

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 166 – 175, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multimedia: An SIMD – Based Efficient 4x4 2 D
Transform Method

Sang-Jun Yu, Chae-Bong Sohn, Seoung-Jun Oh, and Chang-Beom Ahn

VIA-Multimedia Center, Kwangwoon University, 447-1, Wolgye-Dong,
Nowon-Gu, 139-701, Seoul Korea

{yusj1004, bongbong, sjoh, cbahn}@viame.re.kr
http://www.viame.re.kr

Abstract. In this paper, we present an efficient scheme for the computation of
4x4 integer transform using SIMD instructions, which can be applied to discrete
cosine transform (DCT) as well as Hadamard transform (HT) in MPEG-4
AVC/H.264, a video compression scheme for DMB. Even though it is designed
for 64-bits SIMD operations, our method can easily be extended to 128-bits
SIMD operations. On a 2.4G (B) Intel Pentium IV system, the proposed method
can obtain 4.34x and 2.6x better performances for DCT and HT, respectively,
than a 4x4 integer transform technique in an H.264 reference codec using 64-
bits SIMD operations. We can still have 6.77x and 3.98x better performances
using 128-bits SIMD operations, respectively.

1 Introduction

Transform coding is at the heart of the majority of video coding systems and stan-
dards such as H.26x and MPEG. Spatial image data can be transformed into a differ-
ent representation, the transform domain since spatial image data are inherently diffi-
cult to compress without adversely affecting image quality: neighboring samples are
highly correlated and the energy tends to be evenly distributed across the image.
There are several desirable properties of a transform for compressions. It should com-
pact the energy in the image into a small number of significant values, decorrelate the
data and be suitable for practical implementation in software and hardware. The for-
ward and inverse transforms are commonly used in 1D (Dimension) or 2D forms for
image and video compression. The 1D version transforms a 1D array of samples into
an a 1D array of coefficients, whereas the 2D version transforms a 2D array (block) of
samples into a block of coefficients [1][2].

Most modern microprocessors have multimedia instructions to facilitate multime-
dia applications. For example, the single-instruction-multiple-data (SIMD) execution
model was introduced in Intel architectures. MMX (Multimedia Extension), SSE
(Streaming SIMD Extension) and SSE2 technologies can execute several computa-
tions in parallel with a single instruction. These instructions can make parallel proc-
essing of several data at the same time. In general, better performance can be achieved
if the data pre-arranged for SIMD computation. However, this may not always be
possible. Even if, referencing unaligned SIMD register data can incur a performance

 Multimedia: An SIMD – Based Efficient 4x4 2 D Transform Method 167

penalty due to accesses to physical memory [3]. Also, when applying an SIMD opera-
tion, it may be happened that data packing/unpacking operation takes more time than
arithmetic operations.

In this paper, we present an optimized SIMD method to carry out 2D DCT with an
integer transform for a block of 4x4 in the processor supporting SIMD operation. The
proposed method is multiplier free and can improve the speed by reducing the number
of operations such as store, move, and load. Those operations dominate in 4x4 trans-
form relatively to packing/unpacking process.

2 Transform Coding in H.264

Instead of using DCT/IDCT (Inverse DCT), MPEG-4 AVC/H.264 adopted as a
video data compression technology in DMB (Digital Multimedia Broadcasting)
service uses a 4x4 integer transform to convert spatial-domain signals into fre-
quency-domain and vice versa. The “baseline” profile of H.264 uses three trans-
forms depending on the type of residual data that is to bi coded: a transform for the
4x4 array of luma(luminance) DC(Direct Current) coefficients in intra macroblocks
(predicted in 16x16 mode), a transform for the 2x2 array of chroma(chrominance)
DC coefficients(in any macroblock) and a transform for all other 4x4 blocks in the
residual data. Data within a macroblock are transmitted in the order shown in Fig.1.
If the macroblock is coded in 16x16 Intra mode, then the block labeled “-1” is
transmitted first, containing the DC coefficient of each 4x4 luma block. Next, the
luma residual blocks “0~15” are transmitted in the order shown (with the DC coef-
ficient set to zero in a 16x16 Intra macroblock). Blocks “16” and “17” contain a 2x2
array of DC coefficients from the Cb and Cr chroma components respectively.
Finally, Chroma residual blocks “18~25” (with zero DC coefficients) are sent
[4]-[6].

Fig. 1. Scanning order of residual blocks within macroblock

There are two types of 4x4 transforms for the residual coding in H.264. The one is
DCT, and the other is HT [4].

168 S.-J. Yu et al.

2.1 Development from the 4x4 DCT

The 4x4 DCT of an input array is given by (1):

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

TY AXA

x x x xa a a a a b a c

x x x xb c c b a c a b

x x x xa a a a a c a b

x x x xc b b c a b a c

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦

 (1)

where, () ()31 1 1, cos , cos2 2 8 2 8a b cπ π= = = .

This matrix multiplication can be factorized to the following equivalent form (2):

2 2

2 2

2 2

2 2

()

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

TY CXC E

d ab aba a

d d d b bab ab
X

d ab aba a

d d d b bab ab

= ⊗

⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊗⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− − − − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (2)

where TCXC is a core 2D transform. E is a matrix of scaling factors and the symbol
⊗ indicates that each element of TCXC is multiplied by the scaling factor in the
same position in matrix E . The constant d is 0.414c b ≈ .

To simplify the implementation of the transform d is approximated by 0.5. To en-
sure that the transform remains orthogonal, b also needs to be modified, so that

1 2, 2 5, 1 2a b d= = = .

The final forward transform becomes (3):

2 2

2 2

2 2

2 2

()

2 21 1 1 1 1 2 1 1

2 1 1 2 1 1 1 2 4 42 2
1 1 1 1 1 1 1 2

2 2
1 2 2 1 1 2 1 1

2 2
4 4

TY CXC E

ab ab
a a

b bab ab
X

ab aba a

ab ab
b b

= ⊗

⎡ ⎤
⎢ ⎥⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊗ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− − − − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
⎢ ⎥⎣ ⎦

 (3)

which is an approximation to the 4x4 DCT. Because of the change to factors d and
b , the output of the new transform will not be identical to the 4x4 DCT [2]. Equation
(3) shows the mathematical form of the forward integer transform in H.264 standard,
where TCXC is a core 2-D transform which can be calculated using matrix multiplica-

 Multimedia: An SIMD – Based Efficient 4x4 2 D Transform Method 169

tions. Since both the first and the third matrices have only constant coefficients of
“ 1± ” and ” 2± ”, it is possible to implement the calculation by using only additions,
subtractions and shifts. This “multiply-free” method is quit efficient and, thus, has
been implemented in the H.264 reference codec [6].

2.2 4 x 4 Luma DC Coefficients Transform (HT)

In H.264, Hadamard transform is applied to the luminance DC terms in 16 x16 intra
prediction mode. The transform matrix is shown in (4) and its fast implementation is
shown in Fig. 5(a). HT seems to be a simplified version of (3) with replacing the
coefficient 2 by 1. The inverse HT has the same form as (4) since the transform ma-
trix for HT is orthogonal and symmetric [7][8].

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

D DY W

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (4)

where

DW is the block of 4x4 DC coefficients and
DY is the block after transformation.

Each output coefficient
(,)D i jY is divided by 2 with rounding.

3 Representative SIMD-Based Schemes

One way for speed-up is to implement a parallel method on a parallel architecture
such as an SIMD machine.

Figure 2 shows a typical SIMD computation. Two sets of four packed data ele-
ments (X1, X2, X3, X4, and Y1, Y2, Y3, Y4) are operated in parallel, with the same
operation being performed on each corresponding pair of data elements (X1 and Y1,
X2 and Y2, X3 and Y3, X4 and Y4). The results of four parallel computations are
sorted as a set of four packed data elements. Thus, we can achieve speed-up on the
SIMD machine in the areas of graphics, speech recognition, image/video processing,
and other scientific applications [9].

X4 X3 X2 X1

 Y4 Y3 Y2 Y1

OP OP OP OP

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

 Fig. 2. Typical SIMD Operation

170 S.-J. Yu et al.

There exist three types of integer transform methods with SIMD operation: a 2D
matrix multiplication method, a butterfly expression method and a parallel processing
with four matrix [10]-[12].

In the 2D matrix multiplication method separability, which is an important property
of the 2-D DCT, is used. Using that property 2-D DCT can be obtained by first per-
forming 1-D DCTs of the rows of

ijx followed by 1-D DCTs of the columns of, where

ijx and
ijc are the (i,j)th elements in matrix X and C in (5), respectively [7].

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

1 2 1 1

1 1 1 2

1 1 1 2

1 2 1 1

x x x x

x x x x
XC

x x x x

x x x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 (5)

If there is no multiplier in a processor when the 2D matrix multiplication method is

used, it takes too much time on computation for a transform since a multiplication
operation must be replaced with other several operations.

The second method is code rescheduling to exploit parallelism in the 2D DCT. Par-
allelism in the 2D DCT approached from two directions as shown in Fig. 3: within a
single 4x4 DCT and among four 4x4 DCTs. While data are accessed by rows within
the matrix in the former, data from the four matrices are interleaved to enable efficient
use of the MMX instructions in the latter. The single DCT approach has some disad-
vantages; 1) The input matrix must be transposed in order to operate on several rows
in parallel, and 2) packed shift instructions must be used to prevent overflow. The
four DCTs approach has also some problems as following; 1) The input data from the
four matrices must be interleaved before computing transform, and 2) more temporal
use of memory is needed since it requires more register usage [8].

 (a) (b)

Fig. 3. Single DCT vs. Four DCTs: parallelism (a) within single matrix and (b) among four
matrices [11]

The third method is to use the butterfly expression shown in Fig. 4. Even though it
is easy to implement, it is hard to further optimize parallel processing in SIMD in-
structions because the operations on each operand are different.

 Multimedia: An SIMD – Based Efficient 4x4 2 D Transform Method 171

(a) Butterfly Expression of the Hadamard Transform

(b) Butterfly Expression of the Integer Transform

 Fig. 4. Butterfly expression of the Transform in H.264

4 An SIMD-Based 4x4 2D Transform Method

As we mention before, each element of the DCT matrix in H.264 takes one of four
values: 1± and 2± [6]. Therefore, we can compute DCT coefficients without any mul-
tiplication, that is, need only addition, subtraction and shift commands to calculate
them. Zhou and his colleagues proposed a new method [3]. They showed that the
original form of the integer transform was the 4x4 matrix multiplications, which could
be implemented by using SIMD instructions, providing better performance than the
multiplication-free method implemented in the H.264 reference code.

Equation (5) shows a typical 4x4 matrix multiplication. On the other hand, the but-
terfly expression has the multiplication-free method implemented in the H.264 refer-
ence code. Equation (5) shows a typical 4x4 matrix multiplication. On the other hand,
the butterfly expression has the multiplication-free property. However, that expression
may be hard to be implemented in parallel form using the SIMD instructions as men-
tioned before because the operations required in the butterfly are not identical.

To solve the problems in Zhou’s and the butterfly expression, a transpose process is
taken for 4x4 input matrix before 1D DCT, and the butterfly operation is applied for
four input elements, that is, a row vector, simultaneously to utilize a series of SIMD
instructions. From this point we assume that the 64-bits operations are used. The
transpose process followed by butterfly operations in parallel applied in horizontal
and vertical directions makes 2D DCT for the 4x4 input as schematically shown in
Fig. 5.

The proposed method consists of four steps: the transpose step using the SIMD in-
structions shown in Fig. 6, the butterfly step for the row-direction 1D 4x4 integer
transform using the series of SIMD operations shown in Fig. 8, the transpose step for
the 1D output with the SIMD instructions, and the butterfly step for the column-
direction 1D 4x4 integer transform using the series of SIMD operations.

172 S.-J. Yu et al.

Fig. 5. Block diagram of the proposed method at 64-bits SIMD operation

Fig. 6. 4x4 block transpose with SIMD instructions

With the SIMD instruction, PUNPCKx can be used to optimize the transpose
process. The PUNPCKx instructions perform an interleave merge of the data ele-
ments of the destination and source operations into the destination register. The
following example merges the two operations into the destination registers with
interleaving. For example, PUNPCKLWD instruction interleaves the two low-order
words of the source1 operand (11 and 10) and the two low-order words of the
source2 operand (21 and 20) and writes them to the destination operand.
PUNPCKHWD instruction interleaves the two high-order words of the source1
operand (13 and 12) and the two high-order words of the source2 operand (23 and 22)
and writes them to the destination operand. One of the destination registers will
have the combination illustrated in Fig. 7 [13].

(a) PUNPCKHWD (b) PUNPCKLWD

Fig. 7. Operation of the PUNPCKx instruction

We explain the butterfly step for the 1D 4x4 integer transform using the series of
SIMD operations shown in Fig. 8. Let four elements in the first row be x00, x10, x20
and x30. They are loaded into x0p which is a 64-bits register. By the same token,
other three rows can be loaded into registers x1p, x2p and x3p. The 1D DCT integer
transform process is followed using the butterfly structure in Fig. 4(b).

 Multimedia: An SIMD – Based Efficient 4x4 2 D Transform Method 173

 Fig. 8. Example of the 4x4 integer transform “core” implementation

The operations of addition, subtraction and shift in Fig. 4(b) are replaced with
PADDW, PSUBW and PSLLW, respectively, supported by IA-32 Intel architec-
ture [13]. Up to now we explain the SIMD-based 4x4 integer transform method
on the 64-bits machine. That method can be expended to be executed on 128-bits
machine. After expansion two consecutive 4x4 blocks can be simultaneously
transformed. Figure 9 shows an additional process for expansion.

Fig. 9. 128-bits SIMD instructions for transpose

For the additional process two SIMD instructions, MOVHLPS and MOVLHPS,
are used. Using the instruction of MOVHLPS (MOVLHPS) the upper (lower) 64-bits
of the source2 are loaded into the lower (upper) 64-bits of the 128-bit destination, and
the upper(lower) 64-bits of source1 are unchanged.

The proposed method can be applied to compute the 4x4 HT in H.264 with remov-
ing the shift instruction of PSLLW in Fig. 8.

174 S.-J. Yu et al.

5 Experimental Results

The reference code for the 4x4 integer transform in H.264, Zhou’s and our methods are
executed on a 2.4G(B) Intel Pentium IV PC. The 2.4G (B) Intel Pentium IV processor
supports both 64-bits MMX and 128-bits SSE2 operations. A performance analysis tool
Vtune [14] is used to collect the detailed characteristics of those methods.

Tables 1 and 2 show both execution times and a comparison of four different 4x4
integer transforms and HTs, respectively. Each execution time for the 64-bits MMX
and the 128-bits implementations is measured after inputting 2 million and 1 million
data, respectively.

Table 1. Comparison of different methods for the 4x4 integer transforms

Table 2. Comparison of different methods for the 4x4 Hadamard transform

Speedup

methods

Times
(sec)

H.264
reference

code

Proposed
method

 (64-bits)
H.264 reference code 0.458 1.000 0.384
Proposed method (64-bits) 0.176 2.602 1.000
Proposed method (128-bits) 0.115 3.983 1.530

As shown in the Table 3, the proposed methods do not use any multiplication op-

eration. While Zhou’s, which is the representative for the 128-bits SIMD implementa-
tion, is faster than the reference code by 4.2 times according to [3], the 64-bits based
proposed method is as fast as Zhou’s and the 128-bits based one is 1.5 times faster
than Zhou’s method.

Table 3. The number of operation in different methods

methods
operations

Reference
code

Proposed
(64-bits)

Proposed
(128-bits)

mov 522 114 71
add, sub, shift 102 26 14
multiplication 0 0 0
Else 76 25 22
total clocktic 700 165 107
Speedup 1.000 4.242 6.542

Speedup

methods

Times
(sec)

H.264
reference

code

Proposed
method

 (64-bits)
H.264 reference code 0.817 1.000 0.230
Proposed method (64-bits) 0.188 4.341 1.000
Proposed method (128-bits) 0.121 6.776 1.561

 Multimedia: An SIMD – Based Efficient 4x4 2 D Transform Method 175

6 Conclusion

In this paper, we proposed the SIMD-based fast methods for the 4x4 integer transform
as well as HT in MPEG-4 Part10 AVC/H.264. The experimental results showed that
the proposed 64-bits and 128-bits SIMD-based 4x4 integer transform methods were
4.3 and 6.7 times faster than the H.264 reference code, respectively. Furthermore, the
proposed 64-bits and 128-bits SIMD-based 4x4 HT methods were 2.6 and 3.98 times
faster than the H.264 reference code, respectively

Acknowledgment

This work was supported by grant from IT-SoC Association, grant No. R01-2002-
000-00179-0 from the Basic Research Program of the Korea Science & Engineering
Foundation and Research Grant of Kwangwoon University in 2004

References

1. Iain E. G. Richardson, Video Codec Design-Developing Image and Video Compression
Systems, John Wiley & Sons Ltd, England, 2002

2. Iain E.G Richardson, H.264 and MPEG-4 VIDEO COMPRESSION, WILEY, 2003
3. X. Zhou, Eric Q. Li and Yen-Kuang Chen, "Implementation of H.264 Decoder on General-

Purpose Processors with Media Instructions," Proceeding of SPIE conference on Image
and Video Communication and Processing, Vol. 5022, Jan. 2003, pp. 224-235

4. T. Wiegand, G. J Sullivan, G. Bjontegaard and A.Lutha, “Overview of the H.264/AVC
Video Coding Standard,” IEEE Trans. on CSVT, Vol. 13, No. 7, July 2003 pp. 560-576.

5. Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky, " Low-
Complexity Transform and Quantization in H.264/AVC", IEEE Transaction on Circuits
and Systems for Video Technology, Vol. 13, No.7, July 2003, pp. 598-603

6. Iain E., G Richardson, "H.264 White paper - White Papers describing aspects of the new
H.264/MPEG-4 Part 10 standard", May 12, 2004

7. Vasudev B. and Konstanstinos k., Image and Video Compression Standards, Kluwer Aca-
demic Publishers, Norwell, Massachusetts 02061 USA, 2000

8. Tu-Chih Wang. Yu-Wen Hwang, Hung-Chi Fang, and Liang-Gee Chen, “Parallel 4x4 2D
Transform and Inverse Transform Architecture for MPEG-4 AVC/H.264,” Circuits and
Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on , Vol. 2 ,
25-28 May 2003 p:II-800 - II-803

9. Intel Corp.,“IA-32 Intel® Architecture Optimization Reference Manual,” AP - 248966-
010

10. Intel Corp., "Using Streaming SIMD Extensions in a Fast DCT Algorithm for MPEG En-
coding," version 1.2, Jan. 1999

11. Intel Corp., "Using Streaming SIMD Extensions 2(SSE2) to Implement an Inverse Dis-
crete Cosine Transform," version 2.0, July 2000

12. Intel Corp., "Streaming SIMD Extensions - Matrix Multiplication," AP-930, June 1999
13. Intel Corp., "Intel Pentium 4 and Intel Xeon Processor Optimization - Reference Manual,"

Order Number: 248966-05, 2002
14. Intel Corp., Intel® VTune TM Performance Analyzer, Version 7.0, 2003.

	Introduction
	Transform Coding in H.264
	Development from the 4x4 DCT
	4 x 4 Luma DC Coefficients Transform (HT)

	Representative SIMD-Based Schemes
	An SIMD-Based 4x4 2D Transform Method
	Experimental Results
	Conclusion
	Acknowledgment
	References

