

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 73 – 84, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Component Ranking and Automatic Query Refinement
for XML Retrieval

Yosi Mass and Matan Mandelbrod

IBM Research Lab,
Haifa 31905, Israel

{yosimass, matan}@il.ibm.com

Abstract. Queries over XML documents challenge search engines to return the
most relevant XML components that satisfy the query concepts. In a previous
work we described a component ranking algorithm that performed relatively
well in INEX'03. In this paper we show an improvement to that algorithm by
introducing a document pivot that compensates for missing terms statistics in
small components. Using this new algorithm we achieved improvements of
30%-50% in the Mean Average Precision over the previous algorithm. We then
describe a general mechanism to apply known Query Refinement algorithms
from traditional IR on top of this component ranking algorithm and demonstrate
an example such algorithm that achieved top results in INEX'04.

1 Introduction

While in traditional IR we are used to get back entire documents for queries, the chal-
lenge in XML retrieval is to return the most relevant components that satisfy the
query concepts. The INEX initiative[4] sub classified this task into two sub tasks;
Content only (CO) task and Content and Structure (CAS) task. In a CO task the user
specifies queries in free text and the search engine is supposed to return the most
relevant XML components that satisfy the query concepts. In a CAS task the user can
limit query concepts to particular XML tags and to define the desired component to
be returned using XPath[11] extended with an about() predicate.

In order to realize the problem in ranking XML components we first examine a
typical class of IR engines that use tf-idf [8] to perform document ranking. Those
engines maintain an inverted index in which they keep for each term among other
things the number of documents in which it appears (df) and its number of occur-
rences in each document in the collection (tf). These statistics are then used to esti-
mate the relevance of a document to the query by measuring some distance between
the two. To be able to return a component instead of a full document search engines
should modify their data structures to keep statistics such as tf-idf at the component
level instead of at the document level. This is not a straight forward extension since
components in XML are nested and the problem is how to keep statistics at the com-
ponent level such that it handles components nesting correctly.

In INEX'03 we described a method [6] for component ranking by creating separate
indices for the most informative component types in the collection. For example we

74 Y. Mass and M. Mandelbrod

created an index for full articles, an index for all sections, for all paragraphs etc. This
approach solved the problem of statistics of nested components since in each index
we have now components from same granularity so they are not nested. While this
approach solved the problem of nested components it introduced a deficiency that
could distort index statistics. The problem is that the fine grained indices lack data
that is outside their scope which is not indexed at all. For example the articles index
contains 42,578,569 tokens while the paragraphs index contains only 31,988,622
tokens. This means that in the paragraphs index ~25% of the possible statistics is
missing so for example a term with a low df based on the indexed tokens may actually
be quite frequent outside the paragraphs so its actual df should be higher.

In this paper we describe a method to compensate for this deficiency using docu-
ment pivot. Using this method we got a consistent improvement of 30%–50% in the
mean average precision (MAP) for both INEX'03 and INEX'04 CO topics. On top of
this improvement we achieved further improvement by applying Automatic Query
Refinement (AQR) to the component ranking algorithm. AQR was studied in [7] in
the context of traditional IR engines. The idea there is to run the query in two rounds
where highly ranked results from the first round are used to add new query terms and
to reweigh the original query terms for the second round. We show how to adopt such
AQR algorithms on top of the XML component ranking algorithm.

The paper is organized as follows – in section 2 we describe the document pivot
concept and in section 3 we describe how to adopt AQR methods from traditional IR
to XML retrieval systems. In section 4 we describe our inverted index and our CO
and CAS runs. We conclude in section 5 with discussion of the approaches and with
future directions.

2 Component Ranking with Document Pivot

We start by briefing our component ranking approach from INEX'03 as described in
[6] and then we show how it was improved using the document pivot concept. As
discussed above the problem in XML component ranking is how to keep statistics at
the component level such that it handles components nesting correctly. In [6] we
solved that problem by creating different indices for the most informative component
types. We created an index for articles, index for sections, index for sub sections and
index for paragraphs. For simplicity we discuss now our approach for the CO topics.

For a given CO topic we run the query in parallel on the set of indices and get back
a result set from each index with components of that index sorted by the relevance
score. So we get a sorted list of articles, a sorted list of section and so on. We then
described a method for comparing the different result sets so that we can merge the
sets into a single sorted list of all component types. Why do we get different scores in
each result set? Our scoring method is based on the vector space model where both
the query Q and each document d are mapped to vectors in the terms space and the
relevance of d to Q is measured as the cosine between them using the tf-idf statistics
as described in Fig. 1 below.

 Component Ranking and Automatic Query Refinement 75

)
)(#

#
log()(

)log(

))(log(
)(

)log(

))(log(
)(

)(*)()(
),(

tontainingDocumentsC

tionntheCollecDocumentsI
tidf

AvgTF

tTF
tw

AvgTF

tTF
tw

dQ

tidftwtw
dQscore

d

d
D

Q

Q
Q

ii
dQt

i
d

i
Q

=

==

∗

∗
=
∑ ∈ Ι

Fig. 1. Document scoring function

TFQ(t) is the number of occurrences of t in Q and TFd(t) is the number of occur-
rences of t in d.

AvgTFQ is the average number of occurrence of all query terms in Q and AvgTFd is
the average number of occurrence of all terms in d.

||Q|| is the number of unique terms in Q and ||d|| is the number of unique terms in
d, both scaled by the average document length in the collection.

It can be seen that while scores of components in each index are comparable to
each other, scores in different indices are at a different scale. For example the articles
index has 12,107 components so the idf of a relatively rare term is not very large
compared to its idf in the paragraphs index which has 646,216 components. In addi-
tion the average document length (number of unique tokens) in the articles index is
900 while the average document length in the paragraphs index is 37. Since ||d|| and
||Q|| are scaled by the average document length then the denominator of scores in the
paragraphs index is much lower than in the articles index. Combining the idf differ-
ence and the length normalization difference shows why scores of components in the
paragraphs index are much higher than scores of components in the articles index.

In order to compare the scores in different result sets we described in [6] a nor-
malization formula that ensures absolute numbers that are index independent. This is
achieved by each index computing score(Q,Q) which is the score of the query itself as
if it was a document in the collection. Since the score measures the cosine between
vectors, then the max value is expected between two identical vectors. Each index
therefore normalizes all its scores to its computed score(Q,Q). The normalized results
are then merged into a single ranked list consisting of components of all granularities.

While the approach of creating independent indices solved the problem of overlap-
ping data it introduced another deficiency of missing data. The fine grained indices
lack data that is outside their scope which is not indexed. For example the articles
index contains 42,578,569 tokens while the paragraphs index contains only
31,988,622 tokens. The missing data in the fine grained indices can distorts the idf
statistics of the collection and therefore may affect the quality of the results.

To fix that problem we use this year a concept first mentioned in [9] which uses a
document pivot (DocPivot) factor to scale the final component score by the score of
its containing article. The final score of a component with original score Sc and with
its full article score Sa is then

DocPivot * Sa + (1 – DocPivot) * Sc.

76 Y. Mass and M. Mandelbrod

Note that the idea of Pivoted document length normalization was first introduced in
[10] but it was mentioned there in the context of normalizing scores inside a single
index. We do apply pivoted normalization on ||Q||, ||d|| to compute Score(Q,d) as in
Fig.1. on each index separately but we need the new DocPivot concept to scale results
between the separate indices.

Assuming that the full articles index is the first index then the overall algorithm to
return a result set for a given query Q is given in Fig. 2 below. Step c is the new step
introduced by the DocPivot.

Fig. 2. Component ranking algorithm

We experimented with several values of DocPivot on the 2003 CO topics using
the inex_eval tool [5] with strict metric1 and got the graph marked as 2003 in Fig. 3
below.

Doc Pivot �

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pivot

M
A

P 2003

2004

Fig. 3. Doc pivot on 2003/2004 data

1 The strict metric considers only elements that were assessed as highly relevant.

1 For each index i

a. Compute the result set Resi of running Q on index i

b. Normalize scores in Resi to [0,1] by normalizing to score(Q,Q)

c. Scale each score by its containing article score from Res0

2 Merge all Resi's to a single result set Res composed of all components sorted
by their score

 Component Ranking and Automatic Query Refinement 77

The MAP with DocPivot = 0 is the result we achieved in our 2003 official submis-
sion. We can see that with DocPivot=0.5 we get improvements of 31% over the base
2003 run so we used that value for our 2004 runs.

Later when the 2004 assessments were available we tried those values on the 2004
CO topics using the same metric and got the best MAP for DocPivot = 0.7 (the 2004
graph in Fig. 3) which is 52% improvements over the base run with no DocPivot.

3 Automatic Query Refinement for XML

In this section we describe how to apply Automatic Query Refinement (AQR) on top
of our XML component ranking algorithm. AQR was studied in [7] in the context of
traditional IR engines. The idea is to run the query in two rounds where highly ranked
results from the first round are used to add new query terms and to reweigh the origi-
nal query terms for the second round. We show now a method to adopt such AQR
algorithms on top of our XML component ranking algorithm.

Assume we have an AQR algorithm that can be used to refine query results. Since
we have separate indices for different component granularities we can run the AQR
algorithm on each index separately. The modified XML component ranking algorithm
is described in Figure-4.

Fig. 4. Component ranking with AQR

We add step 1.b which is the query refinement step and the rest of the algorithm
continues as in the simple case by normalizing and scaling scores in each index and
finally merging the result sets.

We describe now a specific AQR algorithm that we used in INEX'04 and discuss
some variants of its usage in our XML component ranking algorithm. The AQR algo-
rithm we used is described in [2]. The idea there is to add Lexical Affinity (LA) terms
to the query where a Lexical Affinity is a pair of terms that appear close to each other
in some relevant documents such that exactly one of the terms appears in the query.
The AQR is based on the information gain (IG) obtained by adding lexical affinities
to the query. The IG of a lexical affinity L on a set of documents D with respect to a
query Q denotes how much L separates the relevant documents in D from the non
relevant documents for the query Q. IG is defined as:

1 For each index i

a. Compute the result set Resi of running Q on index i

b. Apply AQR algorithm on Resi

c. Normalize scores in Resi to [0,1] by normalizing to score(Q,Q)

d. Scale each score by its containing article score from Res0

2 Merge all Resi's to a single result set Res composed of all components sorted by their
score

78 Y. Mass and M. Mandelbrod

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−= −

−
+

+

)()()()(, DH
D

D
DH

D

D
DHLIG QQQDQ

Fig. 5. Information Gain of a Lexical Affinity

where DD ⊆+ is the set of documents containing L and DD ⊆− is the set of

documents not containing L.)(XHQ is the entropy (or degree of disorder) of a set

of documents X and is defined as

))(1log())(1())(log()()(XpXpXPXpXH QQQQQ −−−−=

Fig. 6. Entropy of a group

where)(XpQ is defined as the probability of a document chosen randomly from X

to be relevant to Q. Let ++ ⊆ DR be the set of relevant documents in D+

then +++ = DRDpQ)(and similarly −−− = DRDpQ)(. The problem is

that we don't know +R and −R so we use the scoring function as an approximation

for)(+DpQ ()(−DpQ . We take)(+DpQ to be sum of scores of documents in

D+ (a score is between 0 and 1) divided by the max sum of score they could get which

is |D+|. We do the same estimation for)(−DpQ . Note that)(DHQ is independent

of L so to compare the IG of two LAs we don't have to compute it.
The AQR procedure works as follows: It gets the result set obtained by running the

search engine on the query Q (algorithm step 1 in Figure-4) and additional 4 parame-
ters (M, N, K, α) that are explained below. The AQR first constructs a list of candi-
date LAs that appear in the top M highly ranked documents from the result set. Then
it takes D to be the set of the top N (N >> M) highly rank documents and finds the K
LAs with the highest IG on that set D. Those LAs are then added to the query Q and
their contribution to score(Q, d) for each d is calculated as given by Fig. 1. So for

each such new LA we need to calculate its)(*)(*)(tidftwtw dQ . Since the added

LAs don't appear in the original query Q we take their TFQ(t) to be the given parame-

ter α so)log()(QQ AvgTFtw α= for the newly added LAs. We can have several

variants for using the above AQR algorithm in the XML component ranking
algorithm.

1. The AQR procedure can be applied on each index separately using same (M,
N, K, α) parameters or index specific (M, N, K, α) parameters. In this variant
different LAs are added to the query for each index.

 Component Ranking and Automatic Query Refinement 79

2. We can apply the first part of the AQR using (M, N, K) on the full articles
index to find the best LAs. Then apply the last part of the AQR that does the
re ranking (with the parameter α) on each index. using the LAs that were ex-
tracted from the articles index.

The motivation for the 2nd variant is that most informative LAs can be obtained on
the full articles index since it has the full collection data. In section 4 we describe the
(M, N, K, α) parameters used in our runs.

4 Runs Description

We describe now our indices setup and the runs we submitted for the CO, CAS and
NLP tracks.

4.1 Index Description

Similar to last year[6] we have created six inverted indices for the most informative
components which are {article, sec, ss1, ss2, {p+ip1}, abs}. We removed XML tags
from all indices except from the {article} index where they were used for checking
CAS topic constraints. Content was stemmed using a Porter stemmer and components
with content smaller than 15 tokens2 were not indexed in their corresponding index.

4.2 CO Runs

Each CO topic has 4 parts : <title>, <description>, <narrative> and <keywords>. This
year we could use only the <title> for formulating the query to our search engine. Due
to the loosely interpretation of topics as appear in [5] we ignored '+' on terms and we
ignored phrase boundaries and instead we use the phrase's terms as regular terms. We
still treated '-' terms strictly namely components with '-' terms were never returned.

For example topic 166
<title>+"tree edit distance" + XML - image </title>

is executed as
tree edit distance XML -image

We submitted three runs where two of them were ranked 1st and 2nd among the of-
ficial INEX CO runs. See table 1 below.

4.2.1 Doc Pivot Run
In the run titled CO-0.5 we implemented the Component ranking algorithm as de-
scribed in Figure-2 using DocPivot=0.5. This run was ranked 2nd in the aggregate
metric.

4.2.2 AQR Run
In the run titled CO-0.5-LAREFIENMENT we implemented our AQR algorithm from
Figure-4 using M= 20, N = 100, K = 5 and α = 0.9 on all indices. We have imple-

2 We count 15 tokens without tags. This is roughly equivalent to counting 20 tokens with the

tags which is a magic number we used last year and that was used by some other participants.

80 Y. Mass and M. Mandelbrod

mented the first algorithm variant where each index computes its own LAs to add.
This run was ranked 1st using the CO aggregate metric. We leave for future work
experiments with more parameter settings with the two algorithm variants.

Table 1. CO table

TASK:CO

rank Institute avg overlap(%)

1. IBM Haifa Research Lab(CO-0.5-
LAREFIENMENT)

0.1437 80.89

2. IBM Haifa Research Lab(CO-0.5) 0.1340 81.46

3. University of Waterloo(Waterloo-Baseline) 0.1267 76.32

4. University of Amsterdam(UAms-CO-T-
FBack)

0.1174 81.85

5. University of Waterloo(Waterloo-
Expanded)

0.1173 75.62

6. Queensland University of Technol-
ogy(CO_PS_Stop50K_099_049)

0.1073 75.89

7. Queensland University of Technol-
ogy(CO_PS_099_049)

0.1072 76.81

8. IBM Haifa Research Lab(CO-0.5-
Clustering)

0.1043 81.10

9. University of Amsterdam(UAms-CO-T) 0.1030 71.96

10. LIP6(simple) 0.0921 64.29

Some example LAs that were added to queries:

1. For topic 162:
Text and Index Compression Algorithms
We got LA pairs (compress, huffman), (compress, gigabyte), (index, loss).

2. For topic 169:
+"Query expansion" +"relevance feedback" +web

We got (query, search), (relevance, search), (query, user), (query, result).

4.3 CAS Runs

We applied an automatic translation from XPath[11] to XML Fragments[1] which is
the query language used in our search engine. XML Fragments are well-formed XML
segments enhanced with

 Component Ranking and Automatic Query Refinement 81

• '+/-' on XML tags and on content

• Phrases on content (" ")

• Parametric search on XML tag's value

• An empty tag (<>) that is used as parenthesis.

We can view any XML Fragment query as a tree3 with the semantics that at each
query node, '+' children must appear, '-' children should not appear and others are
optional and only contribute to ranking. If a node doesn't have '+' children then at least
one of its other (non '-') children must appear.

For example the query
<article>
 <abs>classification</abs>
 <sec>experiment compare</sec>
</article>

will return articles with classification under <abs> or with experiment or compare
under <sec>. Note that the default semantics in XML Fragments is OR unless there
are '+'s.

The same query with '+' on the tags -
<article>
 +<abs>classification</abs>
 +<sec>experiment compare</sec>
</article>

will return articles with classification under <abs> and with experiment or compare
under <sec>.

Finally the query
<article>
 +<abs>classification</abs>
 <sec>experiment compare</sec>
</article>

will return only articles with classification under <abs>. Articles with experiment or
compare under <sec> will be returned with higher ranking since the child
<sec>experiment compare</sec> is optional.

The empty tag is used as a kind of parenthesis so the query
 <title>
 <>+network +security</>
 <>+database +attributes</>
 </title>

will return documents with network and security or with database and attributes
under the <title> while the query

3 For a query given as several disjoint fragments we add a dummy <root> node to make the all

query a valid XML data.

82 Y. Mass and M. Mandelbrod

 <title>
 +<>network security</>
 +<>database attributes</>
 </title>

will return documents with network or security and with database or attributes under
its <title>.

The automatic transformation from an INEX modified XPath expression of the form
//path1[path1Predicates]//path2[path2Predicates]

to XML Fragments works as follows: It first creates a query node <path1> with two
children: The first is a mandatory empty tag (+<>) surrounding path1Predicates and
the second is the node <path2> prefixed with a '+'. The path1 and path2 Predicates are
translated to nodes where 'about' predicates for the current node ('about(,. "text")') are
transformed to just text and about predicates for sibling nodes ('about(//path, "text")')
are transformed to <path>text</path>. For example the INEX CAS topic 131

<title>//article[about(.//au,"Jiawei Han")]//abs[about(.,"data mining")]</title>
is translated to the following XML Fragments query.

+<article>
 +<>
 <au>"jiawei han"</au>
 </>
 +<abs>
 +<>
 "data mining"
 "</>
 </abs>
</article>

To support AND/OR between XPath predicates we use the empty tag where predi-
cates that are ANDed are transformed to XML Fragments under '+<>' tag and predi-
cates that are ORed are transformed to XML Fragments under <> with no prefix. For
example topic 134.
 <title>//article[(about(.,"phrase search") OR about(.,"proximity search") OR
 about(., "string matching")) AND
 (about(.,tries) OR about(.,"suffix trees") OR
 about(.,"PAT arrays"))]//sec[about(.,algorithm)]
 </title>

is transformed to
<article>
 +<>
 +<>
 <>"phrase search"</>
 <>"proximity search"</>
 <>"string matching"</>
 </>
 +<>
 <>"tries"</>
 <>"suffix trees"</>
 <>"pat arrays"</>
 </>
 </>

 Component Ranking and Automatic Query Refinement 83

 +<sec>
 +<>algorithm</>
 </sec>
</article>

The interpretation of structure constraints in a CAS topic can vary from Strict in-
terpretation (SCAS) where all structure constraints should be met to a loosely Vague
interpretation (VCAS) where structure constraints are just a hint. In this year it was
decided to follow the later VCAS flavor so in our runs we ignored the '+' on tags and
similar to the CO case we ignored '+' on content and phrase boundaries. Ignoring '+'
changes everything to OR semantics therefore the empty tags have no meaning and
can be ignored. For example the above topic 131 is then equivalent to

<article>
 <au>jiawei han</au>
 <abs>data mining</abs>
</article>

We still keep the XML Fragments semantics that nodes with a single child must

have that child so the above query will return only results which have jiawei or han
under <au> or that have data or mining under the <abs>.

To decide which element to return we followed the XPath target element semantics
that defines the last element in the XPath expression as the element to be returned up
to the equivalent tags as defined in [5]. We run the CAS topics using a minor modifi-
cation of step 1 in the algorithm in Figure-2 above: The articles index in addition to
creating its result set also check the query constraints and mark valid components to
be returned. The other indices then return in their results set only components that
were marked valid by the articles index.

Obeying the target element constraint resulted in a low 38% overlap and as a result
our official run got low MAP of 0.065 in the aggregate inex_eval metric[5]. It seems
like assessors ignored the target elements as for example in the above topic 131 while
<abs> was defined as the target element still many full articles were assessed as most
relevant for that topic. Later we tried to weakness the target element constraint and
return more elements and we got much better results of 0.120 MAP.

4.4 NLP Runs

We submitted one CO run and one CAS run. For the CO run we used the topic's <de-
scription> part and just applied the algorithm from Figure-2 with DocPivot=0.5. This
run got MAP of 0.1286 using the aggregate inex_eval metrics[5]. For the CAS run we
similarly used the topic's <description> with same DocPivot=0.5 but ignored the
XPath target element as if it was a CO topic. This run got MAP of 0.05.

5 Discussion

We have presented two extensions to our last year's XML component ranking algo-
rithm. The first extension introduces a document pivot that scales scores of compo-
nents by the score of their containing article. This method achieved improvements of
31% over our base CO run in INEX'03 and 52% over our base CO run in INEX'04.

84 Y. Mass and M. Mandelbrod

We then described an algorithm to apply existing AQR algorithms on top of our XML
component ranking algorithm and demonstrated an example such AQR method using
Lexical Affinities with Maximal Information Gain. Our two runs that implemented
those extensions were ranked 1st and 2nd in the CO track. The space of possible AQR
parameter combinations and the variants for their usage in XML is quite large and we
still have to explore the best combination that would give best results. For Vague
CAS (VCAS) we still need to find the correct balance of how much to constrain the
structure and the target element. Some initial tests already improved our MAP by an
order of magnitude over our official runs.

Acknowledgement

We would like to thank the INEX organizers for the assessment tool and for the
inex_eval tool they have supplied.

References

1. Broder A.Z., Maarek Y., Mandelbrod M. and Y. Mass (2004): “Using XML to Query
XML – From Theory to Practice”. In Proceedings of RIAO'04, Avignon France, Apr ,
2004.

2. Carmel D., Farchi E., Petruschka Y., Soffer A.: Automatic Query Refinement using Lexi-
cal Affinities with Maximal Information Gain. In Proceedings of the 25th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval,
2002.

3. Carmel D., Maarek Y., Mandelbrod M., Mass Y., Soffer A.: Searching XML Documents
via XML Fragments, In Proceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Toronto, Canada, Aug.
2003

4. INEX, Initiative for the Evaluation of XML Retrieval, http://inex.is.informatik.uni-
duisburg.de

5. INEX'04 Participants area, http://inex.is.informatik.uni-duisburg.de:2004/internal/
6. Mass Y., Mandelbrod M.: Retrieving the most relevant XML Component, Proceedings of

the Second Workshop of the Initiative for The Evaluation of XML Retrieval (INEX), 15-
17 December 2003, Schloss Dagstuhl, Germany, pg 53-58

7. Ruthven I., Lalmas M. : A survey on the use of relevance feedback for information access
systems, Knowledge Engineering Review, 18(1):2003.

8. Salton G. : Automatic Text Processing – The Transformation, Analysis and Retrieval of
Information by Computer, Addison Wesley Publishing Company, Reading, MA, 1989.

9. Sigurbjornsson B., Kamps J., Rijke M. : An element based approach to XML Retrieval,
Proceedings of the Second Workshop of the Initiative for The Evaluation of XML Re-
trieval (INEX), 15-17 December 2003, Schloss Dagstuhl, Germany, pg 19-26.

10. Singhal A., Buckley C., Mitra M.. : Pivoted document length normalization, Proceedings
of SIGIR'96, pp 21--29, 1996.

11. XPath – XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath2

	Introduction
	Component Ranking with Document Pivot
	Automatic Query Refinement for XML
	Runs Description
	Index Description
	CO Runs
	CAS Runs
	NLP Runs

	Discussion
	Acknowledgement
	References

