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Abstract. In this paper we present an analysis on a shared memory system of 
five self-scheduling algorithms running on top of the threads programming 
model to schedule the loop with cross-iteration dependence. Four of them are 
well-known: self-scheduling (SS), chunked self-scheduling (CSS), guided self-
scheduling (GSS) and factoring. Because these schemes are all for loops with-
out cross-iteration dependence, we study the modification of these schemes to 
schedule the loop with cross-iteration dependence. The fifth is our proposal: 
carried-dependence self-scheduling (CDSS). The experiments conducted in 
varying parameters clearly show that CDSS outperforms other modified self-
scheduling approaches in a number of simulations. CDSS, modified SS, factor-
ing, GSS and CSS are executed efficiently in order of execution time.  

1   Introduction 

In many scientific applications, loops are the richest source of parallelism. Therefore, 
many loop scheduling schemes were proposed to exploit parallelism. In general, there 
are two major types of parallel constructs that are provided in all parallel languages: 
Doall loops (also called a parallel loop) and Doacross loops [1],[2][3]. However, 
most previous work for loop scheduling focused on Doall loops without cross-
iteration dependence.  

The dependence constraint among different iterations, called cross-iteration de-
pendence, is our major concern. A cross-iteration dependence occurs if some data 
computed in one iteration is also used by another iteration. Data dependence analysis 
gives information about underlying data flow of a loop. To preserve those cross-
iteration dependences, additional a code must be added to ensure proper synchroniza-
tion between the processors executing different iterations [1],[2],[3].  

This paper proposes a new self-scheduling method for parallel processing of a loop 
with cross-iteration dependence on shared memory systems. Also, we study the modi-
fication of several self-scheduling schemes using central queue in order to schedule 
the loop with cross-iteration dependence. Our scheme assigns loops efficiently in 
three-level considering the dependence distance of the loops. To adapt the proposed 
scheduling and modified self-scheduling schemes into various platforms, including a 
uni-processor system, we use Java thread for implementation and performance 
evaluation of five scheduling methods. A series of simulation results corresponding to 
various parameter changes are presented in this paper.  

This paper is organized into the following sections. Section 2 revisits some well 
known loop scheduling schemes for shared memory multiprocessors. Then, carried-
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dependence self-scheduling (CDSS) scheme is introduced in Section 3 with an explana-
tion of its working principles. Next, discussions on the their implementation and simula-
tion results are presented in Section 4, and followed by a conclusion in Section 5.  

2   Related Works 

In this section we look at some of the dynamic loop scheduling algorithms, which 
have been proposed in the literature. These algorithms fall into two distinct classes: 
central queue based algorithms and distributed queue based ones according to the 
organization of take queue. According to the presence of a dedicated scheduler, algo-
rithms can be classified the central and self-scheduling method.  
A special case of scheduling through distributed control units is self-scheduling 
[4],[5],[6]. As implied by the term, there is no single control unit that makes global 
decisions for allocating processors, but rather the processors themselves are responsi-
ble for determining what task to execute next. In central queue based self-scheduling 
algorithms, such as self-scheduling (SS), guided self-scheduling (GSS), factoring and 
chunked self-scheduling (CSS), iterations of a parallel loop are all stored in a shared 
central queue and each processor exclusively seizes some iterations from the central 
queue to execution. The major advantage of using a central queue is the possibility of 
optimally balancing the load. While keeping a good load balance, the central queue 
based algorithms differ in the way they reduce synchronization and loop allocation 
overheads [4],[5],[6]. In SS [4],[5] algorithms, each processor repeatedly executes 
iterations of the loop until all iterations are executed. SS achieves almost perfect load 
balancing. Unfortunately, this method incurs significant synchronization overhead. 
CSS [5],[6] reduces synchronization overhead by having each processor take k itera-
tions instead of one, resulting in less synchronization overhead but load balancing is 
not as efficient as SS. GSS [7] changes the size of chunks at run-time. By allocating 
large chunks of iterations at the beginning of loops to processor, synchronization 
overhead can be reduced. In addition, allocating small chunks at the end of the loops 
gives rise to workload balance. Under GSS method, each processor is allocated to l/p 
iterations, where p is the number of processors and l is the number of remaining itera-
tions. In factoring [8] algorithm, allocation of loop iterations to processors proceeds 
in phases. During each phase, only a subset of the remaining loop iterations is divided 
equally to processors. It balances workload better than GSS when the computation 
times of loop iterations are considerable. Other schemes in self scheduling models are 
adaptive guided self-scheduling [9], which includes a random back-off to avoid con-
tention for the task queue, and assigns iterations in and interleaved fashion to avoid 
imbalance; trapezoidal self-scheduling [10], which linearly decreases the number of 
iterations allocated to each processor; tapering [11], which is suitable for irregular 
loops and uses execution profiles to select a chunk size that minimizes the load im-
balance; safe self-scheduling [12], which uses a static phase where each processor is 
allocated a chunk of iterations and a dynamic phase during which the processors are 
self scheduled to even out the load imbalances; and affinity scheduling [13],[14][15], 
which takes processor affinity into account while scheduling. Under this scheme, all 
the processors are initially assigned an equal chunk taking into account data reuse and 
locality. Previous approaches to loop scheduling have been attempted to achieve the 
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minimum completion time by distributing the workload as even as possible and to 
minimize required synchronization overhead. However, all these previous works 
focused on loops without cross-iteration dependence. In Section 3, we explain our 
scheduling scheme for loops with cross-iteration dependence.  

(a) An Example Program               (b) DDG    (c) Iteration Space Dependence Graph  

Fig. 1. An Example Program and its Dependence Graph 

3   The Proposed Algorithm  

An example program of the loop with cross-iteration is Figure 1(a). Here, the value 
assigned to C in each iteration of 3S  is fetched by 4S  in the next iteration of the 
loop. Since some instances of 4S  depend on some instances of 3S , we write 

43 SS fδ . There are many instances of each statement in the loop, but the data de-
pendence graph (DDG) [1],[2],[3] contains only one node for each statement, as 
shown in Figure 1(b). This is a loop-carried, lexically forward flow dependence rela-
tion. The (1) annotation in Figure 1(b) represents the dependence distance of the loop. 
The dependence relations is represented by iteration space dependence graph 
[1][2][3], which contains one point for each iteration of the loop and the dependence 
is represented by an edge from the source iteration to the target iteration as shown in 
Figure 1(c). Also, the dependence relation between iterations is represented by loop 
dependence graph (LDG) [1],[2],[3].  
    Figure 2 illustrates the proposed carried-dependence self-scheduling (CDSS) algo-
rithm where, d indicates dependence distance of the loops. The basic idea of CDSS is 
that it distributes the loop iterations into processors in three-level considering the de-
pendence distance of the loops that have dependences between iterations while mini-
mizing the loop allocation overhead (i.e. synchronization overhead to access  
exclusive shared variables). Also, CDSS uses a central task queue for scheduling of the 
loops. The data structures used in the algorithm are as follows. The central task queue, 
TaskQueue, has the role of identifier for the loops and CrossDep is an array that has n 
bits, each bit related dependency information corresponding to iterations of loops. It 
determines the execution of iteration j, which is dependent on iteration. If the value of a 
corresponding bit equals one, then the iteration can be executed. The initial values of the 
element of CrossDep array are set at 1 when the iterations have no incoming depend-
ency arcs. Therefore, an iteration that has a value 1 of CrossDep would be executed 

Do I=2 to 9          
S1 A[I]=I*10           
S2 B[I]=A[I]+2         
S3 C[I]=A[I]*B[I]      
S4 D[I]=C[I-1]+100     
S5 E[I]=(D[I]+C[I])*B[I]
End Do 
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immediately because it is an independent iteration. The remaining bits of CrossDep are 
set at 0. The shared variables, CrossDep and central task queue, which correspond to 
critical sections, are serialized by locking. The local variable Temp is used to reduce the 
access count to shared variables and the variable Rest represents the number of remain-
ing iterations currently.  

 

Entry Block :                                         
/* get_routine */                                      
1.  lock(TaskQueue)                                    
2.    Temp =TaskQueue                                  
3.  unlock(TaskQueue)                                  
4.  if (Temp[front] == 1) then                                            
/* get an iteration from front of queue */             
5.    i = get_from_queue(1)                            
6.    Execute Block(i)                                  
7.  else if (Rest > d-1)                                
/* assignment phase of middle of loop */                    
8.    start_chunk = get_from_queue(d)                  
9.  else                                               
10.   start_chunk = get_from_queue(Rest)                    
/* assignment phase of end of loop */                  
11. end if                                            
12. update Rest                                        
/* exec_test_routine */                               
13. for k=0, d-1                                      
14.   i = start_chunk + k                             
15.   lock(CrossDep)                                   
16.      Temp = CrossDep                              
17.   unlock(CrossDep)                       
Exec_test :                                            
18.   if(Temp[i] == 1)                                         
19.      Execute Block(i)                             
20.   else then                                       
21.      waiting for system_defined interval             
22.      reload Temp from CrossDep                    
23.      Exec_test                                    
24.   end if                                           
25. end for                                          
Execute Block(i) :                                          
26.   execute the code of iteration i                
Exit Block :                                          
27.   j = detect(i)    /* j = i+d */                          
28.   lock(CrossDep)                                  
29.     CrossDep =Fetch_Set(j, 1)                            
30.   unlock(CrossDep) 

Fig. 2. Pseudo Code for Proposed CDSS Scheme 

The proposed scheduling method is divided into three blocks according to functional-
ity.  Entry Block (lines 1-25) is inserted into processors to schedule the loops. In 
get_routine, the processor obtains the iterations from the front of the TaskQueue for 
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execution. Here, the determination of the number of iterations is related to scheduling 
overhead. The scheduling police in get_routine is divided into roughly three phases. 
First, the processor obtains an iteration from the front of the queue only once (lines 4-6). 
Next, each idle processor obtains as much dependence distance as possible until the 
number of remaining iterations has less than d (lines 7-8). Finally, all remaining itera-
tions are fetched by the processor (lines 9-10). In exec_test_routine, the processor tests 
whether the fetched iteration is ready for execution. The processor executes the iteration 
in Execute Block(line 26) when the iteration has satisfied dependence relations. If the 
dependent successor of the iteration is not finished, the processor will wait for execution 
of the iteration. When the iteration i is terminated, the value of the jth element of 

CrossDep, which has dependence information of the iteration depends on iL , is set at 1 

in Exit Block (lines 27-30). It synchronizes that iteration j is ready for execution. In 
order to schedule the loop with cross-iteration dependence using the existing self-
scheduling method based on central queue, we have to modify them. First, the analyzing 
piece of the processor that tests the execution condition of the iterations must be inserted 
(lines 13-25). According to this operation, the iteration is running or waiting. Also, the 
dependence distance d in line 13 is changed according to different chunk sizes of each 
scheduling method. After the iteration executes, the routine to synchronize the depend-
ence relations between iterations is also necessary (lines 27-30). 

4   Implementation and Performance Evaluation 

To adapt the proposed scheme and modified self-scheduling methods onto various plat-
forms, including a uni-processor system, we use threads to perform processor activity 
for our implementation. Although only SS, CSS, GSS and factoring are multithreaded 
for our simulation study, CDSS is a general technique, which may be applied onto most 
self-scheduling schemes with reasonable chunk size. Other central queue based self-
scheduling methods are all possible to be multithreaded to schedule the loop with itera-
tions. We implanted five algorithms with the same form in thread level using a 
JDK1.2.2 programming environment and executed these methods with a Pentium–III 
450MHz with 128Mb main memory (Redhat Linux 6.1). 
    In our simulated experiments, we compared the performance of the CDSS scheme 
with the modified four self-scheduling methods using central task queue in terms of 
overall execution time including scheduling overhead. For synchronization of critical 
sections, we use synchronized keywords and synchronization methods such as wait and 
notifyAll for implementation of locking [16]. The system parameter values in our ex-
perimentation are as follows: the number of threads (t) is 1 to 30 chosen randomly, the 
number of processors (p) is one in our simulation because our experimental tasks are 
fine grain and the scheduling operation time is relatively less than the execution time of 
a node. The application parameter including the number of iterations (n) is 60 to 180. 
The processing time of each iteration (e) was chosen to be 20, 70, 120, 170 and 220 
miliseconds, respectively. And the dependence distance (d) of loops ranged from 2 to 4. 
Table 1 shows the overall execution times for varying parameter values in modified SS 
(MSS), modified CSS (MCSS), modified GSS (MGSS), modified factoring (MFact) and 
CDSS. As shown in the table, the proposed algorithm usually outperforms other modi-
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fied self-scheduling algorithms in terms of total execution time including the scheduling 
costs and synchronization overheads. We analyzed the execution times effect on the 
system and application parameters.  

Table 1. Execution Time for Scheduling Algorithm (msec) 

Scheduling Algorithm 
t d n e 

MGSS MFact MSS MCSS CDSS

20 1627 1537.2 888.8 1726.2 888.8
2 60

120 7040.4 6656.8 3844.4 7540.6 3839.6

170 19726.6 18284.4 10765.4 21158.4 10754.8
3 120

220 25618 23390.6 13756.8 27052.4 13749

20 4819.2 4508.2 2660.2 5202.6 2636.4

2

4 180
120 20982.8 19624.6 11514.6 22606.6 11476.8

70 8792.2 8416.4 4775 9349.2 4768.4
2 120

120 14199 13562.8 7742.4 15056.8 7714.8

20 1386.6 1170.4 586.4 1646.4 588.8
3 60

70 3727.8 3169 1588.6 4440.6 1584.8

170 27668.8 25302.4 10759.8 31212.6 10764.8

3

4 180
220 35322.8 32366.2 13766.2 39904.6 13754.8

70 4054.2 3734.4 2384 4522.8 2380.4
2 60

170 9153.2 8434.6 5392 10225.6 5388.6

20 2883.2 2665 1180.2 3371.4 1176.6
3 120

120 12539 11543.4 5157.8 14628.2 5154

20 4356.4 3976.2 1323.4 5052.8 1338.6

4

4 180
220 33948.4 30974 10306.8 39220.8 10329.2

170 27252.2 25282.4 16174.6 30688.6 16172.2
2 180

220 34845.8 32320.8 20680.2 39229.8 20669

20 2281.8 1876.2 1179.8 2959.6 1170
3 120

120 10044.6 8216.4 5159.4 13085.2 5144.4

120 14763 12042.2 5834.8 19717 5800

10

4 180
170 20463.8 16702.8 8080.4 27440 8050.6

20 2416.6 2110 1788.8 2972.8 1762.6
2 120

70 6522.8 5653.6 4793.4 8025.2 4756.4

20 698.6 765.2 592.8 652 592.6
3 60

170 4301.2 4661.6 3588.2 3940.6 3576.8

120 10900.2 8184.2 5845.4 15901.2 5835.8

20

4 180
220 19287.2 14469.8 10341.2 28213.6 10340

20 3666.2 3173.8 2695.2 4495.8 2666.6
2 180

70 9814.2 8471.6 7195.2 12034 7159.6

170 9403.8 9000.4 7194.6 11117.6 7196.8
3 120

220 11986 11487.8 9195.6 14223.8 9187.6

120 2080.8 1951 1951.8 2076.4 1949.6

30

4 60
170 2874 2699.8 2703 2880.8 2693.4
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4.1   Effect of System Parameter  

For parallel processing using threads, we created threads up to 30 on the same appli-
cations. Figure 3 shows the overall execution time of each scheduling scheme by 
varying  the  number  of  threads  with various  parameter values. Generally, it is clear 

Fig. 3. Effect of the Number of Threads 

that providing more threads can improve the performance substantially as shown in 
the Figure 3. Unfortunately, there are some cases in which some scheduling policies 
occasionally have poor performance when increasing the threads. In Figure 3(c), it 
shows performance degradation over a lot of threads when 30 threads were used. In 
MGSS (Fig.3(a)), Mfact (Fig.3(b)) and MCSS (Fig.3(d)), we have good performance 
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by providing substantially more threads. However, MSS and CDSS show that a rea-
sonable number of threads used to improve the performance depends on the depend-
ence distance of the loops. Thus, we achieved the best performance using a few 
threads which equal the dependence distance d in most applications. We can observe 
that to get a reasonable number of threads for improved performance is very difficult 
but it could be achieved by repeating experiments on a dedicated scheduling scheme 
and application. Next, we analyze the effect of the application parameters. 

4.2   Effect of Application Parameters  

The application parameters also affected the execution times as shown in Figures 4, 5 
and 6. By increasing the number of iterations (n), the execution time is long on the same 
number of threads. For example, as shown in Figure 4, the proposed algorithm has 
1201, 2373 and 3577ms execution times on the variations of n with 60, 120 and 180, 
respectively, when d=4, e=70 and t=30. As a result, by doubling the number of itera-
tions, we get about double the execution time. Next, we changed the processing time of 
task (e). Figure 5 shows the execution time on the variations of task sizes when d=3, 
n=120 and t=10. For example, when the execution costs per iteration varied from 20, 
70, 120, 170 and 220ms, it had the execution times of 1170, 3173, 5144, 7173 and 
9160ms, respectively, using the proposed algorithm. By increasing the processing 
time of the task, it has long execution times. Finally, Figure 6 shows the execution 
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time on the effect of varying dependence distance (d) of loops with n=120, e=20 and 
t=20. In this experiment, the application with a large dependence distance can reduce 
the execution times by decreasing the overhead. For example, according to the varia-
tion of d with 2, 3 and 4, we can reduce the execution times to 1763, 1166 and 891ms, 
respectively, using CDSS. This is because the applications with large distances have 
few synchronization points for parallel execution and thus increase the thread parallel-
ism. In various experimental environments, CDSS shows improved performance over 
MSS, MFact, MGSS and MCSS by about 0.02, 40.5, 46.1 and 53.6%, respectively, in 
our experimental parameter values.  

5   Conclusions 

We proposed a new scheduling method for efficiently execution of a loop with cross-
iteration dependence on a shared memory multiprocessor. The proposed method is a 
self-scheduling algorithm and assigns the loops in three-level considering the syn-
chronization point according to the dependence distance of the loops. Also, we stud-
ied the modification that converts the existing self-scheduling method based on the 
central task queue for parallel loops onto the same form applied to loops with cross-
iteration dependence. To adapt the proposed and modified methods onto on various 
platforms, including a uni-processor system, we use thread for implementation. Com-
pared to other assignment algorithms with various changes of application and system 
parameters, CDSS is found to be more efficient than other methods in overall execu-
tion time including scheduling overhead. With our new loop scheduling technique, the 
execution time of our experimental applications can be improved by 0.02%~53.6 
compared to the modified methods.  
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