
Cache Management Protocols Based on
Re-ordering for Distributed Systems

SungHo Cho1 and Kyoung Yul Bae2

1 Dept. of Information Science & Telecommunication,
Hanshin University, Korea

zoch@hs.ac.kr
2 Division of Computer Software, SangMyung University, Korea

jbae@smu.ac.kr

Abstract. Database systems have used a client-server computing model
to support shared data in distributed systems such as Web systems.
To reduce server bottlenecks, each client may have its own cache for
later reuse. This paper suggests an efficient cache consistency protocol
based on a optimistic approach. The main characteristic of our scheme
is that some transactions that read stale data items can not be aborted,
because it adopts a re-ordering mechanism to enhance the performance.
This paper presents a simulation-based analysis on the performance of
our scheme with other well-known protocols. The analysis was executed
under the Zipf workload which represents the popularity distribution on
the Web. The simulation experiments show that our scheme performs as
well as or better than other schemes with low overhead.

1 Introduction

A potential weakness of the the client-server model is server bottlenecks that can
arise due to the volume of data requested by clients[1,2]. To reduce this problem,
each client may have its own cache to maintain some portion of data for later
reuse [3,4]. When client caching is used, there should be a transactional cache
consistency protocol between client and server to ensure that the client cache
remains consistent with the shared data by use of transaction semantics [5,6].

In the literature, many transactional cache consistency algorithms have been
proposed. The previous studies[6–8] indicate that Optimistic Two-Phase Lock-
ing(O2PL) performs as well as or better than the other approaches for most
workloads, because it exploits client caching well and also has relatively lower
network bandwidth requirements.

In this paper, we suggests an optimistic protocol called RCP(Re-orderable
Cache Protocol). Compared with O2PL, the main advantage of RCP is to reduce

� This work was supported by Ministry of Education and Human Resources Develop-
ment through Embedded Software Open Resource Center(ESORC) at SangMyung
University.

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 204–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Cache Management Protocols 205

unnecessary operations based on re-ordering. In addition, even if some schemes
use multiple-versions to reduces unnecessary operations[1], RCP stores only a
single version of each data item for re-ordering. finally, our scheme does not
require global deadlock detection which tends to be complex and has frequently
been shown to be incorrect.

This paper presents a simulation-based analysis on the performance of some
schemes with the Zipf distribution which is governed by Zipf’s law[9]. So far, a
number of groups have shown that, by examining the access logs for different
Web servers, the popularity distribution for files on the Web is skewed following
Zipf’s law. In [10], the authors showed that the Zipf’s distribution is strongly
applied even to WWW documents serviced by Web servers. Our simulation
experiments show that RCP performs as well as or better than other schemes
with low overhead.

2 Re-orderable Caching Consistency Protocol

The RCP protocol is one of the avoidance-based algorithms, and it defers write
intention declarations until the end of a transaction’s execution phase. The dif-
ference between RCP and O2PL is that RCP uses a preemptive policy. If pos-
sible, RCP tries to re-order transactions which accessed read-write conflicting
data items.

Basically, RCP uses the current version check for validation. For this, the
server maintains read time-stamp D.T r and write time-stamp D.Tw for each
persistent data item. The time-stamps are the time-stamps of the youngest (i.e.,
lastest in time) committed transaction. When a transaction wants to read a
data Di, the server sends the data with current write time-stamp Di.T

w if data
Di is not in the local cache of the client. Clients also maintain data and their
current time-stamps in the local cache. Hence, a transaction views each data
item as a (name, version) pair. Note that we leave the granularity of logical data
unspecified in this paper; in practice, they may be pages, objects, etc.

The client of transaction X maintains the following information for the trans-
action.

• Set SR
X - Set of the data read by transaction X

• Set SW
X - Set of the data written by transaction X

• Set SI
X - Set of the data invalidated by the server during transaction X is

running.
• Time-stamp TL

X - The maximum time-stamp among the time-stamps of
the data read by transaction X

• Time-stamp TU
X - The minimum time-stamp among the time-stamps of

the committing transactions that are conflicted with transaction X (during
transaction X is running)

Consider the example in Section 1. If transaction Y is back-shifted, what is
the valid time-stamp interval of transaction Y for re-ordering? Intuitively, a back-



206 S.H. Cho and K.Y. Bae

shifted time-stamp of transaction Y has to be larger than the maximum time-
stamp among time-stamps of read data and has to be smaller than the minimum
time-stamp among the time-stamps of conflicting and committing transactions.
Based on the property, time-stamps TL and TU denote the lower-bound and
upper-bound of valid interval for re-ordering, respectively. The initial values of
time-stamps TL and TU are the smallest time-stamp in the system. Sets SR and
SW are maintained for validation as in optimistic concurrency control. Set SI is
maintained to reduce unnecessary operations.

When transaction X is ready to enter its commit phase, the client sends to
the server a message containing sets SR

X , SW
X , time-stamps TL

X and TU
X . When

the server receives the message, it assigns a unique committing time-stamp TC
X

that is equal to the certification time. After that, the server sends a message
to each client that has cached copies of any of the updated data items in set
SW

X . The message contains committing time-stamp TC
X , sets SR

X and SW
X . When

a remote client gets the invalidation message, it evicts local copies of the data
updated by transaction X, and sends an acknowledgment(ACK) to the server.
Once all ACKs have been received, the server sets read time-stamp Dj .T

r for
each data Dj in set SR

X and write time-stamp Dk.Tw for each data Dk in set
SW

X to committing time-stamp TC
X .

Now, we describe how to update the lower-bound time-stamp TL. Whenever
transaction X reads data Di, time-stamp TL

X is compared with the current time-
stamp Di.T

w. If time-stamp TL
X is lower than the time-stamp Di.T

w, then TL
X

is set to Di.T
w.

Next, consider the upper-bound time-stamp TU . When the client of transac-
tion Y gets the invalidation message issued by transaction X, the client updates
time-stamp TU

Y with the following rules;

• For each data Di in set SW
X , if data Di also is in set SR

Y , then time-stamp
TU

Y is updated based on the following procedures. Otherwise, the following
procedures are ignored.

• For each data Dj in set SR
X , if data Dj also is in set SW

Y , the client aborts
transaction Y , because transaction Y can not be re-ordered.

• If transaction Y is not yet aborted, time-stamp TU
Y is compared to time-

stamp TC
X . If time-stamp TU

Y is the initial value, then it is set to time-stamp
TC

X . Otherwise, time-stamp TU
Y is set to time-stamp TC

X if it is larger than
time-stamp TC

X .
• Each data Dk in sets SW

X and SR
Y is inserted into set SI

Y to prevent unnec-
essary operations.

Whenever time-stamps TL
Y or TU

Y is changed, transaction Y is aborted if time-
stamp TU

Y is not the initial value and time-stamp TL
Y is larger than or equal to

time-stamp TU
Y , because the server can not find any back-shifting time-stamp. In

addition, whenever transaction Y tries to write the data in set SI
Y , transaction

Y is also aborted to prevent write-write conflicts.
When transaction Y which has accessed invalidated data is ready to enter its

commit phase, the client sends to the server a message containing sets SR
Y , SW

Y ,



Cache Management Protocols 207

time-stamps TL
Y and TU

Y . When the server receives the message, if time-stamp
TU

Y is not the initial value, it sets committing time-stamp TC
Y to TU

Y - δ (δ is an in-
finitesimal quantity) for re-ordering instead of assigning a new time-stamp. Note
that, instead of a specific value, we use an infinitesimal quantity for the value of
δ. This approach has an advantage, because it reserves sufficient interval between
time-stamps of committing transaction for accepting re-ordered transactions.

After setting TC
Y to TU

Y - δ, the server checks whether the back-shifted time-
stamp TC

Y is always larger than time-stamp Di.T
r for each data Di in set SW

Y

(Indirect Conflict Check). If time-stamp TC
Y does not satisfy the rule, transaction

Y is aborted. Otherwise, transaction Y is committed with the back-shifted time-
stamp TC

Y .
In commit processing, the server sends time-stamp TC

Y , sets SR
Y and SW

Y to
each client that has cached copies of any of the updated data items by transaction
Y . After all ACKs are obtained, for each data Dj in set SR

Y , the server sets time-
stamp Dj .T

r to time-stamp TC
Y if Dj .T

r is less than TC
Y . In addition, for each

data Dk in set SW
Y , it sets time-stamp Dk.Tw to time-stamp TC

Y if Dk.Tw is less
than TC

Y .

3 Simulation Study

3.1 Simulation Model

In this section, we compare the proposed scheme(RCP) with O2PL-Invalidate
(O2PL) and Call Back Locking(CBL). Our simulation shows the relative per-
formance and characteristics of these approaches. Our study concentrates here
mainly on performance aspects, since we are primarily interested in the rela-
tive suitability of the cache protocols. Table 1 describes the parameters used to
specify the system resources and overhead.

Our simulation model consists of components that model diskless client work-
stations and a server machine that are connected over a simple network. A client
or server is modeled as a simple processor with a microsecond granularity clock.
This clock advances as event running as the processor makes “charges” against
it. Charges in this model are specified using instruction count.

The number of clients are assumed to be parameter No Client. This study ran
experiments using 1 - 25 clients. Each client consists of a Buffer Manager that
uses an LRU page replacement policy and a Client Manager that coordinates
the execution of transactions. A Resource Manager provides CPU service and
accesses to the network. Each client also has a Transaction Source which initiates
transaction one-at-a-time at the client site.

Compared with client workstations, the server machine has the following
differences. The server’s Resource Manager manages a disk as well as a CPU,
and Concurrency Control Manager has the ability to store information about
the location of page copies in the system and also manages locks (for O2PL
and CBL). Since all transactions originate at client workstations, there is no
Transaction Source module at the server.



208 S.H. Cho and K.Y. Bae

Table 1. System and Overhead Parameter Setting

Parameter Meaning Setting

Page Size Size of a page 4Kbyte
DB Size Size of DB in pages 1250
No Client No. of clients 1 to 25
No Tr No. of transactions per client 1000
Tr Size Size of each transaction 20 page
Write Prob Write probability 20%
Ex Tr Mean time between transactions 0 Sec.
Ex Op Mean time between operations 0 Sec.

Client CPU Client CPU power 15 MIPS
Server CPU Server CPU power 30 MIPS.
Client Buf Per client buffer size 5%, 25% of DB
Server Buf Server buffer size 50% of DB
Ave Disk Average disk access time. 20 millisecond
Net Bandwidth Network bandwidth 8Mbps

Page Inst Per page instruction 30K inst.
Fix Msg Inst Fixed no. of inst. per msg 20K inst.
Add Msg Inst No. of added inst. per msg 10K inst. per 4Kb
Control Msg Size of a control msg. 256 byte
Lock Inst Inst. per lock/unlock 0.3K inst.
Disk Overhead CPU overhead to perform I/O 5K inst.
Dead Lock Deadlock detection frequency 1 Sec.

Upon completion of one transaction, the Transaction Source module submits
the next transaction. If a transaction aborts, it is re-submitted. It then begins
making all of the same pages accesses over again. Eventually, the transaction
may complete. The number of transactions in a client is assumed to be the
parameter No Tr. For a precise result, each client executes 1000 transactions
in this study. The parameter Tr Size denotes the mean number of operations
accessed per transaction. The Ex Tr parameter is the mean think time between
client transactions, and the Ex Op parameter is the mean think time between
operations in a transaction. To make a high degree of data contention, we set
both parameters to 0.

Pages are randomly chosen without replacement from among all of the pages
according to the workload model described later. The number of pages in the
database is assumed to be parameter DB Size. The parameter Page Size denotes
the size of each page. A page access cost (Page Inst) is modeled as the fixed
number of instructions. The probability that a page read by a transaction will
also be written is determined by the parameter Write Prob.

The parameters Client Buf and Server Buf denote the client buffer size and
the server buffer size, respectively. In this study, we assume that each client has
a small cache (5% of the active database size) or a large cache (25% of the active
database size). The CPU service time corresponds to the CPU MIPS rating and
the specific instruction lengths given in Table 1. The simulated CPUs of the



Cache Management Protocols 209

system are managed using a two-level priority scheme. System CPU requests,
such as those for message and disk handling, are given higher priority than user
requests. System CPU requests are handled using FIFO queuing discipline, while
a processor-sharing discipline is employed for user requests. The disk has a FIFO
queue of requests. The average disk access time is specified as the parameter
Ave Disk. The parameter Disk Overhead denotes CPU overhead to access disk.

A simple network model is used in the simulator’s Network Manager com-
ponent. The network is modeled as a FIFO server with a specified bandwidth
(Net Bandwidth). The network bandwidth is set to 8 Mbits/sec which was cho-
sen to approximate the speed of an Ethernet, reduced slightly to account for
bandwidth lost to collisions, etc. The CPU cost for managing the protocol to
send or receive a message is modeled as a fixed number of instructions per mes-
sage(Fix Msg Inst) plus an additional charge per message byte(Add Msg Inst).
The parameter Control Msg denotes the size of a control message.

Our simulation was executed under the Zipf workload are governed by Zipf’s
law. Zipf’s law states that if data items are ordered from most popular to least
popular, then the number of references to a data tends to be inverse proportional
to its rank. in the Zipf workload, the probability of choosing data item Di (i =
1 to DB Size is proportional to 1 / i. Since the first few items in database are
much more likely to be chosen than the last few items, the workload has a high
degree of locality per client and very high degree of sharing and data contention
among clients.

This study uses total system throughput in committed transactions per sec-
ond (TPS) as our main metric in order to compare the performance of all
schemes. Since we use a closed simulation model, throughput and latency are
inversely related: the scheme that has better throughput also has low average
latency.

3.2 Experiments and Results

In this section, we present the results from performance experiments. This study
uses total system throughput in committed transactions per second (TPS) as our
main metric in order to compare the performance of all schemes. Since we use
a closed simulation model, throughput and latency are inversely related: the
scheme that has better throughput also has low average latency.

Fig. 1 shows the total system throughput with a small cache(5% of DB).
There is an extremely high degree of data contention. In this experiment, the
proposed algorithm (RCP) performs the best with O2PL performing at a some-
what lower level. CBL has the lowest performance throughout the entire range
of client population.

In the range from 1 to 5 clients, the performance of all schemes increases.
However, beyond 5 clients, all protocols exhibits a “thrashing” behavior in which
the aggregate throughput decreases significantly as clients are added to the sys-
tem. This phenomenon is related with the abort rate as can be seen in Fig. 3.

Generally, the abort rate of locking system such as CBL is lower than that
of optimistic based scheme. However, as Fig. 3 shows, the number of aborts of



210 S.H. Cho and K.Y. Bae

Fig. 1. Throughput (a small cache) Fig. 2. Cache Hit Ratio (a small cache)

Fig. 3. Number of Aborts (a small

cache)

Fig. 4. Message per Commit (a small

cache)



Cache Management Protocols 211

CBL exceeds that of other schemes. While write-lock acquisitions are delayed
until the end of execution phase in O2PL, write lock declarations occur during
the transaction’s execution phase in CBL. Hence, in the high client population,
CBL generates more aborts than O2PL because its retaining time of write lock
is larger than that of O2PL.

Even if the abort rate of RCP is a little higher than that of O2PL, RCP pro-
vides the best performance, because it increases data availability by using com-
mit processing without waiting and reduces unnecessary operations by aborting
write-write conflicting transactions in their execution phase. In addition, even
though RCP does not use any locking method, RCP reduces abort rate signifi-
cantly compared with CBL, because it re-orders read-write conflicting transac-
tions. Eventually, as Fig. 2 shows, these phenomenons result that the cache hit
ratio of RCP is higher than other schemes.

Even if O2PL reduces the abort rates with a lock method, there may be a sud-
den reduction in the number of active transactions due to transaction blocking.
Such blocked transactions eventually leads to a severe degradation in perfor-
mance, because other transactions which want to access the exclusively locked
data are delayed accordingly. In addition, not all the blocked transactions can
be committed in O2PL because of deadlock. It makes unnecessary operations.

Re-execution of a transaction is more efficient than its execution in the first
phase, because pages that were accessed by the transaction are already avail-
able at the client of transaction execution. Note that CBL can not abort con-
flicting transactions in their execution phase. In contrast, RCP aborts write-

Fig. 5. Throughput (a large cache) Fig. 6. Cache Hit Ratio (a large cache)



212 S.H. Cho and K.Y. Bae

write conflicting transactions in their execution phase. By these reasons, the
abort rate has only a small impact on the performance of RCP compared with
CBL.

As Fig. 4 represents, CBL sends significantly more messages per commit than
other protocols throughout the entire range of client population because of the
highest abort rate. Due high message cost and high aborts rate, CBL has the
lowest performance throughout in the Zipf workload.

Fig. 5 shows the total system throughput with a large (25% of DB) client
cache. Compared with Fig. 1, the performance of all protocols slightly increases
because of extending buffer size. However, relatively large cache size does not
significantly affect the performance of the schemes. It denotes that extremely
high number of aborts leads the network and server to bottlenecks.

Fig. 6 represents the cache hit ratio. The ratio of CBL is extremely lower
than other schemes. The reason is that the actions that remove the invali-
dated data items in caches under O2PL and RCP occur only after the server
decides a transaction’s commit. However, preemptive pages does not guaran-
tee the transaction’s commit under CBL. Compared with Fig. 2, Fig. 6 also
shows that cache hit ratio is less affected by the restart-induced buffer hits
compared with the case of the small cache buffer. The restart-induced buffer
hits means that most of all data items needed by re-started transactions were
available in the client buffer. This was further borne out by the client hit rate.
Hence, it also explains why the cache hit ratio of RCP is higher than that of
O2PL.

4 Conclusion

In this paper, we suggested a new cache consistency protocol for client-server
database systems which provides serializability. Our scheme is based on an opti-
mistic concurrency control with re-ordering approach. In our scheme, the server
tries to re-order some read-write conflicting transactions with low overhead.
In addition, the suggested scheme aborts write-write conflicting transactions
in their execution phase.

Compared with O2PL, our approach has advantages such as increasing data
availability by use of the no-wait commit approach, reducing unnecessary oper-
ations by aborting write-write conflicting transactions in their execution phase
and eliminating the maintaining cost of lock and deadlock detection algorithm.
The deadlock freedom of our protocol considerably simplifies the complexity of
an actual implementation. In addition, compared with CBL, our scheme reduces
the transaction abort rate and unnecessary operations.

This paper presents the results of simulation experiments with a detailed sim-
ulator under the Zipf workload. Throughout our simulation experiments, CBL
shows the worst performance because it suffers from a high message cost. RCP
shows the best performance, because O2PL limits the transaction concurrency
level. By the experimental results, we show that our scheme performs as well as
or better than the other approaches with low overhead.



Cache Management Protocols 213

References

1. E. Pitoura and P. K. Chrysanthis, ”Multiversion Data Broadcast,” IEEE Transa-
cions on Computers, Vol.51, No.10, pp 1224–1230, 2002.

2. Daniel Barbara, ”Mobile Computing and Database - a Survey,” IEEE Transactions
on Knowledge and Data Engineering, Vol.11, No.1, pp.108–117, 1999.

3. J. Jing, A. Elmagarmid, A. Helal and R. Alonso, ”Bit-Sequences: An Adaptive
Cache Invalidation Method in Mobile Client/Server Environments”, ACM/Baltzer
Mobile Networks and Applications, Vol.2, No.2, 1997.

4. C. F. Fong, C. S. Lui and M. H. Wong, ”Quantifying Complexity and Performance
Gains of Distributed Caching in a Wireless Network Environment”, Proceedings of
the 13th International Conference on Data Engineering, pp.104–113, April 1997.

5. V. Gottemukkala, E. Omiecinski and U. Ramachandran, ”Relaxed Consistency for
a Client-Server Database,” Proc. of International Conference on Data Engineering,
February, 1996.

6. A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, ”Efficient optimistic concur-
rency control using loosely synchronized clocks,” In Proc. of the ACM SIGMOD
Conf. on Management of Data, pp. 23–34, 1995.

7. M. J. Carey, M. J. Franklin, M. Livny, and Shekita, ”Data caching tradeoffs in
client-server DBMS architectures,” In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pp. 357–366, 1991.

8. M. J. Franklin, M. J. Carey, and M. Livny, ”Local disk caching in client-server
database systems,” In Proc. of the Conf. on Very Large Data Bases (VLDB), pp.
543–554, 1993.

9. G.K. Zipf, Human Behavior and the Principles of Least Effort, Reading, Mass.,
Addison Wesley, 1949.

10. V. Almeida, A. Bestavros, M. Crovella, and A. D. Oliveira, ”Characterizing refer-
ence locality in the WWW,” Proceedings of the 1996 International Conference on
Parallel and Distributed Information Systems (PDIS ’96), pp. 92-103, 1996.


	Introduction
	Re-orderable Caching Consistency Protocol
	Simulation Study
	Simulation Model
	Experiments and Results

	Conclusion



