
Scalable Hash Chain Traversal for Mobile
Devices

Sung-Ryul Kim�

Division of Internet & Media and CAESIT
Konkuk University

Abstract. Yaron Sella recently proposed a scalable version of Jakobs-
son’s algorithm to traverse a hash chain of size n. Given the hash chain
and a computation limit m (k = m + 1 and b = k

√
n), Sella’s algo-

rithm traverses the hash chain using a total of kb memory. We improve
the memory usage to k(b − 1). Because efficient hash chain traversal al-
gorithms are aimed at devices with severely restricted computation and
memory requirements, a reduction by a factor of (b−1)/b is considered to
be important. Further, our algorithm matches the memory requirements
of Jakobsson’s algorithm while still remaining scalable. Sella’s algorithm,
when scaled to the case of Jakobsson’s algorithm, has a memory require-
ment of about twice that of Jakobsson’s.

Keywords:efficient hash chain traversal, secure hash, pebbles.

1 Introduction

Many useful cryptographic protocols are designed based on the hash chain con-
cept. Given a hash function f() which is assumed to be difficult to invert, a hash
chain is a sequence < x0, x1, . . . , xn > of values where each value xi is defined
to be f(xi−1). The hash chain is being used as an efficient authentication tool
in applications such as the S/Key [2], in signing multicast streams [5], message
authentication codes [5, 6], among others.

Traditionally the hash chain has been used by one of two methods. One is
to store the entire hash chain in memory. The other is to recompute the entire
hash chain from x0 as values are exposed from xn to x0. Both methods are not
very efficient. The first one requires a memory of size Θ(n) while the second
one requires Θ(n) hash function evaluations for each value that is exposed. The
memory-times-storage complexity of the first method is O(n) and it is O(n2)
for the second method. As mobile computing becomes popular, small devices
with restricted memory and computation powers are being used regularly. As
these devices are being used for jobs requiring security and authentication, the
memory and computation efficiency of hash chain traversal is becoming more
important.

� Corresponding author: kimsr@konkuk.ac.kr

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 359–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

360 S.-R. Kim

Influenced by amortization techniques proposed by Itkis and Reyzin [3],
Jakobsson [4] proposed a novel technique that dramatically reduces the memory-
times-storage complexity of hash chain traversal to O(log2 n). The algorithm by
Jakobsson uses �log n� + 1 memory and makes �log n� hash function evalua-
tions for each value that is exposed. The result has been further improved by
Coppersmith and Jakobsson [1], to reduce the computation to about half of
the algorithm in [4]. Both results are not intended for scalability. That is, the
amount of computation and memory depends only on the length of the chain
n and they cannot be controlled as such needs arise. For example, some device
may have abundant memory but it may be operating in a situation where the
delay between exposed hash values are critical. To address the issue Sella [7]
introduced a scalable technique that makes possible a trade-off between mem-
ory and computation requirements. Using the algorithm in [7], one can set the
amount m of computation per hash value from 1 to log n − 1. The amount of
memory required is k k

√
n where k = m + 1. In the same paper, an algorithm

designed specifically for the case m = 1 is also presented. The specific algo-
rithm reduces the memory requirement by about half of that in the scalable
algorithm.

We improve the memory requirement of Sella’s scalable algorithm. While
Sella’s algorithm has the advantage of scalability from m = 1 to log n − 1, the
memory requirement is about twice that of Jakobsson’s algorithm when m =
log n − 1. Our algorithm reduces the memory requirement of Sella’s algorithm
from k k

√
n to k(k

√
n− 1). This might not seem to be much at first. However, if k

is close to log n the reduction translates into noticeable difference. For example,
if k = 1

2 log n, the memory requirement is reduced by a factor of 1
4 . If k = log n,

the memory requirement is reduced by half. Of particular theoretical interest is
that our algorithm exactly matches the memory and computation requirements
of Jakobsson’s algorithm if we set k = log n. Our technique has one drawback
as the scalability is reduced a little bit. It is assumed that m ≥ k

√
n, that is, our

algorithm does not scale for the cases where m is particularly small.
We note here that, as it is with previous works, we count only the evaluation

of hash function into the computational complexity of our algorithm. This is
because the hash function evaluation is usually the most expensive operation in
related applications. We also note that the computation and memory bounds we
achieve (and in the previous works) are worst-case bounds (i.e., they hold every
time a value in the hash chain is exposed).

2 Preliminaries

2.1 Definitions and Terminology

We mostly follow the same terminology and basic definitions that appear in [7].
A hash chain is a sequence of values < x0, x1, . . . , xn >. The value x0 is chosen
at random and all other values are derived from x0 in the following way: xi =
f(xi−1), (1 ≤ i ≤ n), where f() is a hash function. A single value xi is referred

Scalable Hash Chain Traversal for Mobile Devices 361

to as a link in the chain. The chain is generated from x0 to xn but is exposed
from xn to x0. We use the following directions terminology: x0 is placed at the
left end, and it is called the leftmost link. The chain is generated rightward, until
we reach the rightmost link xn. The links of the chain are exposed leftward from
xn to x0. The time between consecutive links are exposed is called an iteration.
The above hash chain has n + 1 links. However we assume that at the outset,
xn is published as the public key. Hence, we refer to X =< x0, x1, . . . , xn−1 >
as the full hash chain and ignore xn.

The goal of the hash chain traveral is to expose the links of the hash chain
one-by-one from right to left. The efficiency of a traversal is measured in both
the amount of memory required and the number of hash function evaluations
between each exposed link.

In the work by Sella the concept of a b-partition of the hash chain is used. It can
be also be used to describe Jakobsson’s algorithm. We repeat the definitions here.

Definition 1. A b-partition of a hash chain section means dividing it into b
sub-sections of equal size, and storing the leftmost link of each sub-section.

Definition 2. A recursive b-partition of a hash chain section means applying
b-partition recursively, starting with the entire section, and continuing with the
rightmost sub-section, until the recursion encounters a sub-section of size 1.

The b-partition and recursive b-partition are easier to describe when we map
the partition to a b-ary tree. We will use the basic terminology pertaining to
trees without definition. The following is the definition of the mapping between
the recursive b-partition and a b-ary tree. It is repeated also from [7].

Definition 3. A recursive b-tree is a recursive mapping of a recursive b-partition
onto a tree as follows.

• Each node in the tree is a section or a sub-section. In particular, the entire
hash chain is represented by the root of the tree.

• For every section L that is partitioned from left to right by sub-sections
L1, L2, . . . , Lb, the corresponding node N is the parent of the corresponding
nodes N1, N2, . . . , Nb, and the children keeping the same left-to-right order.

See Figure 1 for an example. It shows a recursive 4-tree with 3 levels. The root
of the tree corresponds to the entire hash chain and the tree leaves correspond
to single links in the hash chain. Even though each node is shown to be storing
b links, only b − 1 links will be the memory requirement for a node because the
leftmost link is stored in the parent.

Sub-sections induced by recursive b-partition are neighbors if their corre-
sponding nodes are at the same level and appear consecutively at the natural
depiction of the recursive b-tree. Note that they may not share the same par-
ent. Depending on its position in the recursive b-partition, a sub-section can
have a left neighbor, a right neighbor, or both. A node in a recursive b-tree will
sometimes be called a sub-section, meaning the corresponding sub-section in the
recursive b-partition.

362 S.-R. Kim

x0 x15 x31

x47

x59

x63

x51 x55

x60 x61 x62

x47

x59

Fig. 1. Example 4-tree with 3 levels

In order to traverse the hash chain we adopt the notion of pebbles and stored
links from previous works. A pebble is a dynamic link that moves from left-to-
right in a hash chain. The mission of a pebble is to induce a b-partition of a sub-
section S. That is, it starts at a stored link and traverses the chain while storing
the values corresponding to the b-partition of S. The initial stored link will be
received from the (sub-)section that S is a part of. For a pebble that induces
a b-partition (xi1 , xi2 , . . . , xib

), the link xib
is called the destination because the

pebble does not have to move any further after reaching xib
.

2.2 Jakobsson’s Algorithm

Jakobsson’s algorithm can be considered to be using the recursive 2-tree of the
entire hash chain. There are �logn� + 1 levels in the tree. One pebble is present
at each level except at the root. When the algorithm starts, a pebble is placed
at the mid-point of the sub-section S at each level.

When the mid-point is exposed the pebble is moved to the start of the left neigh-
bor. From there it traverses the hash chain two links per exposed link. Because it
(and all other pebbles) moves at twice the speed that the links are exposed, a peb-
ble reaches the end of the left neighbor when all the links in S has been exposed. It
can be shown that at most one of the pebbles in two adjacent levels are moving at
any point. This leads to the above mentioned computation cost per iteration. We
note that because the pebble starts to move only after its destination is reached
and because there are only one link to store (the leftmost node is stored in the
parent), the pebble never stores a link and moves to the right. Thus the memory
requirement is the same as the number of pebbles (plus one at the root).

2.3 Sella’s Algorithm

Sella’s algorithm uses a recursive b-partition. As in the Jakobsson’s algorithm,
one pebble is placed at each level. However, the pebble is moved to the start of
the left neighbor immediately when the rightmost link (not the rightmost stored

Scalable Hash Chain Traversal for Mobile Devices 363

link) in a section is exposed. The pebble moves at the same speed as the links
are exposed.

The parameter b is set to be k
√

n where k = m+1. That is, the tree will have
k levels. Because no pebble is needed at the root, the computational requirement
per iteration is m. Initially, there are b − 1 stored links at each level. However,
because pebbles start to move before any stored link is exposed, one memory
cell is required for each pebble. Thus, the total memory requirement amounts
to k k

√
n. If we set k = log n, the memory requirement becomes 2 log n, which is

about twice that of Jakobsson’s algorithm.

2.4 Intuitions for Our Algorithm

In our proposed algorithm, each pebble starts to move after the rightmost stored
value is used, thus removing the memory requirement for the pebbles. Because it
started late (as in Jakobsson’s algorithm) it makes accelerated moves. That is, it
traverses b links (called making a move) while one link is exposed. It cannot be
moving all the time because if so, the computational requirement per iteration
will be b×m. It makes a move about every b/(b− 1) times, enough to catch up
to its late start but not at a regular interval as described later.

It is quite simple in Jakobsson’s algorithm because there can be no overlap in
computation for pebbles residing in two adjacent levels (in the b-tree). We have
to consider b adjacent levels. There will be overlaps if we allocate the moves for
different levels at regular intervals. So we have to carefully allocate the iterations
where each pebble makes a move. The tricky part is to show that there always
exists a way to allocate iterations such that a pebble is never too late to its
destination.

3 Improved Algorithm

Assume that we have a hash chain < x0, x1, . . . , xn−1 > to traverse. Let k be
m + 1 and let b be k

√
n. We assume that k − 1 is a multiple of m and we also

assume that m ≥ b.

3.1 Algorithm

We first form a recursive b-partition (also the corresponding recursive b-tree)
off-line. We put a pebble at the rightmost stored link in each sub-section. Then,
the following loop is repeated for n times.

• Exposure loop
1. Expose and discard L, the current rightmost link in the hash chain.
2. If (L = x0) stop.
3. For each pebble p do

• If L is a rightmost stored link in a sub-section S′ and p is on L, then
move p to the left end of S where S is the left neighbor of S′ and
call Schedule Iterations for p.

364 S.-R. Kim

4. Advance all pebbles that are allocated the current iteration by b links.
5. Repeat from Step 1.

Now we describe the procedure Schedule Iterations. We define level num-
bers in the recursive b-tree. The lowest level is said to be at level 1 and the level
number increases as we go up the tree. Thus, the root will be at level k. Assume
that p is at level t. Let S be the sub-section where p is newly assigned. Let S′ be
the right neighbor of S. There are bt+1 links in S. We give a natural correspon-
dence between a link in S and an iteration where a link in S′ is exposed. The
leftmost link in S corresponds to the iteration where the rightmost link in S′ is
exposed. And the correspondence proceeds towards the right in S and towards
the left in S′. That is, the links in S and the links in S′ are matched in reverse
order. When we say that we allocate a link xi in S to p it means that p will
advance b times rightward at the time when the link in S′ that corresponds to
xi is exposed. Note that the iterations corresponding to the bt leftmost links in
S have already passed. Let (L1, L2, . . . , Lb) be the b-partition of S.

Our strategy is to assign links to p as far right as possible. There are three
conditions to consider.

1. A link should not be assigned to p if it is (or will be) assigned to a pebble in
lower b − 1 levels. This ensures that at any iteration, at most one pebble in
consecutive b levels is making a move. There are many sub-sections in the
lower b−1 levels but the schedule for each pebble will be the same regardless
of the particular sub-section.

2. Pebble p should not move too fast. Because p has to store a link when it
reaches a position of a stored link for S, one stored link in S′ has to be
exposed before we store one link in S.

3. The schedule assigned for the pebble q at level t − 1. Pebble q cannot be
moved until it receives the rightmost stored link in S′. Thus, the schedule
for p must finish before the schedule for q starts. Although q is not in Lb yet,
we know how it will be scheduled in Lb because the schedule is the same for
all sub-sections that q is assigned to.

By the above conditions, the procedure first looks for the schedule of q and it
starts at the left most link allocated for q. Then it moves leftward and allocates
to p the links that are not allocated to any pebbles at the lower b − 1 levels.

3.2 Correctness

We show by a series of lemmas that there always exists a schedule that satisfies
the conditions mentioned in the algorithm. Let S be the sub-section at level t
where p is newly assigned. Also let (L1, L2, . . . , Lb) be the b-partition of S. The
following lemma shows that we have enough unallocated links to allocate for
pebble p at level t and the b − 1 pebbles in the lower b − 1 levels (condition 1).

Lemma 1. There are enough links in S for the b pebbles p and in lower b − 1
levels.

Scalable Hash Chain Traversal for Mobile Devices 365

Proof. By the time p is moved to the start of S the iterations for the links in
L1 have already passed. So there are a total of bt(b − 1) links to be allocated.
p has to move across bt(b − 1) = bt+1 − bt links to reach its destination. Thus,
it has to make bt − bt−1 moves (same number of links are to be allocated). At
level t− 1, there are b− 1 sub-sections to schedule and in each sub-section there
are bt−1 − bt−1 moves to be made by the pebble in level t − 1. So at level t − 1
there are bt − 2bt−1 + bt−1 moves to be made in total. From then on to the level
t − b + 1, the same number of moves are to be made.

By adding them up, we can see that we need bt+1−2bt +2bt−1−bt−2 links to
allocate to the pebbles. Subtracting this number from the number of available
links bt+1 − bt we have the difference bt − 2bt−1 + bt−2, which is always positive
if b ≥ 2.

The following lemma and corollary shows that the memory requirement (con-
dition 2) is satisfied.

Lemma 2. There are enough links in Lb for the last bt−1 moves of p.

Proof. There are bt links that can be allocated in Lb. Pebble p at level t requires
bt−1 moves by the condition of the lemma. The pebble at level t−1 has to make
bt−1 − bt−2 total moves. From then onto the next b− 2 levels, the same number
of moves are needed. Adding them up leads to bt − bt−1 + bt−2. Substracting
this number from the available number of links bt results in bt−1 − bt−2, which
is positive if b ≥ 2.

Corollary 1. Pebble p moves slow enough so that the memory requirement for
level t is b − 1.

Proof. The above lemma shows that the last bt links to be traversed by p can be
actually traversed after all the stored links in the right neighbor of S. Because
the first bt(b− 2) moves are allocate as far to the right as possible and there are
enough number of links to allocate for p, p will move at a regular pace at the
worst. Thus, p moves slow enough to satisfy the memory requirement.

Even if we have shown that there are enough number of links to allocate for
every pebble, it is not enough until we can show that condition 3 is satisfied.
Consider a pebble r at level 1, because no pebble needs to be scheduled after
r, r can be allocated the rightmost link in the sub-section. A pebble r′ at level
2 has to finish its computation. So the leftmost link allocated to r′ will be the
b-th one from the rightmost link in a sub-section. We have to make sure that
the leftmost link allocated to a pebble at every level is to the right enough so
that the upper levels have enough room to finish its moves. The following lemma
shows that to the left of the leftmost link allocated for pebble q at level t − 1
(condition 3). Note that the final difference in the proof of the above lemma will
be used in the proof of the next lemma.

Lemma 3. There is enough links to allocate to p and the b − 1 pebbles in the
lower levels to satisfy condition 3.

366 S.-R. Kim

Proof. As mentioned above, the leftmost allocate link for level 1 is the first
from the rightmost link in a sub-section. For level 2, it is the b-th link from the
rightmost link. If b = 2, the leftmost allocated link for level 3 ls b2-th one from
the rightmost link. We can easily show that if b = 2, the leftmost allocate link
for level m is bm−1-th link from the rightmost link in a sub-section. However, if
b > 2, the leftmost allocated link for level 3 is (b2+2b)-th one from the rightmost
link because 2b links that are already allocated to the pebble at level 1 cannot
be allocated. We can prove by induction that the leftmost link for level m is at
most the (bm−1 + 2bm−2 + 22bm−3 + · · ·)-th one from the rightmost link in a
sub-section. This number sums to at most bm/(b − 2) < bm.

In the proof of lemma 2, we have bt−1 − bt−2 links that need not be allocated
to any pebble. Because we have allocate links to pebbles in levels t down to
t − b + 1, we consider the leftmost link allocated to the pebble at level t − b. If
we set m in the above calculation to t − b, then the leftmost link allocated to
the pebble at level t− b is at most the (bt−b)-th one from the rightmost link in a
sub-section. Substracting from the available free links, we get bt−1 − bt−2 − bt−b,
which is nonnegative if b ≥ 2.

Using the above lemmas, it is easy to prove the following theorem.

Theorem 1. Given a hash chain of length n, the amount of hash function eval-
uation m, and k = m + 1, the algorithm traverses the hash chain using m hash
function evaluations at each iteration and using k(k

√
n−1) memory cells to store

the intermediate hash values.

4 Conclusion

Given the hash chain and a computation limit m (k = m + 1 and b = k
√

n),
we have proposed an algorithm that traverses the hash chain using a total of
k(b − 1) memory. This reduces the memory requirements of Sella’s algorithm
by a factor of 1/b. Because efficient hash chain traversal algorithms are aimed
at devices with severely restricted computation and memory requirements, this
reduction is considered to be important. Further, our algorithm is matches the
memory requirements of Jakobsson’s algorithm while still remaining scalable.
Sella’s algorithm, when scaled to the case of Jakobsson’s algorithm, has a mem-
ory requirement of about twice that of Jakobsson’s.

References

1. D. Coppersmith and M. Jakobsson, Almost optimal hash sequence traversal, Proc.
of the Fifth Conference on Financial Cryptography (FC) ’02, Mar, 2002.

2. H. Haller, The S/Key one-time password system, RFC 1760, Internet Engineering
Taskforce, Feb. 1995.

3. G. Itkis and L. Reyzin, Forward-secure signature with optimal signing and verifying,
Proc. of Crypto ’01, 332–354, 2001.

Scalable Hash Chain Traversal for Mobile Devices 367

4. M. Jakobsson, Fractal hash sequence representation and traversal, IEEE Interna-
tional Symposium on Information Theory (ISIT) 2002, Lausanne, Switzerland, 2002.

5. A. Perrig, R. Canetti, D.Song, and D. Tygar, Efficient authentication and sign-
ing of multicast streams over lossy channels, Proc. of IEEE Security and Provacy
Symposium, 56–73, May 2000.

6. A. Perrig, R. Canetti, D.Song, and D. Tygar, TESLA: Multicast source authentica-
tion transform, Proposed IRFT Draft, http://paris.cs.berkeley.edu/ perrig/

7. Yaron Sella, On the computation-storage trade-offs of hash chain traversal, Proc. of
the Sixth Conference on Financial Cryptography (FC) ’03, Mar, 2003.

	Introduction
	Preliminaries
	Definitions and Terminology
	Jakobsson's Algorithm
	Sella's Algorithm
	Intuitions for Our Algorithm

	Improved Algorithm
	Algorithm
	Correctness

	Conclusion

