driver Spec.

Style a

Architectural Architectural
Driver Driver aa

««variabilityvariability»»
Architectural Architectural

Driver Driver ii
…

««alternativealternative»»
Style b

Style i-a Style i-b

{for one view}{for one view}

««useuse»»««generalizegeneralize»»

 A Systematic Process to Design Product Line Architecture 53

««componentcomponent»»
MemberMember

««componentcomponent»»
InventoryInventory

«component»
«optional»

Online-Sale

««componentcomponent»»
««optionaloptional»»

OnlineOnline--SaleSale

DBMSDBMS

««componentcomponent»»
SaleSale

……

Fig. 5. Architectural Style Variability of PLA

4.4 Activity 4. Integrate Architectural Styles

Overview: This activity is to finalize PLA by combining instantiated architectural
styles. Individual instantiated architectural style is a part of PLA, so it should be
populated into whole PLA. During arranging several styles, overlapped area among
styles should also be recognized and resolved in this activity. In addition, ADM is
more refined by Effects and Tasks describing propagation of architectural variability.

Input and Output: The input to this activity is an instantiated architectural style set
where styles may have architectural variability. The output artifact of this activity is
PLA in which the whole range of architectural elements is represented in terms of
components and their relationships on chosen views.

Instruction: This activity is carried out in two steps. The first step is to gather the
instantiated styles on a same view. Since components in different styles may have
different granularity, it is needed to normalize components in different styles into
same-grained components in this step.

The second step is to link styles and refine overlapped areas among styles. Some
components may be included in several instantiated styles and other components may
be embedded in compound components which are included in other styles. From these
cases, we define overlapped area which contains some components and their relations
included in two or more styles. The overlapped area is distinguished two types; one is
area having architectural variation and the other is area not having variation. In the
case of overlapped area having variation, architectural variability should be handled
more carefully. By resolving overlapped area and applying variability into the area,
overlapped component may be refined and relations may be modified. Fig. 6 shows an
example of overlapped area during integrating instantiated styles.

User InterfaceUser InterfaceUser Interface

MemberMemberMember InventoryInventoryInventory SaleSaleSale

DBMSDBMSDBMS AccountingAccountingAccounting

Authority
Certification

AuthorityAuthority
CertificationCertificationPaymentPaymentPayment

Overlapped Area

Overlapped Area

AccountingAccountingAccountingAuthority
Certification

AuthorityAuthority
CertificationCertificationPaymentPaymentPayment

Pipe and Filter StylePipe and Filter Style

SaleSaleSale

DBMSDBMSDBMS

AccountingAccountingAccountingPaymentPaymentPayment

Share Data StyleShare Data Style

…

Integrated StylesIntegrated Styles

Fig. 6. An Example of Integrated Styles and Overlapped Area

54 S.D. Kim, S.H. Chang, and H.J. La

DBMSDBMSDBMS AccountingAccountingAccounting

Authority
Certification

AuthorityAuthority
CertificationCertification

PaymentPaymentPayment

«alternative»
On-line Payment

««alternativealternative»»
OnOn--line Paymentline Payment

«alternative»
Transfer

««alternativealternative»»
TransferTransfer

««optio
nal

optional»»

Fig. 7. An Example of Overlapped Area having Variability

Fig. 7 represents a resolution of overlapped area. In this case, payment component
is refined Transfer and On-line payment components as alternatives. For its
propagation, the relationship between Authority Certification component and
Accounting component is refined as optional relationship. The refinement is also
appended to ADM in this step

4.5 Activity 5. Validate PLA

Overview: This activity is to evaluate PLA with several check lists and decide
whether PLA should be refined or finalized. As criteria of items in the check list, the
process is returned to prior activities or closed. In this activity, we propose a check list
which support to validate PLA and instruction using the check list.

Input and Output: The input to this activity is PLA defined through activity 1 to 4,
C&V model, and a predefined check list. The output of this activity is evaluated PLA
and result indicating process direction.

Instruction: First of all, we define a check list to evaluate PLA for this activity as
shown Table 1.

Table 1. Check List to Evaluate PLA

Artifact Check Point

Do the architectural drivers meet non-function requirement?

Are derived architectural drivers used for designing PLA?

Is the priority of driver right?

Architectur
al Driver

Are variable architectural drivers defined based on adequate criteria?

Are selected views satisfied with all architectural drivers?

Are all of drivers applied into styles?

Isn’t a driver unnecessarily applied into several styles?

Architectur
al Style

Is the selected style efficient?

Do extracted components cover PL requirements? Instantiated
 Style Are extracted components economic?

Is identified overlapped area right? PLA

Does the overlapped area resolve effectively?

Are all variations of drivers delegated to adequate variation point?

Is all variants necessary?

Are all variability propagations in overlapped area detected?

Architectur
al Decision M

odel

Are all variation points and variants consistent through the artifacts?

 A Systematic Process to Design Product Line Architecture 55

 Check Points in the check list are classified with artifact of each activity.
Depending on activity goal, check points emphasize completeness, accuracy,
efficiency, or conciseness. In architectural driver, check point focuses on
completeness, accuracy of architectural driver for PL requirements. Check points of
architectural style are efficiency of extracted styles for architectural driver, the point
of instantiated style is completeness for quality attribute and functional requirements,
and the point of PLA is its suitability for integrated style set. For ADM, completeness
and efficiency are indicated. Based on the list, we may decide whether PLA design
should be refined or finalized.

5 Concluding Remarks

The architecture of core asset should be generic to be applied to various products.
Therefore, it is an essential element of core assets. We presented a reference model of
PLA and proposed a systematic process having 5 activities. Each activity of the
process was elaborated with detailed instructions and artifact templates. We also
identified how the architectural variability is traced to elements of decision model.

We showed how architectural elements such as driver, views and styles can be
applied to PLA. Using the proposed process, one can design a high quality PLA
supporting architectural variability as well as architectural commonality.

References

[1] Bosch, J. Design and Use of Software Architectures, Addison-Wesley, 2000.
[2] Matinlassi, M., Niemela, E., and Dobrica, L., “Quality-driven architecture design and

quality analysis method : A revolutionary initiation approach to a product line
architecture,” VTT Technical Research Center of Finland, ESPOO2002, 2002.

[3] Ceron, R., et. al., “Architectural Modeling in Product Family Context,” proceeding of
EWAS, LNCS 3047, Springer-Verlag Berlin Heidelberg, 2004.

[4] IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems (IEEE Standard P1471); IEEE Architecture Working Group (AWG); 2000.

[5] Thiel, S., and Hein, A., “Systematic Integration of Variability into Product Line
Architecture Design,” proceeding of SPLC2, LNCS 2379, Springer-Verlag Berlin
Heidelberg, 2002.

[6] Clements, P., et al., Documenting Software Architectures Views and Beyond, Addison-
Wesley, 2003.

[7] Woods, E., “Experiences Using Viewpoints for Information Systems Architecture: An
Industrial Experience Report,” proceeding of EWSA 2004, LNCS 3047, Springer-Verlag
Berlin Heidelberg, 2004.

[8] Heineman, G., and council, W., Component-Based Software Engineering, Addison
Wesley, 2001.

[9] Bass, L., Clements, P., Kazman, R., Software Architecture in Practice, Addison-Wesley,
2003.

[10] Sinnema, M., et al., “COVAMOF: A framework for Modeling Variability in Software
Product Family,” proceeding of SPLC 2004, LNCS 3154, Springer-Verlag Berlin
Heidelberg, 2004.

56 S.D. Kim, S.H. Chang, and H.J. La

[11] Kim, S., Chang, S., and Chang, C., “A Systematic Method to Instantiate Core Assets in
Product Line Engineering,” Proceedings of APSEC 2004, Nov. 2004.

[12] Kim, S., Her, J., and Chang, S., “A theoretical foundation of variability, in component-
based development,” Journal of Systems and Software, To Appear.

[13] America, P., et al., “Scenario-Based Decision Making for Architectural Variability in
Product Families,” proceeding of SPLC 2004, LNCS 3154, Springer-Verlag Berlin
Heidelberg, 2004.

[14] Choi, S., Chang, S, and Kim, S., “A Systematic Methodology for Developing Component
Frameworks,” LNCS 2984, Proceedings of the 7th FASE, 2004.

[15] Lauesen, S., Software Requirements Styles and Techniques, Addison-Wesley, 2002.
[16] Garlan, D., Allen, R., Ockerbloom, J., “Exploiting Style in Architectural Design

Environments,” Proceedings of SIGSOFT’94, Foundations of Software Engineering, pp.
175-188, 1994.

[17] Kim, S., Chang, S., “A Systematic Method to Identify Component,” Proceedings of
APSEC 2004, Nov. 2004.

	Introduction
	Related Works
	Meta-model of Product Line Architecture
	Process and Instructions
	Activity 1. Define PL Architectural Driver
	Activity 2. Define Architectural Styles
	Activity 3. Instantiate Architectural Style
	Activity 4. Integrate Architectural Styles
	Activity 5. Validate PLA

	Concluding Remarks
	References

