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Abstract. This paper describes the current state of our system for structured re-
trieval.  The system itself is based on an extension of the vector space model 
initially proposed by Fox [5]. The basic functions are performed using the 
Smart experimental retrieval system [11].    The major advance achieved this 
year is the inclusion of a flexible capability, which allows the system to retrieve 
at a desired level of granularity (i.e., at the element level).  The quality of the 
resultant statistics is largely dependent on issues (in particular, ranking) which 
have yet to be resolved. 

1   Introduction 

Our original goal when we began our work with INEX in 2002 was to assess the util-
ity of Salton’s vector space model [12] in its extended form for XML retrieval.  Fa-
miliarity with Smart [11] and faith in its capabilities led us to believe that it might 
prove useful in this environment. Early results [2, 3] led us to believe that such a sys-
tem could be utilized for XML retrieval if particular problems (e.g., flexible retrieval, 
ranking issues) could be solved. During 2002, much effort was spent on the transla-
tion of documents and topics from XML to internal Smart format and then back again 
into INEX reporting format.  In 2003, we produced an operational system, but it did 
not include a flexible component (that is, it could only retrieve at the document level).  
During 2004, query formulation (for both CO and CAS queries) was completely auto-
mated.  CAS queries received special attention to insure that all conditions of the 
query were met [1].  Our major improvement was the design and implementation of a 
flexible capability which allows the system to retrieve elements at various degrees of 
granularity [10].  Investigations with respect to relevance feedback in a structured en-
vironment were initiated. 

We now have a system which, we believe, has the potential to function well in the 
XML environment.  Significant issues, which stand to impact results markedly, remain 
open to investigation.  These include, in particular, ranking and length normalization. 

2   Background 

One of the basic models in information retrieval is the vector space model, wherein 
documents and queries are represented as weighted term vectors.  The weight as-
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signed to a term is indicative of the contribution of that term to the meaning of the 
document. Very commonly, tf-idf weights [13] or some variation thereof [14] are 
used.  The similarity between vectors (e.g., document and query) is represented by the 
mathematical similarity of the corresponding term vectors. 

In 1983, Fox [5] proposed an extension of the vector space model—the so-called 
extended vector space model—to allow for the incorporation of objective identifiers 
with content identifiers in the representation of a document.  An extended vector can 
include different classes of information about a document, such as author name, date 
of publication, etc., along with content terms.   In this model, a document vector con-
sists of a set of subvectors, where each subvector represents a different class of infor-
mation.  Our current representation of an XML document/query consists of 18 sub-
vectors (abs, ack,  article_au_fnm, article_au_snm, atl, au_aff, bdy, bibl_atl, 
bibl_au_fnm, bibl_au_snm,, bibl_ti, ed_aff, ed_intro, kwd,  pub_yr, reviewer_name, 
ti, vt) as defined in INEX guidelines. These subvectors represent the properties of the 
document or article. Of the 18, eight are subjective, that is, contain content-bearing 
terms:  abs, ack, atl, bdy, bibl_atl, bibl_ti, ed_intro, kwd (abstract, acknowledge-
ments, article title, body, title of article cited in the bibliography, title of publication 
containing this article [i.e., journal title], editorial introduction, and keywords, respec-
tively).   Similarity between extended vectors in this case is calculated as a linear 
combination of the similarities of the corresponding subjective subvectors.  (The ob-
jective subvectors serve here only as filters on the result set returned by CAS queries.  
That is, when a ranked set of elements is retrieved in response to a query, the objec-
tive subvectors are used as filters to guarantee that only elements meeting the speci-
fied criteria are returned to the user.) 

Use of the extended vector model for document retrieval normally raises at least 
two issues:  the construction of the extended search request [4, 6] and the selection of 
the coefficients for combining subvector similarities.  For XML retrieval, of course, 
the query is posed in a form that is easily translated into an extended vector.  The sec-
ond problem—the weighting of the subvectors themselves—requires some experi-
mentation. Experiments performed with the 2003 INEX topic set identified the fol-
lowing subjective subvectors as being particularly useful for retrieval: abs, atl, bdy, 
bibl_atl, kwd.  We found our best results were obtained with subvector weights of 1, 
1, 2, 2, and 1, respectively. (The three remaining subjective subvectors received 0 
weights.)  More investigation is required in this area with respect to the 2004 topics. 

Another issue of interest here is the weighting of terms within subjective subvec-
tors. Experiments indicated that the best results were achieved for the 2003 topics 
with the respect to both article and paragraph indexings when Lnu.ltu  term weighting 
[15] was used.  Our 2004 results are based on Lnu.ltu term weighting, as defined be-
low: 

(1 + log(tf)) / (1 + log(average tf)) 
——————————————————— 

(1 - slope) * pivot + slope * (# unique terms) 

where tf represents term frequency, slope is an empirically determined constant, and 
pivot is the average number of unique terms per document, calculated across the en-
tire collection. 
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3   System Description 

Our system handles the processing of XML text as follows: 

3.1   Parsing 

The documents are parsed using a simple XML parser available on the web.   

3.2   Translation to Extended Vector Format 

The documents and queries are translated into Smart format and indexed by Smart as 
extended vectors.   We selected the paragraph as our basic indexing unit in the early 
stages.   Thus a typical vector  in this system (based on a paragraph indexing) consists 
of a set of subjective and objective subvectors with a paragraph in the bdy subvector.  
(Other indexing units were later added to include section titles, tables, figure captions, 
abstracts, and lists.)   Lnu-ltu term weighting is applied to all subjective subvectors. 

3.3   Initial Retrieval 

Retrieval takes place by running the queries against the indexed collection using 
Smart.  The queries used in the initial retrieval are simple (rather than extended) vec-
tor queries.  That is, each query consists of search terms distributed only in the bdy 
subvector.  The result is a list of elements (paragraphs) ordered by decreasing similar-
ity to the query.  Consider all the elements in this list with a non-zero correlation with 
the query.  Each such element represents a terminal node (e.g., paragraph) in the body 
of a document with some relationship to the query.   

3.4   Flexible Retrieval 

A basic requirement of INEX is that the retrieval method must return to the user com-
ponents of documents or elements (i.e., abstract, paragraphs, sub-sections, sections, 
bodies, articles, figure titles, section titles, and introductory paragraphs) rather than 
just the document itself.  The object is to return the most relevant element(s) in re-
sponse to a query.  Thus a good flexible system should return a mixture of document 
components (elements) to the user.  These elements should be returned in rank order.  
The method to determine rank should incorporate both exhaustivity (relevance) and 
specificity (coverage). 

Our flexible retrieval module (which we call Flex), is designed as follows.  It takes 
as input a list of elements (e.g., paragraphs), rank-ordered by similarity to the query as 
determined by Smart in the initial retrieval stage.  Each such element represents a leaf 
of a tree; each tree represents an article in the document collection.  (The query at this 
stage, used to determine correlation with a paragraph, is a simple subvector query; 
that is, it consists only of search terms distributed in the bdy subvector.) 

Consider Figure 1, which represents the tree structure of a typical XML article.  
The root of the tree is the article itself, whereas the leaf nodes are the paragraphs.  
Flexible retrieval should return relevant document components (e.g., <sec>, <ss1>, 
<ss2>, <p>, <bdy>, <article>) as shown in Figure 1.  In order to determine which 
components or elements of a tree to return, the system must first build the tree  
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Fig. 1. Tree Structure of  a Typical XML Document 

structure and then populate the tree by assigning a value to each non-terminal node in 
the tree.  (The value in this case represents a function of exhaustivity and specificity.) 
     Flex takes a bottom-up approach.  All leaf elements having non-zero correlations 
with the query have already been assigned similarity values by Smart. Consider the 
set of all such leaf elements  which belong to the same tree.  For a particular query, 
trees are constructed for all articles with leaves in this set.  To construct the trees (and 
deal with the issue of specificity [coverage]), at each level of the tree, the number of 
siblings of a node must be known.  The process is straight-forward.  Suppose for ex-
ample in Figure 1 that p1, p2, and p7 were retrieved as leaf elements of the same tree.  
Flex would then build the tree represented in Figure 2.  Any node on a path between a 
retrieved terminal node and the root node (article) is a valid candidate (element) for 
retrieval. 

Building the tree is simple; populating it is not.  We have weights (similarity val-
ues) associated with all terminal nodes.  We consider each such value representative 
of that node’s exhaustivity (e-value) with respect to the query.   A question that arises 
at this point is how to produce a corresponding value representing specificity (s-
value) for this node.  Our current approach assigns an s-value equal to the e-value for 
that node.  Since all the elements in question here (i.e., the terminal nodes) are rela-
tively small in terms of the number of word types contained therein, this appears to be 
a reasonable initial approach.  

Now that all the terminal nodes of the document tree have associated e-values and 
s-values, populating the tree (i.e., assigning e- and s-values to the rest of the nodes) 
begins.  For every leaf node, we find its parent and determine the e- and s-values for 
that parent.  The values of a parent are dependent on those of its children (i.e., rele-
vance is propagated up the tree, whereas coverage may diminish as a function of the 
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Fig. 2. Tree of Relevant Elements 

total number of children [relevant and non-relevant] of a node).   The process contin-
ues until all the nodes on a path from a leaf to the root (the article node) have been as-
signed e- and s-values.  . 

After all trees have been populated (and we have e- and s-values associated with 
each node of each tree), one major problem remains.  How can we produce a rank-
ordered list of elements (document components) from these populated trees?  We 
need a method which ranks the document components on the basis of e- and s-value. 
We considered a number of approaches. Our current method uses a simple function of 
e- and s-value to produce a single value for ranking.  (The description given here pre-
sents the logical view of Flex; see  [10] for a detailed view of Flex implementation.) 

3.5   Rank Adjustment 

Once a rank-ordered list of elements is produced by Flex, we can undertake the final 
step in the retrieval process.  Initial retrieval produces a set of terminal node elements 
(paragraphs) having some relationship with the query.  Flex produces the expanded set 
of elements (subsections, sections bodies) associated with those terminal nodes.  Taken 
together, this is the set of potentially relevant elements associated with the query. 

Up to this point, only the bdy subvector has been utilized in the retrieval process. 
We can now use the remaining subjective subvectors to adjust the ranking of the ele-
ment set.  By correlating the extended vector representation of the query with the ex-
tended vector representation of each element in the returned set, another and poten-
tially more accurate ranking is produced.  This step, rank adjustment, is not yet 
implemented in our current system. 

Once a rank-ordered list is produced, the elements are reported for INEX  
evaluation. 
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4   Experiments 

In the following sections, we describe the experiments performed with respect to the 
processing of the CO and CAS topics, respectively.  In all cases, we use only the topic 
title as search words in query construction.  Term weighting is Lnu.ltu in all cases.  
All indexing is done at the paragraph (basic indexing unit) level unless otherwise 
specified.  No rank adjustment is performed.  

4.1   Using CO Topics 

Our initial experiments using flexible retrieval were performed using the 2003 topic set.  
We used several simple methods for calculating e- and s-values and propagating these 
values up the tree.  Our 2004 results are based on one of those methods, wherein the e-
value of a node is calculated as the sum of the e-values of its children whereas its s-
value is the average of the s-values of its children.  Final ranking of a node is based on 
the product of its e-value and s-value.  (The calculation of e- and s-values, their propa-
gation, and the ranking of results will be a focus of attention in the coming year.) 

Results indicated that flexible retrieval produced an improvement over document 
retrieval for the 2003 topic set.  The approach was subsequently applied to the 2004 
topic set as seen in Table 1.  Results achieved by flexible retrieval (labeled Flex) are 
compared with the results retrieved by the same Lnu.ltu weighted query set against 
various Lnu.ltu weighted indexings of the documents (at the article, section, subsec-
tion, and paragraph levels, respectively).  These results improve  to 0.06 (average pre-
cision-recall) when the input to Flex is filtered  so that trees are built only when a ter-
minal node (paragraph) occurs in one of the top 500 documents retrieved by the query 
in an article-based indexing.  The last entry in Table 1 utilizes an all-element index 
(an indexing of document elements at all levels of granularity—the union of the 
article, section, subsection, and paragraph indices).  See Figure 3 for more detail.   

Table 1. CO Processing (2004 Topic Set) 

Indexing Avg Recall-Precision  Generalized Recall 

Article 0.02 4.04 

Sec 0.02 28.89 

Subsec 0.03 26.57 

Para 0.03 32.94 

Flex (on para) 0.05 34.94 

All Elem 0.06 38.31 

 

It is worth noting that filtering the input to Flex, which with respect to a specific 
query reduces the number of trees built and ensures that each such tree represents a 
document in the top (in this case, 500) documents retrieved by that query, produces a 
average recall-precision of 0.06—the same value produced by a search of the all-
element index. 
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4.2   Using CAS Topics 

We process CAS topics in much the same fashion as CO topics, with some important 
exceptions.  During pre-processing of the CAS queries, the subjective and objective 
portions of the query and the element to be returned (e.g., abstract, section, paragraph) 
are identified.  

Depending on its syntax, a CAS query can be divided into parts, which can be di-
vided into subparts depending on the number of search fields.  Further subdivision, 
depending on the presence of plus or minus signs (representing terms that should or 
should not be present) preceding a search term, is also possible.  CAS preprocessing 
splits the query into the required number of parts, each of which is processed as a 
separate Smart query.  For example, suppose the query specifies that a search term is 
to be searched for in field 1.  If the field to be searched is an objective subvector, the 
search term is distributed in that subvector.   If the search field specifies a specific 
subjective subvector, the search term is distributed in that subvector, otherwise the 
search takes place in the paragraph subvector.  The result in this last case is a set of 
elements  (terminal nodes) returned by the Smart search which is used as input to 
Flex. Flex produces a ranked set of elements (terminal, intermediate, and/or root 
nodes) as the final output of this small search.  After all subsearches associated with 
the query are complete, the final result set is produced (i.e., the original query is re-
solved).  The element specified for return in the original query is then returned from 
each element in the result set.  See [1] for more details.  

CAS processing using flexible retrieval based on a paragraph indexing was applied 
using the 2004 CAS topic set.  The first entry in Table 2 reports the result.  In this ex-
periment, the structural constraints specified in the query are strictly maintained (i.e., 
only the element specified by the query is returned).  That is, Flex is run on the para 
graph indexing, objective constraint(s) applied, and the element specified is returned 
from that result set.  The second entry in this table shows the result when no structural 
constraints are maintained (that is, all relevant elements, regardless of type, are returned 
from the result set).  The next two entries duplicate experiments 1 and 2, but instead  
of running Flex on the paragraph index retrieve on the all element index. The last  
 

Table 2. CAS Processing (2004 Topic Set) 

Indexing Avg Recall-Precision      Generalized Recall 

Flex (on para) constraints  
maintained 

0.04 27.99 

Flex (on para) constraints    
ignored 

0.04 9.93 

All Elem constraints  
maintained 

0.02 18.33 

All Elem constraints ignored 0.02 13.40 

All Elem CAS as CO 0.05 36.30 

-

-
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experiment reports on results obtained by relaxing the conditions specified in the query.  
It treats a CAS query essentially as if it were a CO query.  Instead of breaking the query 
into subqueries and processing each part separately, it combines the search terms 
and searches the all element index with the combined terms. See Figure 4 for more 
detail.  

Average of all RP measures RP Exhaustivity oriented with s=3,2,1 

RP with generalized quantization RP Specificity  oriented with e=3,2,1 

RP with strict quantization  

 

Fig. 3. Comparison of  CO Results 
 
 

-
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Average of all RP measures RP Exhaustivity oriented with s=3,2,1 

RP with generalized quantization RP Specificity oriented with e=3,2,1 

RP with strict quantization  

 

Fig. 4. Comparison of  VCAS Results 

4.3   Results 

During 2004, our work centered on two important aspects of the INEX ad hoc task:  
retrieving at the element level (i.e., flexible retrieval) and insuring that the result re-
turned from a CAS search met the search requirements (thus producing improvements 
under SCAS but not necessarily under VCAS).  We note that our 2004 results are not 
competitive (as opposed to 2003 when we were only able to retrieve at the article 
level).  This year, with flexible retrieval based on a paragraph indexing, our current 
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ranking scheme favors the return of smaller elements rather than larger ones.  Yet as 
Kamps, et.al. [8] clearly show, in 2003 the probability of relevance increased with 
element length.  Our method of propagating values and ranking elements needs  to 
take this into consideration.  It appears that using an all element index improves re-
sults.  However, the very large index required, the redundancy within it, and the inef-
ficiencies of storage and search time which result leave us to conclude that flexible re-
trieval, which produces a result dynamically based on a single index, is preferred if it 
can produce even a comparable result. 

4.4   Relevance Feedback in INEX 

The importance and value of relevance feedback in conventional information retrieval 
have long been recognized.  Incorporating relevance feedback techniques within the 
domain of structured retrieval is an interesting challenge. 

Working within the constraints of our system, the first question which arises is how 
to translate the exhaustivity and specificity values associated with each  INEX ele-
ment into an appropriate measure of relevance in our system.  Conventional retrieval 
views relevance assessment as binary.  In INEX, we have a range of values for ex-
haustivity and a corresponding set of values for specificity.  There are many possibili-
ties to consider when mapping these values to relevance. 

As an initial approach, we decided simply to recognize as relevant those para-
graphs with e-values of 3.  In other words, we recognize as relevant to the query all 
elements that are highly exhaustive (disregarding other combinations).  We were in-
terested in determining the feasibility of this approach, which depends strongly on 
having enough of these elements available in the top ranks of retrieved elements.  We 
completed a run using Rocchio’s algorithm (α = β= 1, γ = 0.5) on a paragraph index 
with the relevance assessments of the top 20 paragraphs used when constructing the 
feedback query. The query set consisted of the CO queries in their simple form with 
search terms distributed in the bdy subvector only.  The result of the feedback itera-
tion is a set of paragraphs rank-ordered by correlation with the query.  The feedback 
iteration produces an average recall-precision of 0.03 compared to 0.02 in the base 
case.  Flex is then run on this set to produce the associated elements, yielding an ag-
gregate score of 0.04.  We look forward to producing more experiments and results 
next year. 

5   Conclusions 

Our system, as a result of work done in the past year, is now  returning results at the 
element level, i.e., retrieving at the desired level of granularity.  The incorporation of 
a flexible retrieval facility is required before meaningful INEX experiments can take 
place.  However, there are a number of problems still to be solved with this system, 
including in particular the propagation of e- and s-values upwards through the docu-
ment hierarchy and the ranking of elements based on those values.  Various ap-
proaches have been suggested [7, 9].  Much of our work in the coming year will focus 
on this issue.  A good working result is important, since regardless of how well it does 
everything else, in the end all results depend on the system’s ability  to retrieve good 

-
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elements.  We believe that the initial retrieval through Smart produces valid terminal 
nodes with meaningful e-values.  How well we build on this foundation will deter-
mine the final utility of the system. 

A second area of interest is the extension of relevance feedback techniques to 
structured retrieval.  There are many interesting questions to be addressed in this area 
in the coming year. 
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