

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 1–10, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Technique of Test Case Design Based on the UML
Sequence Diagram for the Development of Web

Applications*

Yongsun Cho, Woojin Lee, and Kiwon Chong

Department of Computing, Soongsil University, Seoul, Korea
yongsuns@hanafos.com

bluewj@empal.com
chong@comp.ssu.ac.kr

Abstract. The systematic testing is frequently regretted in recent web applica-
tions because of time and cost pressure. Moreover developers have difficulties
with applying the traditional testing techniques. A technique for generating test
cases from the UML sequence diagrams of a web application is proposed for
the rapid and effective testing. A test of the web applications is composed of a
single web page test, a mutual web page test and an integrated web page test.
The test cases for a single web page test are generated from self-call messages
and the test cases for a mutual web page test are generated from the messages
between web pages. The test cases for an integrated web page test are generated
from the messages which are sent to the system by an actor and received back
from the system.

1 Introduction

Recent business environments have been changing into Internet business environ-
ments and web applications have been developed continuously for various fields such
as advertisement, sale of goods and customer support in Internet business environ-
ments [1]. Moreover, accurate and rapid development of web applications and preoc-
cupation of market are required according as businesses and services become various
and companies compete with each other.

The accuracy of web applications is emphasized in these environments. If the web
application does not operate correctly or it discontinues because of malfunctions, it
leads to corporate losses and disrepute. To prevent these situations before they occur,
it is necessary to test the reliability of web applications. Although many techniques
for testing web applications have been studied, these are not enough to deal with this
problem. Most of the early techniques for testing web applications checked syntax
and the context of html, jsp and asp files or the correctness of the links among them.
Furthermore most of the recent techniques used for testing web applications check the
operations of a single web page or the call-relations among web pages. The clustering

* This work was supported by the Soongsil University Research Fund.

2 Y. Cho, W. Lee, and K. Chong

test for testing the collaboration of web pages is also required for the reliability of
web applications.

Therefore, this paper proposes a test case design technique based on the UML [2]
sequence diagram for insurancing accuracy of web applications.

2 Related Works

RUP provides guidelines about the technique of extracting test cases from use case for
functional test of system [3]. As flow of event in each use case, there are a basic flow
and several alternate flows. Scenarios of the use case are made from compounding
these scenarios. Variables relative these scenarios are extracted to test data and test
cases are extracted by adding the test data and adding necessary conditions. RUP
mentions the level of test such as unit test, integration test and system test, but RUP
does not provide the technique of extracting test cases according to the level of test.
RUP uses use case for functional test of system and uses supplementary specification
for non-functional tests. However, RUP does not provide the technique of extracting
test cases for non-functional tests and test cases are extracted by heuristic manner.
RUP provides only guidelines for extracting test cases.

Ye Wu and Offutt propose the technique of test by extracting test cases from flow
of sections of a server program [4]. The kinds of section are atomic section which is
an elementary physical unit to identify a part of server program and composite section
which is a set of atomic section.

An atomic section is a static HTML file or a section of a server program that prints
HTML. An atomic section has an “all-or-nothing property”, that is, either the entire
section is sent to clients or none of the section is sent.

Possible execution flows are formally expressed by analyzing program codes and
each expression is used to test as a test case in this technique. However, it is diffi-
cult to represent test conditions or value of test data with only the expressions.
Moreover, innumerable test cases can be extracted if server program is complex and
very complex expressions are derived in the case of applying integration test of sev-
eral pages and system test because the technique considers all execution flows
based on white box testing. The technique is difficult to apply in real system so that
the practical use of the expressions for testing web applications is remained future
work in this study.

Filippo Ricca and Tonella propose two techniques of static verification and dy-
namic verification for testing web applications [5]. Static verification is a technique to
scan the HTML pages in a web site and detect possible faults and anomalies. The syn-
tax of HTML pages or links to other pages is examined in this technique. These ex-
aminations are performed in many published tools.

Dynamic verification is a technique to extract test cases by analyzing the relation-
ship of web pages. First, the graph for expressing relationships among web pages is
made by ReWeb tool. Moreover tests are executed with TestWeb tool.

This technique has the weak point in that so many candidates of test cases can be
extracted and the inside of a web page is not fully tested.

 The Technique of Test Case Design Based on the UML Sequence Diagram 3

3 Test Case Design

Testing of web applications is achieved, from the smallest unit test to a whole system
test. If a submodule operates incorrectly, the test result of the module is not reliable.
Therefore it is necessary to test an application level-by-level.

A test of the web applications is composed of a single web page test, a mutual web
page test and an integrated web page test. Each level of the test is performed itera-
tively because detected failures from the test should be corrected and the regression
test must be performed in the same environment again to confirm the correctness of
the result. Furthermore, related parts of the web application should be tested again be-
cause changes after testing can affect other parts of the application.

The transmission of messages among web pages can be expressed using the nota-
tions of the UML sequence diagram. The test cases are generated from the sequence
diagram of web pages. The test cases for a single web page test are generated from
self-call messages and the test cases for a mutual web page test are generated from the
messages between web pages. Furthermore, the test cases for an integrated web page
test are generated from the messages which are sent to the system by an actor and re-
ceived back from the system. The technique for generating test cases is as follows:

1. Generating test cases for a single web page test: The self-call messages of a web
page are used to call script functions of the page or the page is re-executed by it-
self. The test cases for a single web page test are generated from these messages.

2. Generating test cases for a mutual web page test: The test cases for a mutual web
page test are generated from the messages transmitted between web pages.

Fig. 1. Test case generation from sequence diagram

Test cases for single web page test

Test cases for mutual web page test

Test cases for integrated web page test

4 Y. Cho, W. Lee, and K. Chong

3. Generating test cases for an integrated web page test: The test cases for an inte-
grated web page test are generated from the messages transmitted to the system
by an actor and the response messages received from the system.

The technique for generating test cases of the system from the sequence diagrams
which are developed in the use case analysis step is shown in Figure 1.

The technique for generating test cases from the factors of the sequence diagrams
which are developed in the use case analysis step and targets of the test are described
in Table 1.

Table 1. The technique for generating test cases of web pages from the sequence diagram

Factors of the
sequence diagram

 Test case Target of test

Self-call message
 Test case for a single web

page test
* Script function
* Re-execution of web page

Message between
web pages

Test case for a mutual web

page test

* Logic of web page
* Transmission of message
 between web pages

Message related to
actor

 Test case for an integrated
web page test

* Achievement of function
through several web pages

3.1 Extracting Test Cases for Single Web Page Test

First of all, single web page test is performed for testing of web applications. Each
web page is tested in the single web page test. Context and resources are examined for
static pages like html pages. Context examination confirms whether the page made
out according to syntax and resources examination confirms existence of the linked or
called URL. These are easily tested with html editors or html syntax checking tools.

The main target for test are dynamic pages such as servlet, jsp, asp, aspx and php
pages that include logics and classes such as bean classes that associated with the web
pages. In this stage, independent execution modules in the web pages are tested.

The test cases for single web page test are extracted from self-call messages of
each page in the sequence diagram. This case is that the server page calls its own
script functions or the page is reexecuted by itself. A web page reexecutes itself in the
case of including several functions. For example, a server page reexecutes by itself if
the page has the function for registering information and the function for displaying
the registeration result. In this case, the web page generally selects one of the two
functions according to value of a variable.

The test data are added to the test case if script functions or web pages needs input
values. Moreover, the values of objects in the form tag of the web page are considered
as test data if the script functions reference the values of objects in the form tag using
document object [6]. The related web pages, script functions and variables with these
test cases are referenced from the page diagram [7].

 The Technique of Test Case Design Based on the UML Sequence Diagram 5

Table 2 is an example of extracting test cases from sequence diagram of Figure 1
for single web page test. ST01 is a test case for testing the script function that con-
firms the authority of user for deleting a research material. In this example, it is tested
if the action of system is correct in the case that an inputed user id is different from
registered id of the research material. Although one test case extracted from self-call
message of sequence diagram is represented in this example, valid input values and
invalid input values should be tested.

Table 2. An example of extracting test cases for single web page test

Single web page test: scope – deleting research material
Input data Prospective result mes-

sage
no.

Test
case
ID

Test target
(type) (name) (value) (type) (value)

pass

String RegisterID “yongsun”

6 ST01
RefView.aspx::
CheckAuthor() String UserID “woojin”

“You do not have the au-
thority for deleting this
research material” is dis-
played

...

3.2 Extracting Test Cases for Mutual Web Page Test

Independent execution modules such as java script functions in the web page and
reexecution of the page are tested in the single web page test. The mutual web page
test which examines if the pages are correctly performed in their mutual relation is
performed after single web page test. The purpose of the mutual web page test is to
examine if a page is linked to another page without loss of information, incorrect
transfer of information or error.

The test cases for mutual web page test are extracted from the messages of each
page that receives from actors or other pages. The messages of number 1, 2, 3, 4, 7, 8
and 9 in Figure 1 are extracted in this case.

The additional test data are necessary in test cases. The test data are different ac-
cording to purpose of test and many branchs may occur according to the test data. The
typical techniques for determining test data are equivalence partitioning and boundary
value analysis [8]. The area of test data is classified for efficient testing and the test
data of all class should be tested in the equivalence partitioning technique. It is basis
of boundary value analysis technique the fact that many failures occurr around the
boundary of input area rather than center. The boundary values are used to test data in
this technique. The proper test data for target and purpose of the test should be in-
cluded in the test cases based on these principles.

Table 3 is an example of extracting test cases for mutual web page test from se-
quence diagram of Figure 1. MT01, MT02, MT03, MT04 and MT05 are test cases to
examine whether each page is correctly loaded on the browser through link. MT06 is
a test case to examine if Common Bean class correctly deletes the information from
database using inputed SQL statement. MT07 is a test case to examine if the system
correctly displays the result of deleting the information for user.

6 Y. Cho, W. Lee, and K. Chong

Table 3. An example of extracting test cases for mutual web page test

Mutual web page test: scope – deleting research material
Input data Prospective result mes-

sage
no.

Test
case
ID

Test target
(type) (name) (value) (type) (value)

pass

1 MT01 Index.aspx N/A N/A N/A
RefList.aspx is
linked

2 MT02 RefList.aspx N/A N/A N/A
RefList.aspx is
loaded

3 MT03 RefList.aspx N/A N/A N/A
RefView.aspx is
linked

4 MT04 RefView.aspx N/A N/A N/A
RefView.aspx is
loaded

7 MT05
RefDelete-
Result.aspx

int RefNum 14
RefDelete.aspx is
loaded

8 MT06 Common Bean string sql
“DELETE FROM
Reference WHERE
RefNum=14”

Research material
14 is deleted on
database

9 MT07
RefDelete-
Result.aspx

N/A N/A N/A
“Successfully de-
leted” is displayed

...

3.3 Extracting Test Cases for Integrated Web Page Test

The integrated web page test is performed after single and mutual web page test. The
purpose of integrated web page is to examine if the prospective results come through
several web pages according to the request of an actor. The test cases are extracted
from the messages transferred to the system by an actor and the result of the test cases
is extracted from the response messages received from the system.

Table 4. An example of extracting test cases for integrated web page test

Integrated web page test: scope – deleting research material
Input data Prospective result mes-

sage
no.

Test
case
ID

Test target
(type) (name) (value) (type) (value)

pass

5, 10 IT01
Deleting research
material

Correct informations for
deleting research material

“Successfully deleted” is dis-
played and selected material
is deleted in database.

5, 10 IT02
Deleting research
material

Information for deleting
without authority

“You do not have the author-
ity for deleting this research
material” is displayed and
selected material is not
deleted in database.

5,10 IT03
Deleting research
material

Information for deleting
materal which does not
exist

“Seleted material do not
exist” is displayed

...

 The Technique of Test Case Design Based on the UML Sequence Diagram 7

The message 5 is a test case and the message 10 is a result of the test case in Fig-
ure 1. Table 4 is an example of extracting test cases for integrated web page test
from sequence diagram in Figure 1. IT01 is a test case to test the function that de-
letes the specified research material and IT02 is to examine if the system prevents
the action when an unauthorized user is going to delete a material. IT03 is a test case
to examine if the system announces error to user when a user is going to delete a
nonexistent material.

4 Testing with OnlineTestWeb

In this section, OnlineTestWeb is proposed. OnlineTestWeb is a tool for testing
web applications. OnlineTestWeb on-line executes web applications on web server
or application server with extracted test case and display the result of execution. It
archive and manage sequent test result to analyze and test web applications more
efficiently.

This tool is made using Microsoft Visual Basic 6. Figure 2 and figure 3 are pictures
of OnlineTestWeb. The left side of user interface of OnlineTestWeb is for setting test
case. The address of server page which is test target is set on “Test Web Page” item
and the names and values for testing is inputted in turn. The inputted names and val-
ues are displayed on spread sheet to offer simple view.

When the “Test Execution” button is pushed and executing test case has finished,
the result of execution is displayed on the right two mini browsers. The upper browser
is for displaying the information of browser and the lower browser is for displaying
the result of execution of test case. The result of test is reviewed and conclusion of
test is inputted on “Conclusion” item on the lower left corner of user interface of
OnlineTestWeb.

Fig. 2. OnlineTestWeb – Check Error

8 Y. Cho, W. Lee, and K. Chong

The “Ready for New Test” button is for preparing new test. If “Ready for New
Test” button is pushed, the pre-executed test values are changed to gray color and the
new column for new values is created.
 If an error is discovered after testing, test target should be changed to correct the
error and regression test should be executed with same environment. The “Ready for
Regression” button is for preparing regression test. It the “Ready for Regression”
button is pushed, the pre-executed test values are changed to gray color new column
with same value is created on the right in spread sheet. The title of new column for
regression test is created with the sign “-R” which indicates regression test.

Fig. 3. OnlineTestWeb – Regression Test

Figure 2 is an example of executing a mutual web page test. In this case, hp2 which
is a value for the middle number of cellular phone is omitted so error message is dis-
played. However the information of member is registered because the code for check-
ing the completeness of inputted information in “MemberRegisterComplete.jsp” is
omitted. The error of test case is identified and web application should be modified.

Figure 3 shows the result of regression test after identified error is modified and the
data which is inputted on pre-executed test is deleted on database. The same test with
figure 2 is executed. Because error code is modified, missing of some information is
noticed and incorrect registration is not accomplished.

The test of web application is easily and efficiently accomplished using
OnlineTestWeb and the technique of extracting test cases. The archived test results
helped the test.

5 Comparison and Evaluation with Other Techniques

The test level is classified into three levels of single, mutual and integrated web page
test, and the technique for the generation of test cases for each level is proposed in

 The Technique of Test Case Design Based on the UML Sequence Diagram 9

this paper. However test level is not classified for the generation of test cases in other
techniques of related works. Test cases are generated by grouping flows of events
 of use cases for integrated web page test in RUP [3]. Test cases are generated by
grouping control flows of source code and flows of web pages for all level tests in the
technique of Wu, Offutt [4], so it is very complex to test web applications using the
technique. Test cases are generated based on the relation model of web pages for
integrated web page test in the technique of Ricca, Tonella [5].

The technique for testing script functions which are atomic units for performing
logic in web applications is proposed in this paper, while it is not proposed in the
technique of RUP and Ricca, Tonella.

Test data for both of normal and abnormal cases are used in this paper and RUP,
while it is difficult to present test data because only the flows of logic and web pages
are presented in the technique of Wu, Offutt, and test cases can be greatly increased
according to the number of test data in the technique of Ricca, Tonella.

The number of test cases is the number of messages of sequence diagrams in this
paper, while the number of test cases can be greatly increased because the combina-
tion of flows of events, control flows of source code or flows of web pages is used to
generate test cases in other technique.

Table 5 shows the result of comparison of the techniques for the generation of test
cases.

Table 5. Comparison of the techniques for the generation of test cases

Technique
Item

This paper RUP Wu, Offutt Ricca, Tonella

Source of test cases
Sequence
diagram

Use case model Source code
Relation model of

web pages

Test level
Single, mutual,
integrated
level

Integrated level
Integration of
three levels

Integrated level

Test of script functions O X O X

The number of test
cases

Few
(The number
of messages of
sequence
diagrams)

Many
(The number of
combinations of
flows of events)

Many
(The number of
combinations of

control flows
of source code)

Medium
(The number of
combinations of

flows of web
pages)

O: supported X: not supported

6 Conclusion and Future Work

A test design technique based on the UML sequence diagram for developing web
applications is proposed. A test of the web applications is composed of a single web
page test, a mutual web page test and an integrated web page test. The test cases for a
single web page test are generated from self-call messages and the test cases for a
mutual web page test are generated from the messages between web pages. The test

10 Y. Cho, W. Lee, and K. Chong

cases for an integrated web page test are generated from the messages which are sent
to the system by an actor and received back from the system.

The flow of logic between web pages is easily understood, so test cases are easily
generated because a sequence diagram shows a number of objects and the messages
that are passed between these objects according to the time ordering of messages [9].
The notation of UML is frequently used in the analysis and design of web applica-
tions. Therefore, the technique of this paper will be more useful.

We plan to connect analysis and design with testing of web applications in order to
test efficiently web applications.

References

[1] Abhijit Chaudhury, et al., Web channels in E-Commerce, Communications of the ACM,
Jan. 2001.

[2] Unified Modeling Language Specification Version 1.4, OMG, September 2001.
[3] The Rational Unified Process, Rational Software Corporation (a wholly owned subsidiary

of IBM), 2003.
[4] Ye Wu, Jeff Offutt, Modeling and Testing Web-based Applications, GMU ISE Technical

ISE-TR-02-08, Nov. 2002.
[5] Filippo Ricca, Paolo Tonella, Analysis and testing of Web applications, Proceedings of the

23rd International Conference on Software Engineering, 2001.
[6] Mashito Hamba, Ryuichi Okakura, HTML & Java Script Dictionary, Youngjin.com, 2000.
[7] Jim Conallen, Building Web Application with UML Second Edition, Addison Wesley

Longman, Inc., 2002.
[8] Roger S. Pressman, Software Engineering: A Practitioner's Approach (5th Edition),

McGraw-Hill, 2000.
[9] Grady Booch, et al., The Unified Modeling Language User Guide, Addison Wesley Long-

man, Inc., 1999.

	Introduction
	Related Works
	Test Case Design
	Extracting Test Cases for Single Web Page Test
	Extracting Test Cases for Mutual Web Page Test
	Extracting Test Cases for Integrated Web Page Test

	Testing with OnlineTestWeb
	Comparison and Evaluation with Other Techniques
	Conclusion and Future Work
	References

