

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 281 – 290, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Carried-Dependence Self-scheduling Algorithm

Hyun Cheol Kim

Dept. of Computer & Information, Jaineung College, 122, Songlim-Dong, Dong-Gu,
Incheon 401-714, Republic of Korea

hckim@mail.jnc.ac.kr

Abstract. In this paper we present an analysis on a shared memory system of
five self-scheduling algorithms running on top of the threads programming
model to schedule the loop with cross-iteration dependence. Four of them are
well-known: self-scheduling (SS), chunked self-scheduling (CSS), guided self-
scheduling (GSS) and factoring. Because these schemes are all for loops with-
out cross-iteration dependence, we study the modification of these schemes to
schedule the loop with cross-iteration dependence. The fifth is our proposal:
carried-dependence self-scheduling (CDSS). The experiments conducted in
varying parameters clearly show that CDSS outperforms other modified self-
scheduling approaches in a number of simulations. CDSS, modified SS, factor-
ing, GSS and CSS are executed efficiently in order of execution time.

1 Introduction

In many scientific applications, loops are the richest source of parallelism. Therefore,
many loop scheduling schemes were proposed to exploit parallelism. In general, there
are two major types of parallel constructs that are provided in all parallel languages:
Doall loops (also called a parallel loop) and Doacross loops [1],[2][3]. However,
most previous work for loop scheduling focused on Doall loops without cross-
iteration dependence.

The dependence constraint among different iterations, called cross-iteration de-
pendence, is our major concern. A cross-iteration dependence occurs if some data
computed in one iteration is also used by another iteration. Data dependence analysis
gives information about underlying data flow of a loop. To preserve those cross-
iteration dependences, additional a code must be added to ensure proper synchroniza-
tion between the processors executing different iterations [1],[2],[3].

This paper proposes a new self-scheduling method for parallel processing of a loop
with cross-iteration dependence on shared memory systems. Also, we study the modi-
fication of several self-scheduling schemes using central queue in order to schedule
the loop with cross-iteration dependence. Our scheme assigns loops efficiently in
three-level considering the dependence distance of the loops. To adapt the proposed
scheduling and modified self-scheduling schemes into various platforms, including a
uni-processor system, we use Java thread for implementation and performance
evaluation of five scheduling methods. A series of simulation results corresponding to
various parameter changes are presented in this paper.

This paper is organized into the following sections. Section 2 revisits some well
known loop scheduling schemes for shared memory multiprocessors. Then, carried-

282 H.C. Kim

dependence self-scheduling (CDSS) scheme is introduced in Section 3 with an explana-
tion of its working principles. Next, discussions on the their implementation and simula-
tion results are presented in Section 4, and followed by a conclusion in Section 5.

2 Related Works

In this section we look at some of the dynamic loop scheduling algorithms, which
have been proposed in the literature. These algorithms fall into two distinct classes:
central queue based algorithms and distributed queue based ones according to the
organization of take queue. According to the presence of a dedicated scheduler, algo-
rithms can be classified the central and self-scheduling method.
A special case of scheduling through distributed control units is self-scheduling
[4],[5],[6]. As implied by the term, there is no single control unit that makes global
decisions for allocating processors, but rather the processors themselves are responsi-
ble for determining what task to execute next. In central queue based self-scheduling
algorithms, such as self-scheduling (SS), guided self-scheduling (GSS), factoring and
chunked self-scheduling (CSS), iterations of a parallel loop are all stored in a shared
central queue and each processor exclusively seizes some iterations from the central
queue to execution. The major advantage of using a central queue is the possibility of
optimally balancing the load. While keeping a good load balance, the central queue
based algorithms differ in the way they reduce synchronization and loop allocation
overheads [4],[5],[6]. In SS [4],[5] algorithms, each processor repeatedly executes
iterations of the loop until all iterations are executed. SS achieves almost perfect load
balancing. Unfortunately, this method incurs significant synchronization overhead.
CSS [5],[6] reduces synchronization overhead by having each processor take k itera-
tions instead of one, resulting in less synchronization overhead but load balancing is
not as efficient as SS. GSS [7] changes the size of chunks at run-time. By allocating
large chunks of iterations at the beginning of loops to processor, synchronization
overhead can be reduced. In addition, allocating small chunks at the end of the loops
gives rise to workload balance. Under GSS method, each processor is allocated to l/p
iterations, where p is the number of processors and l is the number of remaining itera-
tions. In factoring [8] algorithm, allocation of loop iterations to processors proceeds
in phases. During each phase, only a subset of the remaining loop iterations is divided
equally to processors. It balances workload better than GSS when the computation
times of loop iterations are considerable. Other schemes in self scheduling models are
adaptive guided self-scheduling [9], which includes a random back-off to avoid con-
tention for the task queue, and assigns iterations in and interleaved fashion to avoid
imbalance; trapezoidal self-scheduling [10], which linearly decreases the number of
iterations allocated to each processor; tapering [11], which is suitable for irregular
loops and uses execution profiles to select a chunk size that minimizes the load im-
balance; safe self-scheduling [12], which uses a static phase where each processor is
allocated a chunk of iterations and a dynamic phase during which the processors are
self scheduled to even out the load imbalances; and affinity scheduling [13],[14][15],
which takes processor affinity into account while scheduling. Under this scheme, all
the processors are initially assigned an equal chunk taking into account data reuse and
locality. Previous approaches to loop scheduling have been attempted to achieve the

 A New Carried-Dependence Self- cheduling Algorithm 283

minimum completion time by distributing the workload as even as possible and to
minimize required synchronization overhead. However, all these previous works
focused on loops without cross-iteration dependence. In Section 3, we explain our
scheduling scheme for loops with cross-iteration dependence.

(a) An Example Program (b) DDG (c) Iteration Space Dependence Graph

Fig. 1. An Example Program and its Dependence Graph

3 The Proposed Algorithm

An example program of the loop with cross-iteration is Figure 1(a). Here, the value
assigned to C in each iteration of 3S is fetched by 4S in the next iteration of the
loop. Since some instances of 4S depend on some instances of 3S , we write

43 SS fδ . There are many instances of each statement in the loop, but the data de-
pendence graph (DDG) [1],[2],[3] contains only one node for each statement, as
shown in Figure 1(b). This is a loop-carried, lexically forward flow dependence rela-
tion. The (1) annotation in Figure 1(b) represents the dependence distance of the loop.
The dependence relations is represented by iteration space dependence graph
[1][2][3], which contains one point for each iteration of the loop and the dependence
is represented by an edge from the source iteration to the target iteration as shown in
Figure 1(c). Also, the dependence relation between iterations is represented by loop
dependence graph (LDG) [1],[2],[3].
 Figure 2 illustrates the proposed carried-dependence self-scheduling (CDSS) algo-
rithm where, d indicates dependence distance of the loops. The basic idea of CDSS is
that it distributes the loop iterations into processors in three-level considering the de-
pendence distance of the loops that have dependences between iterations while mini-
mizing the loop allocation overhead (i.e. synchronization overhead to access
exclusive shared variables). Also, CDSS uses a central task queue for scheduling of the
loops. The data structures used in the algorithm are as follows. The central task queue,
TaskQueue, has the role of identifier for the loops and CrossDep is an array that has n
bits, each bit related dependency information corresponding to iterations of loops. It
determines the execution of iteration j, which is dependent on iteration. If the value of a
corresponding bit equals one, then the iteration can be executed. The initial values of the
element of CrossDep array are set at 1 when the iterations have no incoming depend-
ency arcs. Therefore, an iteration that has a value 1 of CrossDep would be executed

Do I=2 to 9
S1 A[I]=I*10
S2 B[I]=A[I]+2
S3 C[I]=A[I]*B[I]
S4 D[I]=C[I-1]+100
S5 E[I]=(D[I]+C[I])*B[I]
End Do

S 3

S 4

(1)

S 3

S 4

(1)

32 64 5 710 98

I
32 64 5 710 98

I

s

284 H.C. Kim

immediately because it is an independent iteration. The remaining bits of CrossDep are
set at 0. The shared variables, CrossDep and central task queue, which correspond to
critical sections, are serialized by locking. The local variable Temp is used to reduce the
access count to shared variables and the variable Rest represents the number of remain-
ing iterations currently.

Entry Block :
/* get_routine */
1. lock(TaskQueue)
2. Temp =TaskQueue
3. unlock(TaskQueue)
4. if (Temp[front] == 1) then
/* get an iteration from front of queue */
5. i = get_from_queue(1)
6. Execute Block(i)
7. else if (Rest > d-1)
/* assignment phase of middle of loop */
8. start_chunk = get_from_queue(d)
9. else
10. start_chunk = get_from_queue(Rest)
/* assignment phase of end of loop */
11. end if
12. update Rest
/* exec_test_routine */
13. for k=0, d-1
14. i = start_chunk + k
15. lock(CrossDep)
16. Temp = CrossDep
17. unlock(CrossDep)
Exec_test :
18. if(Temp[i] == 1)
19. Execute Block(i)
20. else then
21. waiting for system_defined interval
22. reload Temp from CrossDep
23. Exec_test
24. end if
25. end for
Execute Block(i) :
26. execute the code of iteration i
Exit Block :
27. j = detect(i) /* j = i+d */
28. lock(CrossDep)
29. CrossDep =Fetch_Set(j, 1)
30. unlock(CrossDep)

Fig. 2. Pseudo Code for Proposed CDSS Scheme

The proposed scheduling method is divided into three blocks according to functional-
ity. Entry Block (lines 1-25) is inserted into processors to schedule the loops. In
get_routine, the processor obtains the iterations from the front of the TaskQueue for

 285

execution. Here, the determination of the number of iterations is related to scheduling
overhead. The scheduling police in get_routine is divided into roughly three phases.
First, the processor obtains an iteration from the front of the queue only once (lines 4-6).
Next, each idle processor obtains as much dependence distance as possible until the
number of remaining iterations has less than d (lines 7-8). Finally, all remaining itera-
tions are fetched by the processor (lines 9-10). In exec_test_routine, the processor tests
whether the fetched iteration is ready for execution. The processor executes the iteration
in Execute Block(line 26) when the iteration has satisfied dependence relations. If the
dependent successor of the iteration is not finished, the processor will wait for execution
of the iteration. When the iteration i is terminated, the value of the jth element of

CrossDep, which has dependence information of the iteration depends on iL , is set at 1

in Exit Block (lines 27-30). It synchronizes that iteration j is ready for execution. In
order to schedule the loop with cross-iteration dependence using the existing self-
scheduling method based on central queue, we have to modify them. First, the analyzing
piece of the processor that tests the execution condition of the iterations must be inserted
(lines 13-25). According to this operation, the iteration is running or waiting. Also, the
dependence distance d in line 13 is changed according to different chunk sizes of each
scheduling method. After the iteration executes, the routine to synchronize the depend-
ence relations between iterations is also necessary (lines 27-30).

4 Implementation and Performance Evaluation

To adapt the proposed scheme and modified self-scheduling methods onto various plat-
forms, including a uni-processor system, we use threads to perform processor activity
for our implementation. Although only SS, CSS, GSS and factoring are multithreaded
for our simulation study, CDSS is a general technique, which may be applied onto most
self-scheduling schemes with reasonable chunk size. Other central queue based self-
scheduling methods are all possible to be multithreaded to schedule the loop with itera-
tions. We implanted five algorithms with the same form in thread level using a
JDK1.2.2 programming environment and executed these methods with a Pentium–III
450MHz with 128Mb main memory (Redhat Linux 6.1).
 In our simulated experiments, we compared the performance of the CDSS scheme
with the modified four self-scheduling methods using central task queue in terms of
overall execution time including scheduling overhead. For synchronization of critical
sections, we use synchronized keywords and synchronization methods such as wait and
notifyAll for implementation of locking [16]. The system parameter values in our ex-
perimentation are as follows: the number of threads (t) is 1 to 30 chosen randomly, the
number of processors (p) is one in our simulation because our experimental tasks are
fine grain and the scheduling operation time is relatively less than the execution time of
a node. The application parameter including the number of iterations (n) is 60 to 180.
The processing time of each iteration (e) was chosen to be 20, 70, 120, 170 and 220
miliseconds, respectively. And the dependence distance (d) of loops ranged from 2 to 4.
Table 1 shows the overall execution times for varying parameter values in modified SS
(MSS), modified CSS (MCSS), modified GSS (MGSS), modified factoring (MFact) and
CDSS. As shown in the table, the proposed algorithm usually outperforms other modi-

A New Carried-Dependence Self- cheduling Algorithm s

286 H.C. Kim

fied self-scheduling algorithms in terms of total execution time including the scheduling
costs and synchronization overheads. We analyzed the execution times effect on the
system and application parameters.

Table 1. Execution Time for Scheduling Algorithm (msec)

Scheduling Algorithm
t d n e

MGSS MFact MSS MCSS CDSS

20 1627 1537.2 888.8 1726.2 888.8
2 60

120 7040.4 6656.8 3844.4 7540.6 3839.6

170 19726.6 18284.4 10765.4 21158.4 10754.8
3 120

220 25618 23390.6 13756.8 27052.4 13749

20 4819.2 4508.2 2660.2 5202.6 2636.4

2

4 180
120 20982.8 19624.6 11514.6 22606.6 11476.8

70 8792.2 8416.4 4775 9349.2 4768.4
2 120

120 14199 13562.8 7742.4 15056.8 7714.8

20 1386.6 1170.4 586.4 1646.4 588.8
3 60

70 3727.8 3169 1588.6 4440.6 1584.8

170 27668.8 25302.4 10759.8 31212.6 10764.8

3

4 180
220 35322.8 32366.2 13766.2 39904.6 13754.8

70 4054.2 3734.4 2384 4522.8 2380.4
2 60

170 9153.2 8434.6 5392 10225.6 5388.6

20 2883.2 2665 1180.2 3371.4 1176.6
3 120

120 12539 11543.4 5157.8 14628.2 5154

20 4356.4 3976.2 1323.4 5052.8 1338.6

4

4 180
220 33948.4 30974 10306.8 39220.8 10329.2

170 27252.2 25282.4 16174.6 30688.6 16172.2
2 180

220 34845.8 32320.8 20680.2 39229.8 20669

20 2281.8 1876.2 1179.8 2959.6 1170
3 120

120 10044.6 8216.4 5159.4 13085.2 5144.4

120 14763 12042.2 5834.8 19717 5800

10

4 180
170 20463.8 16702.8 8080.4 27440 8050.6

20 2416.6 2110 1788.8 2972.8 1762.6
2 120

70 6522.8 5653.6 4793.4 8025.2 4756.4

20 698.6 765.2 592.8 652 592.6
3 60

170 4301.2 4661.6 3588.2 3940.6 3576.8

120 10900.2 8184.2 5845.4 15901.2 5835.8

20

4 180
220 19287.2 14469.8 10341.2 28213.6 10340

20 3666.2 3173.8 2695.2 4495.8 2666.6
2 180

70 9814.2 8471.6 7195.2 12034 7159.6

170 9403.8 9000.4 7194.6 11117.6 7196.8
3 120

220 11986 11487.8 9195.6 14223.8 9187.6

120 2080.8 1951 1951.8 2076.4 1949.6

30

4 60
170 2874 2699.8 2703 2880.8 2693.4

 287

4.1 Effect of System Parameter

For parallel processing using threads, we created threads up to 30 on the same appli-
cations. Figure 3 shows the overall execution time of each scheduling scheme by
varying the number of threads with various parameter values. Generally, it is clear

Fig. 3. Effect of the Number of Threads

that providing more threads can improve the performance substantially as shown in
the Figure 3. Unfortunately, there are some cases in which some scheduling policies
occasionally have poor performance when increasing the threads. In Figure 3(c), it
shows performance degradation over a lot of threads when 30 threads were used. In
MGSS (Fig.3(a)), Mfact (Fig.3(b)) and MCSS (Fig.3(d)), we have good performance

A New Carried-Dependence Self- cheduling Algorithm s

288 H.C. Kim

by providing substantially more threads. However, MSS and CDSS show that a rea-
sonable number of threads used to improve the performance depends on the depend-
ence distance of the loops. Thus, we achieved the best performance using a few
threads which equal the dependence distance d in most applications. We can observe
that to get a reasonable number of threads for improved performance is very difficult
but it could be achieved by repeating experiments on a dedicated scheduling scheme
and application. Next, we analyze the effect of the application parameters.

4.2 Effect of Application Parameters

The application parameters also affected the execution times as shown in Figures 4, 5
and 6. By increasing the number of iterations (n), the execution time is long on the same
number of threads. For example, as shown in Figure 4, the proposed algorithm has
1201, 2373 and 3577ms execution times on the variations of n with 60, 120 and 180,
respectively, when d=4, e=70 and t=30. As a result, by doubling the number of itera-
tions, we get about double the execution time. Next, we changed the processing time of
task (e). Figure 5 shows the execution time on the variations of task sizes when d=3,
n=120 and t=10. For example, when the execution costs per iteration varied from 20,
70, 120, 170 and 220ms, it had the execution times of 1170, 3173, 5144, 7173 and
9160ms, respectively, using the proposed algorithm. By increasing the processing
time of the task, it has long execution times. Finally, Figure 6 shows the execution

0

1000

2000

3000

4000

5000

6000

7000

8000

M G SS M fact M SS M C SS C D SS

60

120

180

0

5000

10000

15000

20000

25000

M G SS M fact M SS M C SS C D SS

20

70

120

170

220

 Fig. 4. Effect of n (d=4, e=70, t=30) Fig. 5. Effect of e (d=3, n=120, t=10)

0

500

1000

1500

2000

2500

3000

3500

M GSS M fact M SS M CSS CDSS

2

3

4

 Fig. 6. Effect of d (n=120, e=20, t=20)

 289

time on the effect of varying dependence distance (d) of loops with n=120, e=20 and
t=20. In this experiment, the application with a large dependence distance can reduce
the execution times by decreasing the overhead. For example, according to the varia-
tion of d with 2, 3 and 4, we can reduce the execution times to 1763, 1166 and 891ms,
respectively, using CDSS. This is because the applications with large distances have
few synchronization points for parallel execution and thus increase the thread parallel-
ism. In various experimental environments, CDSS shows improved performance over
MSS, MFact, MGSS and MCSS by about 0.02, 40.5, 46.1 and 53.6%, respectively, in
our experimental parameter values.

5 Conclusions

We proposed a new scheduling method for efficiently execution of a loop with cross-
iteration dependence on a shared memory multiprocessor. The proposed method is a
self-scheduling algorithm and assigns the loops in three-level considering the syn-
chronization point according to the dependence distance of the loops. Also, we stud-
ied the modification that converts the existing self-scheduling method based on the
central task queue for parallel loops onto the same form applied to loops with cross-
iteration dependence. To adapt the proposed and modified methods onto on various
platforms, including a uni-processor system, we use thread for implementation. Com-
pared to other assignment algorithms with various changes of application and system
parameters, CDSS is found to be more efficient than other methods in overall execu-
tion time including scheduling overhead. With our new loop scheduling technique, the
execution time of our experimental applications can be improved by 0.02%~53.6
compared to the modified methods.

References

1. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley (1996)
2. Quinn, M.J.: Parallel Computing -Theory and Practice. McGraw-Hill (1994)
3. Zima, H., Chapman, B.: Super Compiler for Parallel and Vector Computers. Addison-

Wesley (1991)
4. Tang, P., Yew, P.C.: Processor Self-Scheduling for multiple nested parallel loops. Proc.

1986 Int. Conf. Parallel Processing (1986) 528-535
5. Fang, Z., Tang, P., Yew, P.C., Zhu, C.Q.: Dynamic Processor Self-Scheduling for General

Parallel Nested Loops. IEEE Trans. on Computers, vol. 39, no. 7 (1990) 919-929
6. Kruskaland, C.P., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE

Trans. Software Eng., vol. 11, no.10 (1985) 1001 -1016
7. Polychronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: A Practical Scheme for Paral-

lel Supercomputers. IEEE Trans. on Computers, vol.36, no. 12 (1987) 1425-1439
8. Hummel, S.E., Schonberg, E., Flynn, L.E.: Factoring : A Method for Scheduling Parallel

Loops. Comm. ACM, vol. 35, no. 8 (1992) 90-101
9. Eager, D.L., Zahorjan, J.: Adaptive guided self-scheduling. Tech. Rep. 92-01-01. Dept. of

Comput. Sci. and Eng,, univ. of Wash (1992)
10. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling : A practical scheduling scheme for paral-

lel computer. IEEE Trans. on Parallel and Distributed Syst., vol.4 (1993) 87-98

A New Carried-Dependence Self- cheduling Algorithm s

290 H.C. Kim

11. Lucco, S.: A Dynamic Scheduling Method for irregular parallel Programs. Proc. ACM
SIGPLAN '92 Conf. Programming Language Design and Implementation (1992) 200-211

12. Liu, J., Saletore, V.A., Lewis, T.G.: Safe Self-Scheduling: A Parallel Loop Schedul-
ing Scheme for Shared-Memory Multiprocessors. Int. Parallel Programming, vol.22, no. 6
(1994) 589-616

13. Markatos, E.P., LeBlanc, T.J.: Using Processor Affinity in Loop Scheduling on Shared-
Memory Multiprocessors. IEEE Trans. on Parallel and Distributed Syst, vol. 5, no. 4.
(1994) 379-400

14. Subramaniam, S., Eager, D.L.: Affinity Scheduling of Unbalanced Workloads. Proc. Su-
percomputing '94 (1994) 214-226

15. Yan, Y., Jin, C., Zhang, X.: Adaptively Scheduling Parallel Loops in Distributed Shared-
Memory Systems. IEEE Trans. on Parallel and Distributed Syst., vol. 8, no.1 (1997) 70-81

16. Campione, M.: The Java Tutorial, Addison-Wesley (1999)

	Introduction
	Related Works
	The Proposed Algorithm
	Implementation and Performance Evaluation
	Effect of System Parameter
	Effect of Application Parameters

	Conclusions
	References

