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Abstract. We present a system based on a Bayesian Network formalism for 
structured documents retrieval. The parameters of this model are learned from 
the document collection (documents, queries and assessments).  The focus of 
the paper is on an algebra which has been designed for the interpretation of 
structured information queries and can be used within our Bayesian Network 
framework. With this algebra, the representation of the information demand is 
independent from the structured query language. It allows us to answer both 
vague and strict structured queries. 

1   Introduction 

Bayesian networks have been used by different authors for flat text information re-
trieval [ 2][ 9]. They have been shown to be theoretically well founded and different 
classical IR systems may be considered as particular cases of these BN-IR models. 
Recently, we proposed a BN model for structured IR retrieval [ 10][ 11][ 12]. This 
model allows taking into account local relations between the different elements of an 
XML document. It makes use of flat text IR models for computing local scores for 
document elements. BN inference is then used to compute a final score for the docu-
ment elements. Inference on the BN variables allows combining in some way the 
relevance information computed for different document elements. 

This paper describes the algebra we have developed for the interpretation of struc-
tured queries. It provides a representation of the query which is independent of any 
particular query language. The general algebra has been described in details in [ 13]. 
We show here how it can be adapted to the NEXI language used for INEX. 

The paper is organized as follows. First we describe in section 2.1 an adaptation of 
the Okapi model which has been used as the local scorer for our BN system in the 
2004 INEX evaluation. We briefly describe in section 2.2 the BN model and the use 
of Okapi within this BN. Results for CO queries are then presented in section 2.3. 
Section 3.1 describes the algebra used for the interpretation of the NEXI query lan-
guage and its use for the VCAS queries of INEX. We finally present in section 3.2 the 
results obtained with this model on VCAS queries. 
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2   Content Only Queries 

2.1   Okapi Model 

We used Okapi as a standalone model and also as a local baseline model for Bayesian 
Networks. It allows us to compute a local score for each doxel (a document element) 
of the database. Then, this score is used to order the results (if we use the Okapi 
model alone) or as a source of evidence for Bayesian Networks. 

In the Bayesian Network, the local scores provided by baseline models have to be  
interpreted as a probability (of relevance). So, we adapted Okapi [ 15] in order to: 

− reach reasonable performances on the INEX corpus (and on a structured collection 
in general); 

− compute a score which could be interpreted as a probability with this model. 

The local score of a doxel x for a given query q , computed by the Okapi model, is 
defined by: 
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where 1k  and 3k  are constants, length (q) is the number of terms in query q. This 

formula is similar to classical Okapi except for the index x  appearing in ω, K and tf. 
Okapi makes use of different statistics relative to the document collection such as 
term occurrences or mean document length. Since for Structured Information Re-
trieval (SIR) elements to be retrieved are doxels and not plain documents, these statis-

tics have to be adapted. Values 
xj ,ω   and xK  are defined as follows: 
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ω . In Okapi N  is the number of documents in the col-

lection and the jn  number of documents containing term j. There are different op-

tions for adapting these collection statistics to SIR. We will present here tests 
where these two values were defined respectively with respect to the classical 
document set (“document frequency”) as in Okapi. 
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 where b is a constant and in Okapi dl is the document 

length and avdl is the average document length. Here dl was replaced by the doxel 
length and one weighting scheme was tested for avdl: the average length taken re-
spectively over all the doxels with the same tag (“tag”). 

We chose this peculiar weighting scheme as it allowed us to reach good perform-
ances when used by our BN model. As we said, we needed scores which can be inter-
preted as probabilities. Okapi score does not range between 0 and 1. The normaliza-
tion of Okapi is discussed in [ 14] in the context of filtering, where it is proposed to 
make a regression of the original Okapi score via a logistic function. We used this 
idea here with the following transformation: 
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This formula gives the normalized score for the local baseline variants of Okapi 
model. The α  and β  parameters were estimated on the whole INEX 2002 database. 

This score is dependant on the query length. Since the parameters of the logistic func-
tion should be valid for queries of varying length, this score was divided by the query 
length. We then computed the mean okapi score µ  and the standard deviation σ  for 
all the CO queries of INEX 2003. We then set α  and β  such that the probability 

( )( )qxMP |R Okapi =  is 5.0  when the score is µ  and 75.0  when the score is 

σµ + . These values were chosen empirically. 
This is different from [ 14] where the parameters of the regression are estimated for 

each query. This would not be realistic here because of the increased complexity of SIR. 

2.2   Bayesian Networks 

Model 
Let us consider a hierarchically structured collection like the INEX corpus. Docu-
ments are organised in a category hierarchy with corpus as the root node, journal col-
lections as its immediate descendents, followed by journals, articles etc. We view re-
trieval for such a collection as a stochastic process in which a user goes deeper and 
deeper in the corpus structure: the user starts its search at the “root node” of all cate-
gories, and then selects one or several categories in which relevant documents should 
be. For each category, he or she selects subcategories and/or documents within these 
categories. This process is iterated until the user has found relevant and highly spe-
cific doxels. 

The BN structure we used directly reflects this document hierarchy and retrieval 
will follow the above stochastic process. We consider that each structural part within 
the hierarchy has an associated random variable. The root of the BN is thus a “cor-
pus” variable, its children the “journal collection” variables, etc. The whole collection 
is thus modelled as a large BN which reflects the doxel hierarchy in the collection. 

Each random variable in the BN can take its values in a finite set. Existing BN 

models for flat [ 2] or structured [ 8] documents use binary values ( )RR ¬, . This is too 

limitative for SIR since quantifying an element relevance is more complex than for 
whole documents and should somewhat be related to the two dimensional scale 
(specificity, exhaustivity) proposed for INEX. We used a state space of cardinality 3, 

{ }EBIV ,,=  with: 

1. I  for Irrelevant when the element is not relevant; 
2. B  for Big when the element is marginally or fairly specific; 
3. E  for Exact when the element has a high specificity. 

In this model, relevance is a local property in the following sense: if we knew that 
an element is relevant, not relevant or too big, the relevance value of its parent would 
not bring any new information on the relevance of one of its descendants. 
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For any element X  and for a given query q, the probability 

( )qBXEXP |parent s', ==  will be used as the final Retrieval Status Value (RSV) 

of this element. Using the simpler RSV )|E( qXP =  led to poor performances with 

the BN. Our choice was partly motivated by the work of Crestani et al. [ 3][ 4] and by 
preliminary experiments. 

Besides these variables, there are two more types of random variables in the BN. 
The first one corresponds to the information need, it is denoted Q and its realization is 
a query denoted q. Q is a vector of word frequencies taking its values in a multidi-
mensional real space. This random variable is always observed (known). Document 
textual information is not directly modelled in this BN for complexity reasons. Instead 
a series of baseline IR models will be used to compute local relevance scores for each 
doxel given a query. For each local baseline model, this score will only depend on the 
doxel content and on the query. It is then independent on the context of the doxel in 
the XML tree. The global score for each doxel will then combine these local scores 
and will also depend on the doxel context in the BN – the parent's relevance. These 
local baseline models have been adapted from classical (flat) retrieval IR models. In 
the experiments presented here, one variant of the Okapi model was used for baseline: 
the okapi with standard document frequency and a length normalisation over elements 
with the same tag. In the BN model a random variable is associated to each local 

scorer and doxel. Let ( )XM  denote the random variable associated to the local base-

line model and doxel X and m its realization. As in classical IR this variable will take 

two values: R (relevant) and R¬  (not relevant), i.e. { }RRm ¬∈ , . The local relevance 

score at X given query q for the baseline model will be ( )( )qRXMP |= . Note that it 

is straightforward to add new baseline models; in the following, all the formulas were 
adapted to the case where we have only one baseline model. 

Based on the local scores ( )XM  and on the BN conditional probabilities, BN in-

ference is then used to combine evidence and scores for the different doxels in the 
document model. In our tree like model, the probability that element X is in state  
I, B or E depends on its parent state and on the fact that the local baseline models have 
judged the element as relevant or not relevant. The probability for X to be in a given 
state V∈v is then: 
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In this expression, the summation is over all the possible values of vY and m  ( Yv  

can take any value in V = {I, B,E}, and m can take values RR ¬, ). The conditional 
probability is expressed as follows: 
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where the mvvc YXX ,,,θ  are real values to be learned. There is one such parameter for 

each tag category Xc  and value set mYvXv ,, . All the doxels sharing the same 

value set mYvXvXc ,,,  will share this θ parameter. The denominator ensures that 

conditional probabilities sum to 1.  

Training Algorithm 
In order to learn the parameters and to fit to a specific corpus, we used a training cri-
terion based on the relative order of elements. We used all the assessed CO topics 
from the INEX 2003 dataset. The criterion to be minimised was: 

( ) ( ) ( )( ) ( )∑ ∑ −=Θ
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where the weighted q summation is over the set of all training queries and the i and j 

ones are over the set of all doxels in the training set. ( )qiRSV ,  is the score of the 

element iX  and qs  is defined as follows: 
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The order (“better than”) between the elements depends on the assessments for a 
given query q. For instance, a highly specific and exhaustive element is “better than” 
a fairly exhaustive and highly specific one. We used the following partial order be-
tween assessments (from “best” to “worst”): 

1. Highly specific and highly exhaustive 
2. Highly specific and fairly exhaustive 
3. Highly specific and marginally exhaustive 
4. All other assessment including “not assessed” 

The score of an element in the criterion formula is either )|E( qXP =  for the 

model BN1 or ( )qBXEXP |parent s', ==  for the model BN2. The latter is more 

complex but more related to our scoring algorithm. The weight w(q) was chosen in 
order to normalize the contribution of different topics: even if the number of assess-
ments were different, this normalization ensured that each topic had the same influ-
ence on the criterion.  The criterion is minimal when all the elements are ordered ac-
cording to our partial order. 

In order to optimize the criterion, different gradient algorithms could be used. For 
the experiments we used a simple gradient descent algorithm where the learning rate 
(epsilon) was automatically set by a line search; for this latter, we use the Armijo al-
gorithm. The number of steps was chosen so as to optimize the performance with re-
spect to the generalized recall metric. For BN1, a maximum was reached after 195 it-
erations while for BN2 a maximum was reached after 700.  
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2.3   Experiments 

Three official runs were submitted to INEX'04: 

• Okapi. In this run, we used the Okapi weighting scheme; every volume (and not 
every doxel) in the INEX corpus was considered as a document while the average 
document length used in the Okapi formula was local: for every doxel, the average 
document length was the average length of the doxels with the same tag. 

• BN1. In this run, we submitted the doxel retrieved with the BN which is described 
in  0. The former Okapi model was used for local model, )|E( qXP =  was used as 

the score of an element for the learning process, and ( )qBXEXP |parent s', ==  

was used as the score of an element. INEX tags were grouped in categories.  
• BN2. In this run, we also submitted the doxel retrieved with the BN which was 

learnt with a different grouping of tag names. ( )qBXEXP |parent s', ==  was 

used as the score of an element both for learning and testing. 

With respect to the experiments we have done the two previous years [ 10][ 12], this 
ranking criterion seems the most promising one – in INEX 2002 and 2003 we used a 
maximum likelihood algorithm (EM) [ 5] which was not well fitted to this task. How-
ever, the partial order should be refined so as to be more close to the “ideal” user re-
lated criterion. 

Table 1. CO official runs 

 Generalized recall Average of all RP measures 
Okapi 40.74 0.10 
BN1 46.45 0.04 
BN2 45.97 0.05 

 

Fig. 1. CO official runs with generalized recall metric 
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Fig. 2. CO official runs with the average of all RP measures 

3   Content and Structure Queries 

In this section, we present the algebra we have used to answer Vague Content and 
Structure Queries (VCAS) starting from the scores of BN Model or standalone Okapi 
model. We only give some elements to understand the way we use this algebra in the 
specific case of NEXI queries. A more detailed description of the algebra is given in 
[ 13]. At last, we give the results of the experiments on INEX 2004 for the Okapi 
model and Bayesian Networks. 

3.1   Algebra 

Introduction 
In INEX, queries are expressed in a query language (NEXI) which is very similar to 
XPath in which a vague operator (about) is introduced in order to allow for queries in 
a similar fashion than in information retrieval. Such languages can be used to express 
query needs that mix possibly vague content and structure constraints. XPath is for 
XML documents what SQL is for databases: it is a language that describes which in-
formation should be retrieved from XML documents. In traditional databases, this re-
quest is usually mapped into an algebra which in turn is used as a query plan. This 
query plan is closely related to physical operations that will give the answers to the 
query. In databases, the result of a formula of the algebra is a set of tuples. In XML 
databases, the result is a set of elements. 

Defining or choosing an algebra is very important to answer complex query needs. 
This is proved by the important number of works within the semi-structured database 
field, like for example [ 1][ 9]. Such approaches are also used in INEX [ 7]. Our algebra 
is closely related to the one defined by Fuhr and Grossjohan [ 6]. As in classical IR, 
SIR aim is to retrieve the set of document elements that fulfill a given query need. 
This query need is very often imprecise. The algebra we define here can be used to 
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answers vague queries that have constraints on both content and structure and make 
use of the Bayesian Networks framework that we use for CO queries. 

Algebra Description 
Besides classical operators of the set theory like the intersection, the union and the 
complementary, our algebra uses structural operators like: 

• ( )xdesc /  (descendant or self) 

• ( )xanc /  (ancestor or self) 

• other operators which are not mentioned here because they are useless with the 
specification of NEXI language. 

We denote Χ  the set of all doxels. We introduce three functions: 

1. R(q) which returns the set of doxels which are answers to the query need q. A 
doxel is in the set with a given probability. 

2. ( )[ ]opcomparisontcomp _,  which returns the set of doxels x  where 

),(_ txopcomparison  is true. We have used ><≥≤≠= ,,,,,  as comparison opera-

tors. 
3. label (x) which returns the label of the doxel (the tag name). The function label-1(l) 

returns the set of doxels which have a label l (This function is used for SCAS que-
ries). In order to process VCAS queries, we can replace the latter function by a 
vague one called invlabel (l) which returns a set of labels with a given probability. 

The algebra is defined on the set P(X) (the set of all the part of the set of doxels). 
We use the operator “ ! ” to compose the different functions defined on P(X) which 
take values in P(X). 

With all these operators and functions, we are able to answer structured queries. 

Probabilistic Interpretation 
In the previous section, R(q) returns the set of doxels that are answers to query q. In 
Information Retrieval (IR), the answers to a query are not well defined: the query is 
expressed in vague terms, and the real query need cannot be easily defined. We thus 

have to define ( )qR  as a “vague” set in order to compute the answer to a query that 

contains predicates like about. 
In our approach, as in the probabilistic interpretation of fuzzy sets [ 16], a set  

A ⊂ X is not anymore defined strictly. We denote such a set by vA  (v for vague). vA  

is defined by a probability distribution on subsets of X . The case where probability 

( ) 1== AvAP   means that the set vA  is strict and not vague (the concept of fuzzy 

set is thus more general than the concept  of classical set). An element a  belongs to 

vA  with a probability ( )vAaP ∈  which is formally defined by: 

( ) ( )∑
∈⊂

==∈
AaA

AvAPvAaP
,X

 (7) 
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We define recursively the fact that a doxel belongs to a vague set: 

( )
{ }( ) vAx
xxXx

vAx ∈′
′∈∈′
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ϕ

ϕ
,

 (8) 

Lastly, intersection and union operators can also be transformed in logical formulas: 

( ) ( )
( ) ( )vBxvAxvBvAx

vBxvAxvBvAx

∈∨∈≡∪∈

∈∧∈≡∩∈
 (9) 

Algebraic Expression of a CAS Query 
In order to convert a NEXI query into an algebraic expression, we briefly define the 
way we decompose the NEXI Queries used in INEX, which can be easily extended to 
XPath like queries. 

A NEXI query is read from left to right. For instance, the NEXI query : 

//article[about(., “bayesian networks”)]//section[about(., “learning structure”)] 

could be used to express “in articles about Bayesian Networks, find sections that are 
about learning the structure of the network”. 

The different components are separated by two slashes “ // ” which are not within 

brackets. The query [ ] [ ] [ ]nFnLFLFL // ... 11//00//  can be decomposed into [ ]iFiL//  

elements, each such component being itself composed of three parts: 

1. The axis ( // ). This is an abbreviation of the ::/ selfordescendant −−  denoted 

axis in XPath. It defines a set with respect to a given doxel x. For the first compo-
nent of the XPath, this set is defined by the document d. For the first component of 
an XPath within a filter, the set of selected doxels is evaluated with respect to the 
document d or to the filtered doxel. For any another component, the selection is 
made with respect to the set of doxels selected by the previous component; 

2. The label (Li) It filters the set of doxels selected by the axis and keep only those 
which have the label Li. When the label is *, the “axis” set is not filtered; 

3. The filter (Fi) that expresses a boolean condition on doxels. It returns the subset of 
those doxels which fulfill the boolean conditions expressed in the filter. An XPath 
can be used in the filter: it is relative to the context path and take the form 

of nLLL //...////. 10 . The filter is a condition which can be true or false for one 

doxel.  

An algebraic expression is defined on ( )ΧΡ . Each component of the query (either 
axis or label Li or filter Fi) can be processed separately: 

• An axis is transformed into the structural operator ( ) /// descA =Ψ  except for the 

first component of the XPath which is transformed into ( )( ) ( )ddescA ///0 =Ψ . 

• A label (or a set of labels) Li  is transformed into a function LΨ  that selects a sub-

set of doxels which have a label Li  in the set: 
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where we handle the special case of * by defining ( ) Χ=− *1label  

• As for the filter iF , the transformation is more complex and is denoted FΨ : 
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where FΨ′  is the function which transforms a filter into the set of doxels that fulfill 

the conditions expressed in the filter. 

With these notations, the query [ ] [ ] [ ]nn FLFLFLp // ... //// 1100=  is the result of 

the evaluation of the algebraic expression: 
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We do not detail here how FΨ′  is evaluated. 

3.2   Experiments 

To compute the union or the intersection of two vague sets, we used the probabilistic 
and/or operators defined below: 

• ( ) ( ) ( )BbPAaPBbAaP ∈∈=∈∧∈   

• ( ) ( ) ( ) ( ) ( )BbPAaPBbPAaPBbAaP ∈∈−∈+∈=∈∨∈   

Table 2. VCAS official runs 

 Generalized recall Average of all RP measures 
Okapi 33.14 0.05 
BN1 27.97 0.05 
BN2 31.67 0.04 
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Fig. 3. VCAS official runs with generalized recall metric 

 

Fig. 4. VCAS official runs with the average of all RP measures 

Complement remains )(1)( AaPAaP ∈−=∉ . We have also tested min/max and 

Lukasievicz operators, but they were outperformed by the probabilistic operator. 
In order to introduce vagueness into the query structure, we used the following la-

belling function: 

( ) ( ){ } { } ( ){ }
( )

∪
lxlabelx

xypayxxpalinvlabel
=∈

=∈∪∪=
,X

,X  (11) 

 
where we supposed that all the doxels from this set have the same probability of being 

labelled l. We have also tested the labelling function ( )llabel 1− , and other simple 

strategies to introduce vagueness into structure (not considering tag names), but they 

were outperformed by ( )linvlabel . 
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Three official runs were submitted to INEX'04; the models we used to compute the 
probability of relevance are the same as in section 2.3. 

The results are summarized in figures 3, 4 and in table 2. For generalized recall, 
Okapi model outperforms BN1 and BN2 models but not significantly. For CO, Okapi 
was below the BNs. For RP measures, results are similar for all models. 

Our algebra can answer all INEX VCAS and also more complex structured que-
ries. Nevertheless, the connection between CO queries and VCAS queries is not clear 
because the best model for CO queries is not the best one for VCAS queries. The 
Okapi model gives better results for structured queries than for content only queries. 
Moreover, the choice of union and intersection functions for aggregation has to be 
further investigated. 

4   Conclusion 

We introduced a BN model whose conditional probability functions are learnt from 
the data via a gradient descent algorithm. The BN framework has some advantages. 
Firstly, it can be used in distributed IR, as we only need the score of the parent ele-
ment in order to compute the score of any its descendants. Secondly, it can use simul-
taneously different baseline models: we can therefore use specific models for non tex-
tual media (image, sound, etc.) as another source of evidence. 

We have described the new algebra we have used in order to process content-and-
structure queries. This algebra is a generic way to represent structured queries and can 
be easily used with the IR system based on Bayesian Networks we have developed. 

Our system can answer CO and VCAS queries. The model has still to be improved, 
tuned and developed. In particular, we should improve the baseline models and fit 
them to the specificities of CO or VCAS queries. We showed that this algebra allows 
answering VCAS queries but we still have to investigate new ways of including 
vagueness in the structure of queries. 
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