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Abstract. In this paper, we present an efficient scheme for the computation of 
4x4 integer transform using SIMD instructions, which can be applied to discrete 
cosine transform (DCT) as well as Hadamard transform (HT) in MPEG-4 
AVC/H.264, a video compression scheme for DMB. Even though it is designed 
for 64-bits SIMD operations, our method can easily be extended to 128-bits 
SIMD operations. On a 2.4G (B) Intel Pentium IV system, the proposed method 
can obtain 4.34x and 2.6x better performances for DCT and HT, respectively, 
than a 4x4 integer transform technique in an H.264 reference codec using 64-
bits SIMD operations. We can still have 6.77x and 3.98x better performances 
using 128-bits SIMD operations, respectively. 

1   Introduction 

Transform coding is at the heart of the majority of video coding systems and stan-
dards such as H.26x and MPEG. Spatial image data can be transformed into a differ-
ent representation, the transform domain since spatial image data are inherently diffi-
cult to compress without adversely affecting image quality: neighboring samples are 
highly correlated and the energy tends to be evenly distributed across the image. 
There are several desirable properties of a transform for compressions. It should com-
pact the energy in the image into a small number of significant values, decorrelate the 
data and be suitable for practical implementation in software and hardware. The for-
ward and inverse transforms are commonly used in 1D (Dimension) or 2D forms for 
image and video compression. The 1D version transforms a 1D array of samples into 
an a 1D array of coefficients, whereas the 2D version transforms a 2D array (block) of 
samples into a block of coefficients [1][2].  

Most modern microprocessors have multimedia instructions to facilitate multime-
dia applications. For example, the single-instruction-multiple-data (SIMD) execution 
model was introduced in Intel architectures. MMX (Multimedia Extension), SSE 
(Streaming SIMD Extension) and SSE2 technologies can execute several computa-
tions in parallel with a single instruction. These instructions can make parallel proc-
essing of several data at the same time. In general, better performance can be achieved 
if the data pre-arranged for SIMD computation. However, this may not always be 
possible. Even if, referencing unaligned SIMD register data can incur a performance 
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penalty due to accesses to physical memory [3]. Also, when applying an SIMD opera-
tion, it may be happened that data packing/unpacking operation takes more time than 
arithmetic operations.  

In this paper, we present an optimized SIMD method to carry out 2D DCT with an 
integer transform for a block of 4x4 in the processor supporting SIMD operation. The 
proposed method is multiplier free and can improve the speed by reducing the number 
of operations such as store, move, and load. Those operations dominate in 4x4 trans-
form relatively to packing/unpacking process. 

2   Transform Coding in H.264  

Instead of using DCT/IDCT (Inverse DCT), MPEG-4 AVC/H.264 adopted as a 
video data compression technology in DMB (Digital Multimedia Broadcasting) 
service uses a 4x4 integer transform to convert spatial-domain signals into fre-
quency-domain and vice versa. The “baseline” profile of H.264 uses three trans-
forms depending on the type of residual data that is to bi coded: a transform for the 
4x4 array of luma(luminance) DC(Direct Current) coefficients in intra macroblocks 
(predicted in 16x16 mode), a transform for the 2x2 array of chroma(chrominance) 
DC coefficients(in any macroblock) and a transform for all other 4x4 blocks in the 
residual data. Data within a macroblock are transmitted in the order shown in Fig.1. 
If the macroblock is coded in 16x16 Intra mode, then the block labeled “-1” is 
transmitted first, containing the DC coefficient of each 4x4 luma block. Next, the 
luma residual blocks “0~15” are transmitted in the order shown (with the DC coef-
ficient set to zero in a 16x16 Intra macroblock). Blocks “16” and “17” contain a 2x2 
array of DC coefficients from the Cb and Cr chroma components respectively.  
Finally, Chroma residual blocks “18~25” (with zero DC coefficients) are sent  
[4]-[6]. 

 

Fig. 1. Scanning order of residual blocks within macroblock 

There are two types of 4x4 transforms for the residual coding in H.264. The one is 
DCT, and the other is HT [4]. 



168 S.-J. Yu et al. 

 

2.1   Development from the 4x4 DCT 

The 4x4 DCT of an input array is given by (1): 
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where, ( ) ( )31 1 1,  cos ,  cos2 2 8 2 8a b cπ π= = = . 

This matrix multiplication can be factorized to the following equivalent form (2): 
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where TCXC is a core 2D transform. E  is a matrix of scaling factors and the symbol 
⊗  indicates that each element of TCXC  is multiplied by the scaling factor in  the 
same position in matrix E . The constant   d  is 0.414c b ≈ . 

To simplify the implementation of the transform d is approximated by 0.5. To en-
sure that the transform remains orthogonal, b also needs to be modified, so that  

1 2,  2 5,  1 2a b d= = = . 

The final forward transform becomes (3): 
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which is an approximation to the 4x4 DCT. Because of the change to factors d and 
b , the output of the new transform will not be identical to the 4x4 DCT [2]. Equation 
(3) shows the mathematical form of the forward integer transform in H.264 standard, 
where TCXC is a core 2-D transform which can be calculated using matrix multiplica-
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tions. Since both the first and the third matrices have only constant coefficients of 
“ 1± ” and ” 2± ”, it is possible to implement the calculation by using only additions, 
subtractions and shifts. This “multiply-free” method is quit efficient and, thus, has 
been implemented in the H.264 reference codec [6]. 

2.2   4 x 4 Luma DC Coefficients Transform (HT) 

In H.264, Hadamard transform is applied to the luminance DC terms in 16 x16 intra 
prediction mode. The transform matrix is shown in (4) and its fast implementation is 
shown in Fig. 5(a). HT seems to be a simplified version of (3) with replacing the 
coefficient 2 by 1. The inverse HT has the same form as (4) since the transform ma-
trix for HT is orthogonal and symmetric [7][8]. 
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where 

DW is the block of 4x4 DC coefficients and 
DY is the block after transformation. 

Each output coefficient 
( , )D i jY  is divided by 2 with rounding. 

3   Representative SIMD-Based Schemes 

One way for speed-up is to implement a parallel method on a parallel architecture 
such as an SIMD machine.  

Figure 2 shows a typical SIMD computation. Two sets of four packed data ele-
ments (X1, X2, X3, X4, and Y1, Y2, Y3, Y4) are operated in parallel, with the same 
operation being performed on each corresponding pair of data elements (X1 and Y1, 
X2 and Y2, X3 and Y3, X4 and Y4). The results of four parallel computations are 
sorted as a set of four packed data elements. Thus, we can achieve speed-up on the 
SIMD machine in the areas of graphics, speech recognition, image/video processing, 
and other scientific applications [9]. 

 
X4 X3 X2 X1          

          Y4           Y3           Y2           Y1

OP OP OP OP

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1      
 

               Fig. 2. Typical SIMD Operation 
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There exist three types of integer transform methods with SIMD operation: a 2D 
matrix multiplication method, a butterfly expression method and a parallel processing 
with four matrix [10]-[12].  

In the 2D matrix multiplication method separability, which is an important property 
of the 2-D DCT, is used. Using that property 2-D DCT can be obtained by first per-
forming 1-D DCTs of the rows of 

ijx followed by 1-D DCTs of the columns of, where 

ijx and 
ijc are the (i,j)th elements in matrix X and C in (5), respectively [7]. 
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If there is no multiplier in a processor when the 2D matrix multiplication method is 

used, it takes too much time on computation for a transform since a multiplication 
operation must be replaced with other several operations. 

The second method is code rescheduling to exploit parallelism in the 2D DCT. Par-
allelism in the 2D DCT approached from two directions as shown in Fig. 3: within a 
single 4x4 DCT and among four 4x4 DCTs. While data are accessed by rows within 
the matrix in the former, data from the four matrices are interleaved to enable efficient 
use of the MMX instructions in the latter. The single DCT approach has some disad-
vantages; 1) The input matrix must be transposed in order to operate on several rows 
in parallel, and 2) packed shift instructions must be used to prevent overflow. The 
four DCTs approach has also some problems as following; 1) The input data from the 
four matrices must be interleaved before computing transform, and 2) more temporal 
use of memory is needed since it requires more register usage [8]. 

 

   
                                (a)                                        (b) 

Fig. 3. Single DCT vs. Four DCTs: parallelism (a) within single matrix and (b) among four 
matrices [11] 

The third method is to use the butterfly expression shown in Fig. 4. Even though it 
is easy to implement, it is hard to further optimize parallel processing in SIMD in-
structions because the operations on each operand are different. 
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(a) Butterfly Expression of the Hadamard Transform 
 

                                                     
(b)  Butterfly Expression of the Integer Transform 

             Fig. 4. Butterfly expression of the Transform in H.264  

4   An SIMD-Based 4x4 2D Transform Method 

As we mention before, each element of the DCT matrix in H.264 takes one of four 
values: 1± and 2± [6]. Therefore, we can compute DCT coefficients without any mul-
tiplication, that is, need only addition, subtraction and shift commands to calculate 
them. Zhou and his colleagues proposed a new method [3]. They showed that the 
original form of the integer transform was the 4x4 matrix multiplications, which could 
be implemented by using SIMD instructions, providing better performance than the 
multiplication-free method implemented in the H.264 reference code. 

Equation (5) shows a typical 4x4 matrix multiplication. On the other hand, the but-
terfly expression has the multiplication-free method implemented in the H.264 refer-
ence code. Equation (5) shows a typical 4x4 matrix multiplication. On the other hand, 
the butterfly expression has the multiplication-free property. However, that expression 
may be hard to be implemented in parallel form using the SIMD instructions as men-
tioned before because the operations required in the butterfly are not identical. 

To solve the problems in Zhou’s and the butterfly expression, a transpose process is 
taken for 4x4 input matrix before 1D DCT, and the butterfly operation is applied for 
four input elements, that is, a row vector, simultaneously to utilize a series of SIMD 
instructions. From this point we assume that the 64-bits operations are used. The 
transpose process followed by butterfly operations in parallel applied in horizontal 
and vertical directions makes 2D DCT for the 4x4 input as schematically shown in 
Fig.   5.  

The proposed method consists of four steps: the transpose step using the SIMD in-
structions shown in Fig. 6, the butterfly step for the row-direction 1D 4x4 integer 
transform using the series of SIMD operations shown in Fig. 8, the transpose step for 
the 1D output with the SIMD instructions, and the butterfly step for the column-
direction 1D 4x4 integer transform using the series of SIMD operations. 
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Fig. 5. Block diagram of the proposed method at 64-bits SIMD operation 

 

Fig. 6. 4x4 block transpose with SIMD instructions 

With the SIMD instruction, PUNPCKx can be used to optimize the transpose 
process. The PUNPCKx instructions perform an interleave merge of the data ele-
ments of the destination and source operations into the destination register. The 
following example merges the two operations into the destination registers with 
interleaving. For example, PUNPCKLWD instruction interleaves the two low-order 
words of the source1 operand (11 and 10) and the two low-order words of the 
source2 operand (21 and 20) and writes them to the destination operand. 
PUNPCKHWD instruction interleaves the two high-order words of the source1 
operand (13 and 12) and the two high-order words of the source2 operand (23 and 22) 
and writes them to the destination operand. One of the destination registers will 
have the combination illustrated in Fig. 7 [13]. 

                     
(a) PUNPCKHWD                                      (b) PUNPCKLWD    

Fig. 7. Operation of the PUNPCKx instruction 

We explain the butterfly step for the 1D 4x4 integer transform using the series of 
SIMD operations shown in Fig. 8. Let four elements in the first row be x00, x10, x20 
and x30. They are loaded into x0p which is a 64-bits register. By the same token, 
other three rows can be loaded into registers x1p, x2p and x3p. The 1D DCT integer 
transform process is followed using the butterfly structure in Fig. 4(b). 
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      Fig. 8. Example of  the 4x4 integer transform “core” implementation 

The operations of addition, subtraction and shift in Fig. 4(b) are replaced with 
PADDW, PSUBW and PSLLW, respectively, supported by IA-32 Intel architec-
ture [13]. Up to now we explain the SIMD-based 4x4 integer transform method 
on the 64-bits machine. That method can be expended to be executed on 128-bits 
machine. After expansion two consecutive 4x4 blocks can be simultaneously 
transformed. Figure 9 shows an additional process for expansion. 

 

 

Fig. 9. 128-bits SIMD instructions for transpose 

For the additional process two SIMD instructions, MOVHLPS and MOVLHPS, 
are used. Using the instruction of MOVHLPS (MOVLHPS) the upper (lower) 64-bits 
of the source2 are loaded into the lower (upper) 64-bits of the 128-bit destination, and 
the upper(lower) 64-bits of source1 are unchanged. 

The proposed method can be applied to compute the 4x4 HT in H.264 with remov-
ing the shift instruction of PSLLW in Fig. 8. 
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5   Experimental Results 

The reference code for the 4x4 integer transform in H.264, Zhou’s and our methods are 
executed on a 2.4G(B) Intel Pentium IV PC. The 2.4G (B) Intel Pentium IV processor 
supports both 64-bits MMX and 128-bits SSE2 operations. A performance analysis tool 
Vtune [14] is used to collect the detailed characteristics of those methods. 

Tables 1 and 2 show both execution times and a comparison of four different 4x4 
integer transforms and HTs, respectively.  Each execution time for the 64-bits MMX 
and the 128-bits implementations is measured after inputting 2 million and 1 million 
data, respectively. 

 

Table 1. Comparison of different methods for the 4x4 integer transforms 

Table 2. Comparison of different methods for the 4x4 Hadamard transform 

Speedup 
 

methods 

Times 
(sec) 

H.264 
reference 

code 

Proposed 
method 

 (64-bits) 
H.264 reference code 0.458 1.000 0.384 
Proposed method (64-bits) 0.176 2.602 1.000 
Proposed method (128-bits) 0.115 3.983 1.530 

 
As shown in the Table 3, the proposed methods do not use any multiplication op-

eration. While Zhou’s, which is the representative for the 128-bits SIMD implementa-
tion, is faster than the reference code by 4.2 times according to [3], the 64-bits based 
proposed method is as fast as Zhou’s and the 128-bits based one is 1.5 times faster 
than Zhou’s method. 

 
Table 3. The number of operation in different methods 

methods 
operations  

Reference 
code 

Proposed 
(64-bits) 

Proposed 
(128-bits) 

mov 522 114 71 
add, sub, shift 102 26 14 
multiplication 0 0 0 
Else 76 25 22 
total clocktic 700 165 107 
Speedup 1.000 4.242 6.542 

Speedup 
 

methods 

Times 
(sec) 

H.264 
reference 

code 

Proposed 
method 

 (64-bits) 
H.264 reference code 0.817 1.000 0.230 
Proposed method (64-bits) 0.188 4.341 1.000 
Proposed method (128-bits) 0.121 6.776 1.561 
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6   Conclusion 

In this paper, we proposed the SIMD-based fast methods for the 4x4 integer transform 
as well as HT in MPEG-4 Part10 AVC/H.264. The experimental results showed that 
the proposed 64-bits and 128-bits SIMD-based 4x4 integer transform methods were 
4.3 and 6.7 times faster than the H.264 reference code, respectively. Furthermore, the 
proposed 64-bits and 128-bits SIMD-based 4x4 HT methods were 2.6 and 3.98 times 
faster than the H.264 reference code, respectively 
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