
A Test Platform for the INEX
Heterogeneous Track

Serge Abiteboul1, Ioana Manolescu1, Benjamin Nguyen3, and Nicoleta Preda1,2

1 INRIA Futurs & LRI, PCRI, France
firstname.lastname@inria.fr

2 LRI, Université de Paris-Sud, France
3 PRiSM, Université de Versailles Saint-Quentin, France

Abstract. This article presents our work within the INEX 2004 Het-
erogeneous Track. We focused on taming the structural diversity within
the INEX heterogeneous bibliographic corpus.

We demonstrate how semantic models and associated inference tech-
niques can be used to solve the problems raised by the structural diversity
within a given XML corpus. The first step automatically extracts a set
of concepts from each class of INEX heterogeneous documents. An uni-
fied set of concepts is then computed, which synthesizes the interesting
concepts from the whole corpus. Individual corpora are connected to the
unified set of concepts via conceptual mappings. This approach is imple-
mented as an application of the KadoP platform for peer-to-peer ware-
housing of XML documents. While this work caters to the structural
aspects of XML information retrieval, the extensibility of the KadoP
system makes it an interesting test platform in which components de-
veloped by several INEX participants could be plugged, exploiting the
opportunities of peer-to-peer data and service distribution.

1 Context

Our work is situated in the context of the INEX Heterogeneous Track (which
we will denote as het-track throughout this paper). The het-track is very young:
it has been held in 2004 for the first time. The het-track has built a collection
of heterogeneous data sets, all representing bibliographic entries structured in
different XML dialects. In keeping with the INEX terminology, throughout this
paper, we will use the term heterogeneous to qualify a set of XML documents
featuring different sets of tags (or conforming to different DTDs), and this shall
not cause confusion.

The het-track collection includes:

– Berkeley: library catalog of UC Berkeley in the areas of computer and in-
formation science. The particularity of this data set is to include several
classifications or codes for each entry.

– CompuScience: Computer Science database of FIZ Karlsruhe.
– BibDB Duisburg: Bibliographic data from the Duisburg university.
– DBLP: The well-known database and logical programming data source.

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 358–371, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Test Platform for the INEX Heterogeneous Track 359

Fig. 1. XSum drawing of the DBLP DTD (top), Duisburg DTD (middle), and zoom-in

on Duisburg DTD articles (bottom)

– HCIBIB: Bibliographic entries from the field of Human-Computer
Interaction.

– QMUL: Publications database of QMUL Department of Computer Science.

A set of topics have also been proposed, which are largely similar (in structure
and scope) to those formulated within the relevance feedback track. The topics
include:

– Content-only (CO) topics, of the form “database query”. The answer given
by an IR engine to a CO topic consists of XML fragments pertinent to the
specified keywords.

– Content-and-structure (CAS) topics, such as
//article[about(.//body, ”XML technology”)]

The answer given by an IR engine to a CAS topic consists of XML fragments
pertinent to the specified keywords, and using the structure criteria of the
topic as hints.

Answering an IR query on a structurally heterogeneous corpus raises two main
challenges. First, the relevance of a data fragment for a given keyword or set of
keywords must be computed; this task is no different from the main relevance
assessment track. Second, the structural hints present in the topic, in the case
of CAS topics, must be taken into account.

 



360 S. Abiteboul et al.

In the presence of a heterogeneous set of XML documents, the second task
becomes particularly difficult. This is due to the fact that semantically similar
information is structured in different XML dialects; furthermore, DTDs may or
may not be available for the documents. The work we present has specifically
focused on this second task.

Contributions. Our work within the het-track makes the following contributions.
First, we present an approach for integrating the heterogeneous structures of

the heterogeneous data sources under an unified structure. This approach relies
on simple semantic-based techniques, and on our experience in building semantic-
based warehouses of XML resources [2, 3]. The result of this integration on the
het-track corpus is a unified DTD, and a set of mappings from individual sources
to this DTD. CAS topics against the het-track corpus can now be expressed in
terms of the unified DTD, and get automatically translated into a union of
topics over each data set. Thus, solving a CAS topic on a heterogeneous corpus
is reduced to solving several CAS topics against the individual component data
sets.

Second, we present XSum [20], a free XML and DTD visualization tool, that
we developed as part of our work in INEX. XSum helped us get acquainted with
the complex structure of the heterogeneous collection, and devise semi-automatic
integration strategies.

Finally, we outline the architecture of a peer-to-peer platform for processing
XML queries or IR searches, over a set of distributed, potentially heterogeneous
XML data sources. This platform has the advantage of being open and inherently
distributed, allowing to take advantage of the data sources and capabilities of
each peer in the network in order to solve a given query or search. In particular,
we show this platform may be used as a testbed for the XML IR methodologies
developed within the het-track, by allowing to test and combine the various
implementations of the about functions developed by INEX participants.

This document is structured as follows. Section 2 describes our semantic-
based approach for XML information retrieval over a heterogeneous corpus. Sec-
tion 3 details the result we obtained by applying this approach on the INEX
het-track corpus. Section 4 outlines the peer-to-peer generic platform we pro-
pose, and describes how it could be used as a testbed for the het-track in the
future. Section 5 compares our work with related ones, while Section 6 draws
our conclusion and outlines future work.

2 Approach

Dealing with structural diversity in heterogeneous sources has been a topic of
research in the field of databases and in particular of data integration; the basic
concepts in this area can be found, e.g., in [16]. The purpose of a data integration
system is to provide the user the illusion of a single, integrated database, on
which the user can pose queries (in our case, IR queries, or topics). Behind
the uniform interface, the system will process these queries by translating them



A Test Platform for the INEX Heterogeneous Track 361

into the formats specific to each data source, processing them separately, and
integrating the results into a single one.

Traditionally, data integration operates at the level of schemas. A source
schema characterizes the structure of each data source, and an integrated schema
is provided to the user. This approach has been thoroughly investigated in the
case of relational data sources and schemas [11, 6].

In the case of heterogeneous, complex, potentially schema-less data sources,
this approach is no longer applicable. Instead, we chose to draw from the ex-
perience obtained in semantic-based data integration [6, 5], to integrate sources
pertinent to a specific domains, such as the het-track corpus, under a single
conceptual model. The building bricks of our conceptual model are:

– Concepts, which are the notions of relevance for a given application. For
instance, in the het-track corpus, useful concepts are: publication, author, etc.

– IsA relationships represent specialization relationships between concepts. For
instance, book IsA publication represents the fact that books are a kind of
publication. IsA relationships are also known under the name of hyponymy.

– PartOf relationships represent composition (aggregation) relationships be-
tween concepts. For instance, title PartOf book represents the fact that a title
is a component of a book. PartOf relationships are also known under the
name of meronymy.

Since its inception, XML has been hailed as a self-descripting data format:
since the set of markup tags is by definition extensible, typical XML applica-
tions use semantically meaningful tag names. This was part of the indended
usage for XML in data management, and indeed this choice is made in most
popular XML applications. An outstanding example is XSL, the XML-based
stylesheet language: an XSL program is written based on a set of XML types
with meaningful names, such as if/else, apply-templates, select etc. An inspection of
the DTDs found on the “XML Cover Pages” leads to the same conclusion: XML
flexibility is typically exploited to encode meaning into tag names. Furthermore,
tag nesting is often used to reflect nesting of application objects. Thus, while
tags by themselves are insufficient to capture complex application semantics,
they are at least a first step in that direction.

As a consequence of this “pseudo-semantic description” approach, in several
data management applications the need arises for integrating data sources of
which we only know their XML syntax (or their DTDs). This approach has been
taken for instance in [5], and has been further studied and refined in [8].

Thus, our approach starts by extracting a conceptual model from each source.
For the sources for which DTDs are available, the process is straightforward: we
extract a concept for each type in the DTD, including element and attributes
(among which we do not make a distinction). For sources for which DTDs are
not available, we start by extracting a “rough” DTD, including all elements and
attributes. Whenever we encounter in the data an element labeled l1 as a child
of an element labeled l2, we mention in the DTD that the type l1 can appear as
a child of the type l2. After having extracted this DTD, we compute from it a
set of concepts as in the previous case.



362 S. Abiteboul et al.

At the end of this stage, we have obtained a set of conceptual data source
models. Our purpose then is to construct a unified conceptual model character-
izing all sources, and mappings between each conceptual model to the unified
one.

Extracting the Unified Conceptual Model. To build the unified conceptual model,
we identify groups of concepts (each one in different conceptual source models)
that represent semantically similar data items. We do this in a semi-automatic
manner, as follows.

First, the names of concepts from different source models are compared for
similarity, to identify potential matches. This is done automatically, with the
help of WordNet [7]. We have used WordNet outside the peer; it can be easily
wrapped as a Web service local to the integration peer. If simple matches such
as the one between book (DBLP) and book (HCI BIB) can be automatically
detected, more subtle ones such as the similarity between editor (HCI BIB) and
Edition (Berkeley) require the usage of tools such as WordNet. Having identified
clusters of concepts which potentially represent the same thing, we create one
concept in the unified model, for each cluster of source model concepts above a
given similarity threshold; human intervention is required at this point in setting
the similarity threshold.

At the end of this process, it may happen that some source model concepts
have not been clustered with any others. This may be the case, for instance, of
concepts called Fld012, Fld245, etc. from the Berkeley data source. These con-
cepts are difficult to cluster, since their names (standing for Field number 012,
Field number 245, etc.) do not encapsulate the meaning of the concept, instead,
this meaning is included in plain-text comments preceding to the corresponding
element type definition. To deal with such concepts, we need to capture the DTD
comments preceding the type definition, and feed those descriptions to the word
similarity-based clustering. This way, we may learn that Fld245 stands for “Title
Statement”, and cluster Fld245 with similarly named concepts from other DTDs.

Once the clusters of similar (and supposedly semantically close) concepts
have been extracted, we create a concept for each such cluster, in the unified
conceptual model.

Extracting Mappings Between the Source and Unified Conceptual Models. We
add an IsA relationship going from each source model concept, to the unified
model concept that was derived from its clusters. If a source model participates
to several clusters, this may yield several IsA relationships.

3 Contributions

In this section, we report on the results that we obtained in our work in the
framework of the het-track.



A Test Platform for the INEX Heterogeneous Track 363

3.1 Unified Model for the Het-Track Corpus

In this section, we discuss the techniques used to construct a unified DTD in
order to query the documents of the heterogeneous track. An important factor
is that the documents are all about the same application domain: scientific bib-
liography. Five of them are quite verbose, and the labels are self descriptive,
while one (Berkeley data set) has labels that convey no semantic signification
whatsoever. Some examples of such labels would be: Fld001, Fld002, etc.

In this article, we do not take into account this DTD, therefore the unified
DTD we propose does not include elements from the Berkeley data set for the
moment. We report on our experience with the Berkeley data set, based on using
our XSum tool, in Section 6.

The method used in order to determine a unified DTD is the following :

– We first of all create mappings between elements whose tags are similar,
which feature similar children element types, but that originate from different
DTDs. For instance, we might find two article elements, one from DBLP, the
other from BibDB Duisburg. If there are several elements with the same (or
very similar) type definition in multiple DTDs, we group them all together.
These are one to one mappings, and the output of this phase is a group of
clusters of syntactically close elements.

– For each cluster, we then check the parent nodes, and group them together
in a new parent cluster.

– For all these automatically constructed clusters, we manually check the cor-
rectness of these groupings, and cho0se a name for the cluster, generally of
the form nameOfElementC.

We provide the unified DTD on our website [18].

Using the unified DTD: The Unified DTD is to be used when asking queries
over the heterogeneous data set. The querying mechanism is as follows.

– The INEX queries must be written taking into account the unified DTD.
The names of the elements appearing in the unified DTD should be used to
formulate queries against the whole het-track corpus. We call such a query
a generic query.

– The generic query is then converted into specific queries, with a specific
structure for each database, and the queries are then run seperately on all
the databases.

– Given the unified DTD, the answers returned are clustered together in a
common structure, in order to use only a single DTD for browsing means.

3.2 XSum: A Simple XML Visualization Tool

We have developed a simple XML visualization tool, called XSum (for XML
Summary Drawer). XSum can be used in two ways.

Drawing Path Summaries. Given an XML document, XSum extracts a tree-
shaped structural summary of the document, and draws it. This structural sum-
mary contains a node for each distinct path in the input document [13], and is



364 S. Abiteboul et al.

Fig. 2. Fragment of a path summary computed from an article in the INEX main

corpus (IEEE CS)

the equivalent of a strong DataGuide [9] for XML data (DataGuides were ini-
tially proposed for graph-structured OEM data). XSum enhances this structural
representation with:

– Node counts: XSum records the number of nodes on a given path in the XML
document, and correspondingly may show this number in the summary node
corresponding to that path.

– Leaf types: XSum attempts to “guess” the type (String, integer or real num-
ber), of each leaf node (which can be either a text node, or an attribute
value), and depicts the corresponding node in a color reflecting its type.

– Edge cardinalities: for every path p/l, where p is a path and l is a label,
XSum records the minimum and maximum number of children on path p/l
that an element on path p may have. This holds also for text children.

A sample summary representation produced by XSum from a XML-ized article
from the INEX IEEE CS corpus is depicted in Figure 2. The fragment shown
here reflects the references at the end of an article, including authors, titles,
and publication information for the relevant references. If a an element type
is recursive, the summary drawn by XSum will unfold the recursion: it will
construct several nodes corresponding to the recursive type, nested within each
other, up to the maximum nesting level actually encountered in the data.

Drawing DTDs. When given a DTD, XSum draws a simple graph, representing
each attribute or element type from the DTD as a node, and adding an edge
from a node to another whenever a type may appear inside another in the DTD.
If a an element type is recursive, the DTD graph will only include one node for
this type, and that node will participate in a cycle.

Figure 1 shows the drawing extracted by XSum from: the DBLP DTD, the
DTD of the Duisburg data source, and a zoomed-in fragment around the node
corresponding to the “article” type in the Duisburg data source.

Structural Clusterering of DTDs. Graphs corresponding to DTDs tend to have
relatively few nodes, but large number of edges, crossing each other in the draw-
ing (as shown in Figure 1), which may make the image difficult to read. To
cope with this problem, we have devised a structural DTD clustering technique
which reduces the number of nodes (and edges) in a DTD graph. The cluster-
ing is performed as follows. All DTD nodes sharing the same set of parents are



A Test Platform for the INEX Heterogeneous Track 365

clustered together; an edge is drawn between two clusters, if some nodes in the
parent cluster are parents of all the nodes in the child cluster. Notice that the
structural clustering performed by XSum takes place within a single DTD; it has
nothing in common with the semantic clustering performed across DTDs and
described in the previous section.

Clustered DTD graphs are much more readable than simple DTD graphs.
As an example, Figure 3 shows the clustered graph produced for the Duisburg
DTD. This readability comes at the price of some loss of precision (since they
do no longer show the exact set of parents of each node).

bibdbpub

howpublished 

language type 

url free-terms month author 

journal 

publisher 

annote 

bumber 
issn 

keywords 
altauthor 

translation 

file 

entry 

phdthesis id 
mastersthesis inbook 
manual unpublished 

inproceedings proceedings 
incollection 
techreport 

article 
book 

booklet 
manuscript

misc organization 

key 
note 

school 

title 
year 

entrydate 

address number chapter institution 

classification-codes 
subject-descriptors 

editor 
volume 

crossref series 

general-terms 

doi 
isbn 

conference 

booktitle abstract 

edition 

pages 

Fig. 3. Clustered DTD graph for the Duisburg data set

From our experience using XSum with the INEX standard and heterogeneous
corpus, we draw some remarks. Both DTD and summary drawings tend to be
large for documents of the complexity we are dealing with, typically larger than
the screen or a normal printer format. Understanding the image requires “slid-
ing” over it to see one part at a time. To simplify path summaries, we have
introduced in XSum options allowing to omit leaf nodes and/or cardinality an-
notations, which simplifies the graphs. To simplify DTD graphs, we introduced
structural clustering. We welcome the feedback of INEX participants on how to
enhance XSum’s XML and DTD drawing logic, to produce more helpful images.

XSum is implemented in Java, and is based on GraphViz, a well-known free
graph drawing library developed at AT&T. XSum is freely available for download
from [20].

Further Info and Graphs. The graphs produced by XSum, for all DTDs in the
het-track corpus, are available at [18].



366 S. Abiteboul et al.

4 The KadoP Platform

In this section, we briefly describe the KadoP peer-to-peer XML resources man-
agement platform, which serves as the framework for our work. A more detailed
presentation can be found in [3].

The KadoP platform allows constructing and maintaining, in a decentral-
ized, P2P style, a warehouse of resources. By resource, we mean: data items,
such as XML or text documents, document fragments, Web services, or collec-
tions; semantic items, such as simple hierarchies of concepts; and relationships
between the data and semantic items. KadoP’s functionality of interest to as
are:

– publishing XML resources, making them available to all peers in the P2P
network;

– searching for resources meeting certain criteria (based on content, structure
as well as semantics of the data).

KadoP leverages several existing technologies and models. First, it relies on
a state-of-the art Distributed Hash Table (DHT) implementation [19] to keep
the peer network connected. Second, it is based on the ActiveXML (AXML) [17]
platform for managing XML documents and Web services. A full description
of ActiveXML is out of the scope of this work, see [1]. For our purposes here,
AXML is an XML storage layer, present on each peer.

The KadoP data model comprises the types of resources that can be pub-
lished and searched for in our system. We distinguish two kinds of resources: data
items, and semantic items. Data items correspond to various resource types:

– A page is an XML document. Pages may have associated DTDs or XML
schemas describing their type; we treat DTDs as sources of semantic items
(see further). Other formats such as PDF can be used; we ignore them here.

– We consider data with various granularities. Most significantly, we model:
page fragments, that is, results of an XML query on a page, and collections,
as user-defined sets of data items. Collections can be viewed as an extension
of the familiar concept of Web navigator bookmarks: they are defined by the
user who gives them a name, and can gather in a collection any kind of data
items which, from the viewpoint of the user, logically belong together. Inside
pages, we also consider element labels, attribute names, and words.

– Finally, a web service is a function taking as input types XML fragments,
and returning a typed XML fragment.

Any data item is uniquely identified by an PID (peer ID) and a name. The
PID provides the unique name (logical identifier) of the peer that has published
the data item, and where the item resides; names allow distinguishing between
data items within the peer. Data items are connected by PartOf relationships, in
the natural sense: thus, a word is part of a fragment, a fragment part of a page
etc. Furthermore, any type of data items can be part of collections. A data item
residing on one peer may be part of a collection defined on another peer (just
like for bookmarks, adding a page to a collection does not entail its replication).



A Test Platform for the INEX Heterogeneous Track 367

Semantic items consist of concepts, connected by two types of relationships:
IsA, and PartOf. A graph of concepts, connected via IsA or PartOf links, is
called a concept model. We derive a source concept model from each particular
data source, as described in Section 2.

InstanceOf statements connect data items with concepts. In particular, all
elements from an XML document, of given type τ (obtained as the result of the
XPath expression //τ), are implicitly connected by InstanceOf statements to
the concept derived from the type τ .

The KadoP query language allows retrieving data items, based on con-
straints on the data items, and on their relationship with various concepts.
Queries are simple tree patterns, and return the matches found for a single query

* body

article
Q1 Q2

about("XML technology")

*

* instanceOf("body")

instanceOf("article")

about("XML technology")

Fig. 4. Sample KadoP queries

node (in the style of XPath and the CAS INEX topics). For instance, the query
in Figure 4 at left allows retrieving all “article” elements such that they have
a “body” element, and the body is about XML technology. This corresponds
to the sample CAS topic in Section 1. The dashed box designates the node for
which matches will be returned.

Such a query, however, needs specific element tag names for its nodes. In the
case of the heterogeneous corpus, such queries are no longer helpful, due to the
presence of different element tag names corresponding to semantically similar
data objects.

The approach we take for solving INEX heterogeneous CAS topics is based
on the unified conceptual model. The idea is to drop name conditions from the
queries, and instead use conditions of the form “instanceOf c”, where c is a
concept from the unified model. On our example query, this leads to the KadoP
query at right in Figure 4, where we assume that “article” and “body” are part
of the unified conceptual model. This query is processed as follows:

1. The elements directly declared as instance of the concepts “article” and
“body” are found.

2. We search for concepts ca such that ca IsA “article”, and concepts cb such
that cb IsA “body”. This will lead to retrieving all the concepts from the
source concept models, which have been mapped to the unified concepts
“article” and “body”.

3. We search for elements declared as instances of the concepts ca and cb ob-
tained as above.



368 S. Abiteboul et al.

These steps lead to matching the structural conditions posed by the CAS
query against the heterogeneous corpus. They do not, however, apply the “about”
condition, since implementing this condition is out of the scope of our work.
We next explain how others’ implementations of the “about” function could be
plugged in our work.

Integrating “about” Functions. In the KadoP framework, “about” can be in-
tegrated as a Web service, offered by one or several peers. The implementation
of this function is typically complex. From the KadoP perspective, all that is
needed is that one or several participants make available a Web service named
“about”, obeying to a well-defined interface. Then, the KadoP query processor
can invoke one of these services to evaluate the pertinence of an XML fragment
for a given set of keywords. The user may specify which service to use; this is
helpful when we want to compare the results of different implementations. Or,
she may let the system choose an implementation.

It is worth stressing that the KadoP framework is based on a concept of
openness and extensibility: new data sets, new concepts, or new semantic state-
ments can be added by any participant, and refer to any data item on any peer.
Finally, the KadoP framework is by nature distributed: any Web service (thus,
any “about” function) can be invoked on XML fragments originating from any
peer.

5 Related Work

We have proposed in this paper a method of integrating heterogeneous DTDs
related to the same domain, into a unified DTD. Our work is related to projects
on semi-automatic schema matching. In the domain of semi-automatic schema
matching, we may distinguish three main research directions related to our work:

– given two schemas S1 and S2, compute the matching that associates label
elements in schema S1 with other label elements in schema S2.

– given two schemas S1 and S2, create mappings between the elements of S1

and the elements of S2 in the form of views.
– given a set of schemas, generate one or more integrated schemas.

Our approach is related to the first direction as mappings between two DTD
sources are derived based on the semantic and syntactic resemblance between
nodes. The KadoP query engine exploits not only mappings between the uni-
fied DTD and each DTD source, but also mappings between two DTD source
schemas.

We have proposed a semi-automatic method of computing a unified DTD.
This work, related to the third research direction, is based on clustering similar
elements. As related integrating schemas system based on clustering techniques,
we mention ARTEMIS [4].

The particularity of our integration problem consists in the type of our input
schemas: DTD schemas. These schemas do not have rich semantics associated



A Test Platform for the INEX Heterogeneous Track 369

with the edges between concept nodes. In the XSum project, we are now in-
vestigating, heuristics in order to add more semantic information to the DTD
structure. Conceived first as a method of pretty drawing a DTD, we have de-
fined a clustering method that has good properties of grouping related concepts
together. This is interesting, because it implies that semantic relationships be-
tween nodes may be verified on a smaller graph instance. Other heuristics that
transform the DTD-s into ER database schemas have been investigating in [6],
[14], [12].

For the het-track collection, we have defined a single (unified) abstract schema,
and mappings between concepts in the in the unified DTD and concepts in the
various DTD sources, as each DTD was referring to the same topic.

In the case of a collection that contains schemas and resources of different
domains (which may be the case of a peer to peer application), we may build
a tool that semi-automatically defines unified DTDs by clustering DTDs of the
same domain. We may benefit of works done in the ONION [15] project, that is
heavily based on the existence of rich semantic relationships between the nodes
of the schemas.

The second research direction hasn’t been investigated in this paper, although
the KadoP query language may handle mappings in the form of a concept node
in the DTD associated to a view (KadoP query). An automatic method of
deriving such mappings may benefit of works done in Xyleme [6] (path to path
mappings), or CLIO [10].

6 Conclusion and Perspectives

We have presented our work focused on building an unified DTD for the data sets
of the het-track. We have produced an unified DTD including all but the Berkeley
data set, and we have developed a simple XML visualization tool which helped
us get acquainted with the various data sets. We have furthermore presented an
approach for formulating CAS INEX topics against a heterogeneous data corpus,
based on our KadoP platform.

Our next step is merging the DTD of the Berkeley data set into the unified
DTD.Aas explained in Section 3.1, the tag names encountered in this data set
are meaningless; however, tag meaning can be found in comments appearing
in the DTD, just before the element type definition appearing in the DTD.
We attempted to cluster the DTD, but we were not able to parse it; thus, we
extracted our own DTD, and clustered this one. We made several remarks.

First, the original DTD features much more element types (around 700) than
the data set actually uses (around 200). Thus, the extracted DTD is easier to
grasp.

Second, in some cases on the Berkeley data set, our structural clustering cri-
teria has (quite surprisingly) clustered nodes representing semantically similar
things. For instance, we obtained a cluster of 8 nodes representing variants of a
publication’s title, and a cluster of 33 nodes representing various numerical pub-
lication codes. However, in other cases, our parent-based clustering has grouped



370 S. Abiteboul et al.

together nodes that do not represent similar things, but are part of the same data
subset: namely, there is a “Main” cluster, grouping nodes such as Fld100 (“Main
entry, personal name”) and Fld111 (“Main entry, meeting name”), although per-
sonal and meeting names do not stand for the same thing. In this case, semantic
clustering (using the comments, since the tag names themselves are meaningless)
will disagree with structural clustering. Semantic clustering may correctly group
“Main entry, personal name” with Fld700 (“Added entry, personal name”), since
they represent similar things. However, this is only our intuition; a librarian’s
viewpoint may be quite different.

Third, we noticed also a (single, small) cluster where neither the tags, nor the
accompanying comments convey any useful information. This is the case of a set
of fields whose comments read “XXX Local Holdings Information for 9XXX”;
we do not expect automatic processing of such data to yield meaningful results.

In a more general perspective, we intend to develop our approach into an
easy-to-use integration platform, in order to include any other bibliographical
semi-structured databases.

Acknowledgements. The authors are grateful to the anonymous INEX referee,
whose careful comments helped improve the readability of the paper.

References

1. Serge Abiteboul, Omar Benjelloun, and Tova Milo. The ActiveXML project: an
overview. Gemo research report no. 344, 2004.

2. Serge Abiteboul, Gregory Cobéna, Benjamin Nguyen, and Antonella Poggi. Con-
struction and maintenance of a set of pages of interest (SPIN). In Bases de Donnees
Avancees, Evry, 2002. Informal proceedings only.

3. Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda. Constructing and querying
a peer-to-peer warehouse of XML resources. In Proceedings of the Semantic Web
and Databases Workshop (in collaboration with VLDB), Toronto, CA, 2004.

4. Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani di Vimercati.
Global viewing of heterogeneous data sources. IEEE Transactions on Knowledge
and Data Engineering, 13(2):277–297, 2001.

5. Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views in a large scale XML
repository. In VLDB, pages 271–280, 2001.

6. Claude Delobel, Chantal Reynaud, Marie-Christine Rousset, Jean-Pierre Sirot, and
Dan Vodislav. Semantic integration in Xyleme: a uniform tree-based approach.
IEEE Data and Knowledge Engineering, 44(3):267–298, 2003.

7. Christine Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
8. Gloria Giraldo. Automatic ontology construction in mediator systems. Ph.D.

thesis, University of Orsay, France, 2005.
9. R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-

mization in semistructured databases. In VLDB, pages 436–445, Athens, Greece,
1997.

10. Laura M. Haas, Renée J. Miller, B. Niswonger, Mary Tork Roth, Peter M. Schwarz,
and Edward L. Wimmers. Transforming Heterogeneous Data with Database Mid-
dleware: Beyond Integration. IEEE Data Engineering Bulletin, 22(1):31–36, 1999.



A Test Platform for the INEX Heterogeneous Track 371

11. Alon Y. Levy. Logic-based techniques in data integration. Logic Based Artificial
Intelligence, 2000.

12. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema match-
ing with Cupid. In The VLDB Journal, pages 49–58, 2001.

13. I. Manolescu, A. Arion, A. Bonifati, and A. Pugliese. Path Sequence-Based XML
Query Processing. In Bases de Données Avancées (French database conference),
Montpellier, France, 2004. Informal proceedings only.

14. P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge
sources. In Proc. of the 2nd Int. Conf. On Information FUSION’99, 1999.

15. Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A graph-oriented model for
articulation of ontology interdependencies. Lecture Notes in Computer Science,
1777:86, 2000.

16. Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38–49, 1992.

17. The ActiveXML home page. Available at www.activexml.net, 2004.
18. Gemo and PRiSM at the INEX heterogeneous track. Available at www-

rocq.inria.fr/gemo/Gemo/Projects/ INEX-HET, 2004.
19. The FreePastry system. Available at www.cs.rice.edu/CS/Systems/Pastry/

FreePastry/, 2001.
20. XSum: The XML Summary Drawer. Available at www-rocq.inria.fr/gemo/Gemo/

Projects/SUMMARY, 2004.


	Context
	Approach
	Contributions
	Unified Model for the Het-Track Corpus
	XSum: A Simple XML Visualization Tool

	The KadoP Platform
	Related Work
	Conclusion and Perspectives



