

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 303 – 310, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Relevance Feedback for XML Retrieval

Yosi Mass and Matan Mandelbrod

IBM Research Lab,
Haifa, 31905, Israel

{yosimass, matan}@il.ibm.com

Abstract. Relevance Feedback (RF) algorithms were studied in the context of
traditional IR systems where the returned unit is an entire document. In this pa-
per we describe a component ranking algorithm for XML retrieval and show
how to apply known RF algorithms from traditional IR on top of it to achieve
Relevance Feedback for XML. We then give two examples of known RF algo-
rithms and show results of applying them to our XML retrieval system in the
INEX'04 RF Track.

1 Introduction

Relevance Feedback (RF) was studied e.g. in [6, 7] in the context of traditional IR
engines that return full documents for a user query. The idea is to have an iterative
process where results returned by the search engine are marked as relevant or not
relevant by the user and this information is then fed back to the search engine to re-
fine the query. RF algorithms can be also used for Automatic Query Refinement
(AQR) by applying an automatic process that marks the top results returned by the
search engine as relevant for use by subsequent iterations.

In [5] we described an algorithm for XML component ranking and showed how to
apply existing AQR algorithms to run on top of it. The Component ranking algorithm
is based on detecting the most informative component types in the collection and
creating separate indices for each such type. For example in the INEX[3] collection
the most informative components are articles, sections and paragraphs. Given a query
Q we run the query on each index separately and results from the different indices are
merged into a single result set with components sorted by their relevance score to the
given query Q. We showed then in [5] that we can take advantage of the separate
indices and apply existing AQR methods from traditional IR on each index separately
without any modification to the AQR algorithm.

In this paper we show how further to exploit the separate indices to achieve Rele-
vance Feedback for XML by applying existing RF algorithms with real user feedback
to the base component ranking algorithm. Why is it different than applying Automatic
Relevance Feedback? The difference lies in the data on which the relevance feedback
input is given. In AQR the process is automatic hence it can be done on the top N
results (N is a given constant) of each index separately before merging the results. In
a real user feedback scenario the user does the feedback on the merged results and
assuming assessment of at most the top N results then we have feedback on N results

304 Y. Mass and M. Mandelbrod

from all indices together. It can happen that most of the feedback came from few
indices but still we would like to use the feedback to improve results from other indi-
ces as well. This is explained in details in section 2 below.

The paper is organized as follows: In section 2 we describe a general method to
apply existing RF algorithms on top of the component ranking algorithm. Then in
section 3 we discuss two specific RF algorithms and demonstrate their usage to XML
retrieval using the method from section 2. In section 4 we report experiments with
those algorithms for the INEX RF track and we conclude in section 5 with summary
and future directions.

2 Relevance Feedback for XML Retrieval

In [5] we described an algorithm for XML component ranking and showed how to
apply existing AQR algorithms on top of it. The base algorithm is described in Fig. 1
below.

Fig. 1. XML Component ranking

We brief here the algorithm steps while full details can be found in [5]. In step 1
we run the given query on each index separately (step a) and then normalize result
scores in each index to be able to compare scores from different indices (step b). We
then apply a DocPivot scaling (step c) and finally in step 2 we merge the results to a
single sorted result set of all components.

Since we have separate indices for different component granularities we showed in
[5] that we can modify the above algorithm with an AQR procedure by adding a new
step between 1.a and 1.b in which we apply the given AQR algorithm on each index
separately.

Applying real user feedback is somewhat more complicated than applying AQR
since the feedback is given on the merged result set and not on results from each in-
dex separately. Assuming that the user can assess at most N results then we have
feedback on the top N results from all indices together. Those N results can all come
form a single index or from few indices but we still want to use this feedback to im-
prove results from all indices. Moreover we would like to do it without modifying the
RF algorithms. We do this by applying the base component ranking algorithm as in
Fig. 1 above and then continue with the algorithm in Fig. 2 below.

1. For each index i

a. Compute the result set Resi of running Q on index i

b. Normalize scores in Resi to [0,1] by normalizing to score(Q,Q)

c. Scale each score by its containing article score from Res0

2. Merge all Resi to a single result set Res composed of all components sorted
by their score

 Relevance Feedback for XML Retrieval 305

Fig. 2. XML Component ranking with RF

The algorithm in Fig. 2 describes a single iteration of applying an RF algorithm on
our component ranking algorithm. The algorithm works as follows; In step 3 we use
the top N results from the merged results and based on the user feedback we select the
subset of relevant (R) and non relevant (NR) components. Note that in a traditional
RF algorithm the R and NR components are of same type as the collection (namely,
full documents) while here they come from different component types so for each
index some of them may be of different granularities than components in that index.
We claim that the fact that a component is relevant or not relevant for the query can
be used in a typical RF algorithm regardless to its granularity. In the next section we
demonstrate two specific RF algorithms and show that at least for them the above
claim holds.

So in step 4 we just apply the existing RF algorithm on each of our indices sepa-
rately where we give it the R and NR components as if they came from that index.
The result is a refined query Q' (step 4.a) and then similar to the AQR case the new
query is used to generate a new result set Resi for each index. Results are then scaled
by the DocPivot as described in [5] and finally the different result sets are merged
(step 5) to a single result set of all component types.

To be able to measure the contribution of an RF iteration over the original query
we take in step 6 the seen top N components and put them back as the top N in the
final merged result. We then remove them from rest of Res' if they appear there again.
In the next section we demonstrate two example RF algorithms that we applied on our
XML component ranking using the algorithm from Fig. 2 above.

3 Example Usages of RF Algorithms for XML

In this section we describe two RF algorithms known from IR and we show how we
applied them on top of our XML component ranking algorithm.

3. Take the top N results from Res and given their assessments extract R (Relevants) and
the NR (Not relevants) from the top N.

4. For each index i

a. Apply the RF algorithm on (R, NR, Resi) with any other needed RF
specific params and refine Q to Q'

b. Compute the result set Res'i of running Q' on index i

c. Normalize scores in Res'i to [0,1] by normalizing to score(Q',Q')

d. Scale each score by its containing article score from Res'0

5. Merge all Res'i to a single result set Res' composed of all components sorted by their
score

6. Freeze the original top N from Res as the top N in Res'

306 Y. Mass and M. Mandelbrod

3.1 Rocchio for XML

The Rocchio algorithm [6] is the first RF algorithm that was proposed for the Vector
Space Model[8]. The idea in the Vector Space model is that both the documents and
the query are represented as vectors in the space generated by all tokens in the collec-
tion (assuming any two tokens are independent). The similarity of a document to a
query is then measured as some distance between two vectors, usually as the cosine of
the angle between the two.

The Rocchio formula tries to find the optimal query; one that maximises the differ-
ence between the average of the relevant documents and the average of the non-
relevant documents with respect to the query. The Rocchio equation is given in Fig. 3
below.

∑∑
==

−+=
21

1211
'

n

i
i

n

i
i NRnRnQQ γβα

Fig. 3. The Rocchio equation

Q is the initial query, Q' is the resulted refined query, {R1,…Rn1} are the set of
relevant documents and {NR1, …, NRn2} are the non-relevant documents. Since Q,
{Ri}, and {NRi} are all vectors then the above equation generates a new vector Q' that
is close to the average of the relevant documents and far from the average of the non-
relevant documents. The α, β, γ are tuning parameters that can be used to weight the
effect of the original query and the effect of the relevant and the non-relevant docu-
ments. The Rocchio algorithm gets an additional parameter k which is the number of
new query terms to add to the query.

Note that step 4.a in Fig. 2 above is composed in the Rocchio case from two sub
steps; In the first sub step new terms are added to the query and then the original
query terms are reweighed. We can therefore apply to the first sub step in the Rocchio
case two embedding variants into our XML component ranking –

1. Compute the new query terms only in the main index1 and use them for other
indices as well.

2. Compute a different set of new terms to add for each index separately.

In section 4 we report experiments we did with the Rocchio algorithm in our XML
component ranking algorithm.

3.2 LA Query Refinement for XML

In [5] we described a general method to modify our component ranking algorithm
with Automatic Query Refinement and described results for an example such AQR
algorithm based on [1]. The idea there is to add to the query Lexical Affinity (LA)
terms that best separate the relevant from the non relevant documents with respect to

1 We always assume the the first index contains the full documents.

 Relevance Feedback for XML Retrieval 307

a query Q. A Lexical Affinity is a pair of terms that appear close to each other in
some relevant documents such that exactly one of the terms appears in the query. We
summarize here the various parameters that are used in the LA Refinement procedure
while full details can be found in [5]. The procedure gets 4 parameters (M, N, K, α)
where M denotes the number of highly ranked documents to use for constructing a list
of candidate LAs. N (N >> M) is the number of highly rank documents to be used for
selecting the best K LAs (among the candidate LAs) which have the highest Informa-
tion Gain. Those LAs are then added to the query Q and their contribution to score(Q,
d) is calculated as described in details in [5]. Since they don't actually appear in the
query Q we take their TFQ to be the given parameter α.

This LA Refinement algorithm can be used with real user feedback and can be
plugged as a RF module in our component ranking algorithm as in Fig. 2 above. In
section 4 we describe experiments we did with that algorithm for XML retrieval.

4 Runs Description

We describe now the runs we submitted for the RF track - one for the Rocchio im-
plementation and one for the LA refinement.

4.1 Rocchio Runs

As discussed above the Rocchio algorithm is based on the Vector Space scoring
model. Since our component ranking algorithm is also based on that model then we
could easily plug the Rocchio algorithm into our component ranking as in Fig. 2
above. In our implementation a document d and the query Q are represented as vec-
tors as in Fig. 4 below.

)(*)()()),(),...,((

)(*)()()),(),...,((

1

1

iiQiQn

iididn

tidfttftwtwtwQ

tidfttftwtwtwd

QQ

dd

==
==

Fig. 4. Document and Query vectors

Where tfQ(t) is a function of the number of occurrences of t in Q, tfd(t) is a function
of the number of occurrences of t in d and idf(t) is a function of the inverse document
frequency of t in the index (exact functions details are described in [5]).

Given α, β, γ we define the Gain of a token t as

∑∑
==

−=
21

1211
)()()(

n

i
NR

n

i
R twntwntG

ii

γβ

Fig. 5. Gain of a token

308 Y. Mass and M. Mandelbrod

where)(tw
iR are the weights of t in each relevant component Ri and)(tw

iNR are the

weights of t in each non-relevant component NRi as defined in Fig. 4. It is easy to see
that tokens with the highest Gain are the ones that maximize the optimal query Q' as
defined by the Rocchio equation in Fig. 3 above.

So in the RF step (4.a) in Fig. 2 above we compute G(t) for each new token t in the
top N components that is not already in Q. We then select the k tokens with the maxi-
mal Gain as the terms to be added to the query Q.

We run a single Rocchio iteration where we compute the new tokens to add only on the main
index (first variant from sec 3.1 above). We tried with N = 20, α = 1, β = {0.1, …, 0.9}, γ = {0.1,
…, 0.9} and k = 3 on our base CO algorithm. The Mean Average Precision (MAP) values we got
using the inex_eval aggregate metric for 1002 results are summarized in Fig. 6.

Rocchio for XML with real user feedback
 (N=20, k=3, Alpha=1)

0.08

0.085

0.09

0.095

0.1

0.105

ba
se 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Gamma

M
A

P

beta = 0.1

beta = 0.2

beta = 0.3

beta = 0.4

beta = 0.5

beta = 0.6

beta =0.7

beta = 0.8

beta = 0.9

Fig. 6. Rocchio for XML

The Figure shows graphs for the different values. We can see that the value for γ =
0.1 gives best results for all γ values. The best MAP was achieved at γ = 0.8 which is
what we sent for the RF track.

We see that we get very minor improvement (~5%) over the base run. A possible
reason can be the Freezing method of the top N results which leave many possible
Non-relevant components in the top N so the effect of RF is only for components at
rank N+1 and lower.

2 Note that the results here are for a run with 100 results so the MAP is lower then the 0.134

value we got in our official INEX submission for 1500 results. Note also that the MAP values
in this graph are lower than those achieved in Fig. 7 for LA Refinement as those in Fig. 7
were calculated for 1500 results.

 Relevance Feedback for XML Retrieval 309

4.2 LA Refinement Runs

Fig. 7 summarizes our experiments with the LA procedure parameters (M, N, K, α).
In all experiments we fixed M = 20 and we selected out of the top 20 components
from our base run those that were assessed as relevant (highly exhaustive-highly spe-
cific). We then used those components for extracting the set of candidate LAs to add
to the query. The figure below shows are results for fixing K = 5 namely we select the
best 5 LAs to be added to the query. The figure shows 4 graphs for different values of
N (100, 200, 300, 400) and each graph shows the MAP achieved for α values at the
range 0.4-1.3.

LA Refinement for XML with real user feedback
 (with M=20, nTerms=5)

0.133

0.135

0.137

0.139

0.141

Bas
e

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

Alpha

M
A

P

N=100

N=200

N=300

N=400

Fig. 7. LA runs with fixed M=20, K=5 and varying N, α

We can see that the base run with no RF got MAP=0.134 and actually all graphs
achieved improvement over that base run. The best results were achieved for N=200
(N is the number of documents to use for selecting the best LAs) but it was not sig-
nificantly different from other parameter combinations we have tried.

5 Discussion

We have presented an XML retrieval system and showed how to run RF algorithms
on top of it to achieve relevance feedback for XML. We then demonstrated two ex-
ample RF algorithms and reported their usage for the XML RF track. We got rela-
tively small improvements in the Mean Average Precision (MAP) with those algo-
rithms and we still need to explore if it's an algorithm limitations or a possible prob-
lem in the metrics used to calculate the MAP.

310 Y. Mass and M. Mandelbrod

References

1. Carmel D., Farchi E., Petruschka Y., Soffer A.: Automatic Query Refinement using Lexical
Affinities with Maximal Information Gain. Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 2002.

2. Carmel D., Maarek Y., Mandelbrod M., Mass Y., Soffer A.: Searching XML Documents
via XML Fragments, SIGIR 2003, Toronto, Canada, Aug. 2003

3. INEX, Initiative for the Evaluation of XML Retrieval, http://inex.is.informatik.uni-
duisburg.de

4. Mass Y., Mandelbrod M.: Retrieving the most relevant XML Component, Proceedings of
the Second Workshop of the Initiative for The Evaluation of XML Retrieval (INEX), 15-17
December 2003, Schloss Dagstuhl, Germany, pg 53-58

5. Mass Y., Mandelbrod M. : Component Ranking and Automatic Query Refinement for XML
retrieval, to appear in the Proceedings of the Third Workshop of the Initiative for The
Evaluation of XML Retrieval (INEX), 6-8 December 2004, Schloss Dagstuhl, Germany

6. Rocchio J. J. : Relevance Feedback in information retrieval The SMART retrieval system –
experiements in automatic document processing, (G. Salton ed.) Chapter 14 pg 313-323,
1971.

7. Ruthven I., Lalmas M. : A survey on the use of relevance feedback for information access
systems, Knowledge Engineering Review, 18(1):2003.

8. Salton G. : Automatic Text Processing – The Transformation, Analysis and Retrieval of In-
formation by Computer, Addison Wesley Publishing Company, Reading, MA, 1989.

	Introduction
	Relevance Feedback for XML Retrieval
	Example Usages of RF Algorithms for XML
	Rocchio for XML
	LA Query Refinement for XML

	Runs Description
	Rocchio Runs
	LA Refinement Runs

	Discussion
	References

