
Hierarchical Language Models for XML
Component Retrieval

Paul Ogilvie and Jamie Callan

Language Technologies Institute,
School of Computer Science,
Carnegie Mellon University

{pto, callan}@lti.cs.cmu.edu

Abstract. Experiments using hierarchical language models for XML
component retrieval are presented in this paper. The role of context
is investigated through incorporation of the parent’s model. We find
that context can improve the effectiveness of finding relevant compo-
nents slightly. Additionally, biasing the results toward long components
through the use of component priors improves exhaustivity but harms
specificity, so care must be taken to find an appropriate trade-off.

1 Introduction

Language modeling approaches have been applied successfully to retrieval of
XML components in previous INEX evaluations [1][2][3][4][5]. In [4] and [5], the
authors presented a hierarchical language model for retrieval of XML compo-
nents. These works proposed that each document component be modeled by a
language model estimated using evidence in the node and its children nodes. The
work here extends the model to include the parent node’s model in estimation,
which allows for some context and is called shrinkage.

New experiments using this model are presented that examine the role of shrink-
age introduced in this work and the use of the prior probabilities popularized by
[3] for the evaluation of Content-Only queries. Our experiments show that shrink-
age provides a modest boost in performance. Prior probabilities can have a strong
effect in biasing results, particularly in improving exhaustivity (finding all rele-
vant text) while at the same time harming specificity (finding the best component
within the hierarchy). A prior based on the square of the length of text contained
in a component and its children was found to be most effective.

Section 2 presents the model of documents and Section 3 describes how doc-
ument components are ranked. Experimental methodology and results are pre-
sented in Sections 4 and 5. Related work is discussed in Section 6 and Section 7
concludes the paper.

2 Modeling Documents with Hierarchical Structure

Hierarchically structured documents may be represented as a tree, where nodes
in the tree correspond to components of the document. From the content of the

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 224–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Language Models for XML Component Retrieval 225

document, a generative distribution may be estimated for each node in the tree.
The distribution at a node may be estimated using evidence from the text of the
node, the children’s distributions, or the parent’s distribution, and so on.

Representing hierarchically structured documents in this manner is simple
and flexible. In this approach we combine the evidence from the various compo-
nents in the document using the document structure as guidance. This model
uses linear interpolation to combine the evidence from the component, its chil-
dren components, and its parent component. The model below is similar to
previous work by the authors [4][5], but is extended to allow for the inclusion of
a component’s context within the document.

More formally, the hierarchical structure of the document is represented by
a tree, each vertex v ∈ V in the tree corresponding to a document component.
Directed edges in the tree are represented as a list of vertex pairs (vi, vj) ∈ E
when vi is the parent of vj . Parent, children and descendants functions may be
defined as:

parent (vj) = vi : (vi, vj) ∈ E

children (vi) = {vj : (vi, vj) ∈ E}

descendants (vi) =

⎧
⎨

⎩

vj : vj ∈ children (vi) or
∃vk ∈ children (vi)
s.t. vj ∈ descendants (vk)

⎫
⎬

⎭

As stated above, the generative model for a component may be estimated
using a linear interpolation of the model estimated directly from the component,
its children’s models, and its parent model. Estimation of the generative models
for the components of a document is a three step process. First, a smoothed
generative model is θvi

estimated from the observations of the component in the
document vi that does not include evidence of children components:

P (w |θvi
) =

(
1 − λu

vi

)
P (w |MLE (vi))

+λu
vi

P
(
w

∣
∣θtype(vi)

) (1)

This model estimates a distribution directly from observed text within the doc-
ument component. The θtype(vi) model is a collection level background model
for smoothing these estimates. The background model is sometimes referred to
as a “universal” model, hence the u in λu. The type function may be used to
specify document component specific models, as the language in titles may be
different from other text, or it may simply return one language model for all
components, which would provide larger amounts of text for the estimation of
the corpus model.

The next step is to estimate the intermediate θ′vi
model, from the bottom up

to the top of the tree:

226 P. Ogilvie and J. Callan

P
(
w

∣
∣θ′vi

)
= λc′

vi
P (w |θvi

)

+
∑

vj∈children(vi)
λc

vj
P

(
w

∣
∣
∣θ′vj

)
,

1 = λc′
vi

+
∑

vj∈children(vi)
λc

vj

(2)

This model incorporates the evidence from the children nodes. If the λc param-
eters are set proportional to the length of the text in the node, as in

λc′
vi

= |vi|
|vi|+

∑
vk∈descendants(vi)

|vk|

λc
vj

=
|vj |+

∑
vk∈descendants(vj)

|vk|
|vi|+

∑
vk∈descendants(vi)

|vk|

(3)

where |vi| is the length in tokens of the text in node vi not including tokens in its
children, θ′vi

is equivalent to a flat text model estimated from the text in node vi

interpolated with a background model. However, this choice of parameters is not
required, and the weight placed on a child node may be dependent on the node’s
type. For example, the text in title nodes may be more representative than the
body of a document, so a higher weight on the title model may improve retrieval
performance.

After the estimation of θ′vi
, the θ′′vi

models used for ranking the components
are estimated from the root of the tree down:

P
(
w

∣
∣θ′′vi

)
=

(
1 − λp

parent(vi)

)
P

(
w

∣
∣θ′vi

)

+λp
parent(vi)

P
(
w

∣
∣
∣θ′′parent(vi)

) (4)

Incorporating the parent model in this way allows the context of the component
within the document to influence the language model. Incorporating a parent’s
language model in this way is referred to as shrinkage. In [6], McCallum and
Nigam introduced shrinkage to information retrieval in the context of text clas-
sification. Classes were modeled hiearchically in this work. Class language models
were estimated from the text in the documents assigned to the class, and all an-
cestor language models in the class hierarchy. The hierarchical model for classes
used in [6] is very similar to the model of documents presented in this proposal.
The difference in model estimation in this work is the application of shrinkage
to document models, rather than class models.

The choice of linear interpolation parameters λ may depend upon the task
and corpus. Ideally, the choice of these parameters would be set to maximize
some measure of retrieval performance through automated learning.

A set of rankable items, document components that may be returned by the
system, R must also be defined for the document. For the hierarchical model
presented here, R may be any subset of V.

Hierarchical Language Models for XML Component Retrieval 227

2.1 Example

The estimation process described above may be clarified through describing the
process for an example document. The example document is a well known chil-
dren’s poem encoded in XML:

<poem id=‘p1’>
<title> Little Jack Horner </title>
<body>

Little Jack Horner
Sat in the corner,
Eating of Christmas pie;
He put in his thumb
And pulled out a plumb,
And cried, <quote> What a

good boy am I! </quote>
</body>

</poem>

There are four components of this document, corresponding to the poem,
title, body, and quote tags. Let us now assign labels to these components v1

to the poem, v2 to the title component, v3 to the body component, and v4 to
the quote. The structure of the document may be drawn, as in Figure 1 or be
described as a set of vertices and edges:

G = (V, E)
V = {v1, v2, v3, v4}
E = {(v1, v2) , (v1, v3) , (v3, v4)}

v2title

v4 quote

v1 poem

3v body

Fig. 1. The tree representing document structure for “Little Jack Horner”

Not all components of the document may be rankable items. A set of rankable
items must be defined. In our example, perhaps only the poem and the body of
the poem are considered rankable items: R = {v1, v3}.

The estimation process is illustrated in Figure 2. First, smoothed θvi
models

are estimated for each vertex using the text occurring in the document compo-
nent corresponding to the vertex. Note that “What a good boy am I!” is not

228 P. Ogilvie and J. Callan

θ

θ θ

θ

What a good
boy am I!

Little Jack Horner
Sat in the corner,
Eating of Christmas pie;
He put in his thumb
And pulled out a plumb
And cried,

θ

θ θ

θ

θ

θ θ

θ

θ

θ θ

θ

θ

θ θ

θ

1

3

4

2

v

v v

v

’ ’

’

’

1

3

4

2

v

v v

v

1

3

4

2

v

v v

v

’’

’’

’’

’’

’ ’

’

’

1

3

4

2

v

v v

v

1

3

4

2

v

v v

v

Little Jack
Horner

2) Smooth Up Tree 3) Smooth Down Tree1) Direct Estimates &
 Smoothing with
 Background Model

Fig. 2. The estimation process for “Little Jack Horner”

used for the estimation of θv3 , it is only used in the estimation for the model of
v3’s child node v4:

P (w |θvi
) =

(
1 − λu

vi

)
P (w |MLE (vi))

+λu
vi

P
(
w

∣
∣θtype(vi)

) (5)

Next, the θ′vi
models are estimated by combination of the θvi

model and the
θ′ models of vi’s children. For example, θ′v3

is an interpolation of θv3 and θ′v4
.

Similarly, θ′v1
is an interpolation of θv1 , θ′v2

, and θ′v3
:

P
(
w

∣
∣θ′v1

)
= λc′

v1
P (w |θv1) + λc

v2
P

(
w

∣
∣θ′v2

)

+λc
v3

P
(
w

∣
∣θ′v3

)

P
(
w

∣
∣θ′v2

)
= P (w |θv2)

P
(
w

∣
∣θ′v3

)
= λc′

v3
P (w |θv3) + λc

v4
P

(
w

∣
∣θ′v4

)

P
(
w

∣
∣θ′v4

)
= P (w |θv4)

(6)

Hierarchical Language Models for XML Component Retrieval 229

Finally, the θ′′vi
models used in ranking are estimated by interpolating the θ′vi

model with the θ′′parent(vi)
model. In the example, θ′′v1

is simply taken as θ′v1
as

v1 has no parent. The other vertices do have parents, and θ′′v3
is an interpolation

of θ′v3
and θ′′v1

:

P
(
w

∣
∣θ′′v1

)
= P

(
w

∣
∣θ′v1

)

P
(
w

∣
∣θ′′v3

)
=

(
1 − λp

v1

)
P

(
w

∣
∣θ′v3

)
+ λp

v1
P

(
w

∣
∣θ′′v1

) (7)

We can expand the equations for these rankable items to use only θ models as
follows:

P
(
w

∣
∣θ′′v1

)
= λc′

v1
P (w |θv1) + λc

v2
P (w |θv2)

+λc
v3

(
λc′

v3
P (w |θv3) + λc

v4
P (w |θv4)

)

P
(
w

∣
∣θ′′v3

)
=

(
1 − λp

v1

) (
λc′

v3
P (w |θv3) + λc

v4
P (w |θv4)

)

+λp
v1

P
(
w

∣
∣θ′′v1

)

=
(
1 − λp

v1
+ λp

v1
λc

v3

)

(
λc′

v3
P (w |θv3) + λc

v4
P (w |θv4)

)

+λp
v1

(
λc′

v1
P (w |θv1) + λc

v2
P (w |θv2)

)

(8)

3 Ranking Items for Queries

This section describes how rankable items are ordered for queries. Ordering of
items is based on the query-likelihood model, where items are ranked by the
probability of generating the query. It is also desirable to provide support for
structured queries as well, which will be discussed.

3.1 Queries

Rankable items across documents for flat text queries may simply be ordered by
P

(
Q

∣
∣θ′′vi

)
, where

P
(
Q

∣
∣θ′′vi

)
=

∏

w∈Q

P
(
w

∣
∣θ′′vi

)tf(w,Q) (9)

This is the natural adaptation of query-likelihood [7][8] [9][10][11] to the model.
There are many cases where it is desirable to place constraints on where the

query terms appear in the document structure of a representation. This can be
done by constraining which θvi

distribution generates the terms. For example,
consider the NEXI [12] query

230 P. Ogilvie and J. Callan

//poem[about(.//title, Horner)]

which requests poem components where the title component is about ‘Horner’.
The NEXI query language was developed as a simple adaptation of XPath to
information retrieval. All example queries in this proposal will be expressed in
NEXI. For our example document with a single representation, instead of mea-
suring P

(
‘Horner’

∣
∣θ′′v1

)
, corresponding to the probability the poem component

generated the query term ‘Horner’, P
(
‘Horner’

∣
∣θ′′v2

)
is used. P

(
‘Horner’

∣
∣θ′′v2

)

measures the probability that the title component generated ‘Horner’.
There are cases where a structural constraint on the query may be applicable

to multiple components. Consider the query:

//document[about(.//paragraph, plum)]

Most documents contain many paragraphs. Which distribution is chosen to gen-
erate ‘plum’? Many reasonable options are applicable. One approach may cre-
ate a new distribution estimated as a combination of all of the θ′′vi

distributions
corresponding to paragraph components. Another approach may take the θ′′vi

distribution corresponding to paragraph nodes that maximizes the probabity of
generating ‘plum’, which is the approach taken here.

Constraining the generating distribution in this manner is a strict interpreta-
tion of the constraints expressed in the query (as in previous SCAS tasks). The
ranking items as described above requires that only poems be returned as results
and that they contain titles. Note that through the use of smoothing, ‘Horner’
is not required to be present in the title. However, if the structural constraints
are intended as hints to relevance (as in the VCAS task), then this approach
can only return a subset of relevant items. Loose interpretation of structural
constraints is something that remains a challenge and will be investigated as a
part of future work.

3.2 Priors

Query independent information about relevant documents is not uncommon and
may be useful for ranking purposes. For example, there may be a tendency for
longer documents to be more likely to be relevant than short documents. This
information may be leveraged through the use of priors, which are a belief inde-
pendent of the query that the document may be relevant. They are incorporated
to ranking within the generative framework using Bayes rule:

P (vi is Rel |Q, g (vi) = a)

∝ P (Q |vi is Rel, g (vi) = a)

P (vi is Rel |g (vi) = a)

≈ P
(
Q

∣
∣θ′′vi

)
P (vi is Rel |g (vi) = a)

(10)

Hierarchical Language Models for XML Component Retrieval 231

where g (vi) is a function of the rankable item such as the length of vi and
P

(
Q

∣
∣θ′′vi

)
is assumed representative of P (Q |vi is Rel, g (vi) = a). Theoretically,

the prior probability P (vi is Rel |g (vi) = a) can be estimated from training
data. However, in practice the prior is not a true prior probability estimate
as it is often used to correct a bias in the ranking function at the same time
as incorporating the prior belief that vi is relevant. This makes the choice of
how P (vi is Rel |g (vi) = a) is estimated somewhat of a fine art, rather than a
theoretically driven process.

4 Methodology

All experiments use a local adaptation of the Lemur [13] toolkit for XML re-
trieval. Two databases were built - one using the Krovetz stemmer [14], and
one without stemming. A stopword list of around 400 words was used for both
databases. Our prior INEX paper [5] describes most adaptations to index struc-
tures and basic retrieval algorithms used presently.

Since then, some query nodes for structured retrieval have been added. We
presently only support AND clauses, about clauses, and path constraints. Nu-
meric constraints are ignored by the retrieval system. OR clauses are converted
to AND clauses, temporarily sidestepping the issue of how the OR probabilities
are computed. NOT clauses are dropped from the query, as are terms with a ‘-’
in front of them. Different clauses of the queries are given equal weight. Phrase
constraints are dropped, but the words are kept. A ‘+’ in front of a query term
is ignored. Basically, all queries are converted to contain only AND clauses with
path constraints and about clauses. For example, query 66 is converted from

//article[.//fm//yr < 2000]
//sec[about(., ‘search engines’)]

to

//article//sec[about(., search engines)]

The graph structures used were taken directly from the XML structure of the
document. All components were considered rankable items. The weight placed on
the collection model λu is 0.2 and when using shrinkage, λp is set to 0.1. A single
background model estimated from all text in the collection was used. Estimation
of θ′ models use λc′ and λc set according to Equation 3. These parameters were
chosen by experimentation on the INEX 2003 topics.

The prior probabilities used in experiments are all based on the aggregated
length of a component may take the following form:

– linear – P (vi is Rel |length (vi) = x) ∝ x
– square – P (vi is Rel |length (vi) = x) ∝ x2

– cubic – P (vi is Rel |length (vi) = x) ∝ x3

where
length (vi) = |vi| +

∑

vk∈descendants(vi)

|vk| . (11)

232 P. Ogilvie and J. Callan

5 Experiments

This section describes some experiments with variations of the system. The dis-
cussion in this section centers on the content-only topics. Figure 3 examines the
effects of prior probabilities on the strict measure and the specificity oriented
measure for content-only topics. The runs in this figure used the Krovetz stem-
mer and a shrinkage parameter λp = 0.1. The use of more extreme length priors
generally resulted in noticeable improvements to the strict measure but at a
sacrifice to the specificity oriented measure. Results for more configurations and
measures are presented in Table 5. The trends in Figure 3 are confirmed in the
table. The more extreme the prior, the higher the exhaustivity and the lower the
specificity. Using a more extreme prior also reduced overlap in the result lists,
as these runs had distinct biases toward long components. For the rest of the
discussion in this section, a linear prior was chosen as a good trade-off between
improved exhaustivity and harmed specificity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Priors - CO - Strict

No Prior
Linear Prior

Square Prior
Cubic Prior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Priors - CO - Specificity Oriented

No Prior
Linear Prior

Square Prior
Cubic Prior

Fig. 3. More extreme length priors can greatly improve performance under strict eval-

uation, but at a sacrifice to specificity oriented evaluation

Next, some experiments using different shrinkage parameters are explored.
For these runs, only the system using the Krovetz stemmer and a linear prior was
explored. Figure 4 demonstrates that small values of λp boost precision modestly
for both strict and specificity oriented measures. A non-zero shrinkage parameter
did seem to help, and using too large a parameter hurt precision at low recall.
The bottom half of Table 5 contains more evaluation measures and parameter
settings. Small settings for the shrinkage parameter can improve performance
across all measures, but these results may not be significant.

This section concludes with a brief discussion of the content-and-structure
runs. Our original submission had a bug which allowed a component to be re-
turned in the result list multiple times (with different supporting components).

Hierarchical Language Models for XML Component Retrieval 233

Table 1. Run performance for Content-Only topics

Official λp Stemmer Prior Strict Generalized SO s3 e321 e3 s321

YES1 0.0 - - 0.0640 0.0728 0.0655 0.0541 0.0806
NO 0.0 - linear 0.0896 0.0770 0.0650 0.0564 0.1234
NO 0.0 - square 0.1224 0.0448 0.0318 0.0236 0.1864
NO 0.0 - cubic 0.0902 0.0226 0.0167 0.0130 0.1367

YES2 0.1 - - 0.0675 0.0908 0.0897 0.0771 0.0769
NO 0.1 - linear 0.0688 0.0829 0.0721 0.0640 0.1055
NO 0.1 - square 0.1268 0.0480 0.0344 0.0262 0.1885
NO 0.1 - cubic 0.0927 0.0230 0.0173 0.0139 0.1380

YES3 0.1 Krovetz - 0.0667 0.0947 0.0941 0.0835 0.0776
NO 0.1 Krovetz linear 0.0817 0.0882 0.0770 0.0663 0.1191
NO 0.1 Krovetz square 0.1129 0.0445 0.0330 0.0252 0.1721
NO 0.1 Krovetz cubic 0.0859 0.0200 0.0151 0.0117 0.1324

NO 0.000 Krovetz linear 0.0745 0.0771 0.0651 0.0561 0.1173
NO 0.025 Krovetz linear 0.0874 0.0867 0.0748 0.0632 0.1315
NO 0.050 Krovetz linear 0.0849 0.0885 0.0765 0.0654 0.1315
NO 0.075 Krovetz linear 0.0830 0.0889 0.0775 0.0667 0.1255
NO 0.100 Krovetz linear 0.0817 0.0882 0.0770 0.0663 0.1191
NO 0.125 Krovetz linear 0.0682 0.0840 0.0734 0.0632 0.1076
NO 0.150 Krovetz linear 0.0591 0.0761 0.0670 0.0573 0.0915

1Lemur CO NoStem Mix02 2Lemur CO NoStem Mix02 Shrink01
3Lemur CO KStem Mix02 Shrink01

Official λp Stemmer Prior Overlap Aggregate

YES1 0.0 - - 66.7 0.0651
NO 0.0 - linear 72.6 0.0809
NO 0.0 - square 47.1 0.0881
NO 0.0 - cubic 41.7 0.0629

YES2 0.1 - - 74.8 0.0774
NO 0.1 - linear 73.4 0.0772
NO 0.1 - square 46.3 0.0910
NO 0.1 - cubic 40.5 0.0641

YES3 0.1 Krovetz - 73.0 0.0807
NO 0.1 Krovetz linear 72.6 0.0853
NO 0.1 Krovetz square 46.2 0.0861
NO 0.1 Krovetz cubic 40.4 0.0625

NO 0.000 Krovetz linear 72.4 0.0764
NO 0.025 Krovetz linear 72.1 0.0877
NO 0.050 Krovetz linear 72.3 0.0881
NO 0.075 Krovetz linear 72.5 0.0869
NO 0.100 Krovetz linear 72.6 0.0853
NO 0.125 Krovetz linear 72.8 0.0781
NO 0.150 Krovetz linear 73.0 0.0685

1Lemur CO NoStem Mix02
2Lemur CO NoStem Mix02 Shrink01
3Lemur CO KStem Mix02 Shrink01

234 P. Ogilvie and J. Callan

This bug has been fixed, and a comparison of the official runs and the bug-
fixes are in Table 5. The runs using query structure took a strict interpreta-
tion of constraints and as such, it is not surprising that they did poorly for
the VCAS task. Our best performing run did not use any structure in the query.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Shrinkage - CO - Strict

0.00
0.05
0.10
0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Shrinkage - CO - Specificity Oriented

0.00
0.05
0.10
0.15

Fig. 4. Very small shrinkage parameter values boost precision moderately at mid-recall

ranges for strict evaluation and across the range for specificity oriented evaluation

All non-structural constraints were removed from the query so that keywords
present in the about clauses remained. This was then treated as a flat text query
and run using the configuration for CO topics. The use of prior probabilities
was investigated, and it was found that the trade-off between exhaustivity and
specificity observed for CO held for VCAS as well. However, there does seem to
be a preference for shorter components in the VCAS task, as the square prior
hurt performance across the board, while the linear prior improved performance.

Table 2. Run performance for Content-and-Structure topics

Struct- General-
Official ure λp Prior Strict ized SO s3 e321 e3 s321 Overlap Aggregate

YES1 NO 0.1 - 0.0710 0.0746 0.0759 0.0834 0.0700 74.0 0.0759
NO NO 0.1 Linear 0.0889 0.0847 0.0804 0.0819 0.0949 69.9 0.0864
NO NO 0.1 Square 0.0585 0.0468 0.0377 0.0359 0.0836 48.3 0.0217

YES2 YES 0.0 - 0.0468 0.0180 0.0166 0.0253 0.0419 2.4 0.0325
NO (fix) YES 0.0 - 0.0616 0.0276 0.0309 0.0409 0.0413 4.6 0.0459

YES3 YES 0.1 - 0.0466 0.0199 0.0177 0.0249 0.0457 2.4 0.0339
NO (fix) YES 0.1 - 0.0621 0.0274 0.0302 0.0409 0.0418 4.8 0.0460

1Lemur CAS as CO NoStem Mix02 Shrink01 2Lemur CAS NoStem Mix02
3Lemur CAS NoStem Mix02 Shrink01

Hierarchical Language Models for XML Component Retrieval 235

6 Related Work

Much of the current work in XML component retrieval can be found in these
proceedings and in [15][16], so only highly related works will be discussed here.

The Tijah system [1] also uses generative models for retrieval of XML compo-
nents. They do not explicitly model the hierarchical relationship between com-
ponents when estimating language models. Instead, they estimate a language
model for each component using the text present in it and its children. This is
equivalent to our model when λp = 0 and λc′ and λc are set according to Equa-
tion 3. They also incorporate prior probabilities using a log-normal and a linear
component length prior. To provide context in the scoring of a component, they
average the component score with the document score. For structured queries,
constraints on structure are processed similarly. However, for OR clauses, the
maximum of the scores is taken, while the minimum is taken for AND clauses. A
system configuration for vague evaluation of structured queries is realized using
query rewrites.

Kamps, Sigurbjörnsson, and de Rijke [3] [2] also work within the language
modeling framework. Like [1], they do not explicitly model hierarchical relation-
ship between document components when estimating the language model for a
component. Rather than estimating the background model using a maximum
likelihood estimator, they use an estimate based on element frequencies. They
present experiments using a linear, square, and cubic component length prior,
and also experiment with a cut-off filtering out short components. As with [1],
their model is comparable to our model when λp = 0 and λc′ and λc are set
according to Equation 3. For processing structured queries, [2] describes an ap-
proach that combines query rewrites with strict interpretation of the query.

7 Conclusions

This paper described experiments using hierarchical language models for mod-
eling and ranking of XML document components. It extended previous work to
incorporate context through the use of shrinkage, which helps modestly for flat
text queries. A very small choice for the shrinkage parameter was found to be
best for retrieval. This paper also presented experiments using length based pri-
ors. A prior probability proportional to the length of the component was found
to be most effective across a number of measures.

For vague content and structure queries, where structure is intended only as
a hint to the retrieval system, we found that ignoring structure in the query was
better than taking a strict interpretation of the structural constraints. This is
much like using a flat text query. As with the content only queries, a linear length
prior was found to improve performance, but the vague content and structure
queries may have a preference for shorter components than the content only
queries on average.

Future experiments will examine use of the structural constraints in the con-
tent and structure queries as hints for relevance within the framework. More

236 P. Ogilvie and J. Callan

experimentation with how the shrinkage parameter is set will be performed,
as well as different approaches to setting the interpolation parameters for the
combination of evidence from child nodes.

Acknowledgments

This research was sponsored by National Science Foundation (NSF) grant no.
CCR-0122581. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies,
either expressed or implicit, of the NSF or the US government.

References

1. List, J., Mihajlovic, V., Ramirez, G., Hiemstra, D.: The tijah xml-ir system at
inex 2003. In: INEX 2003 Workshop Proceedings. (2003) 102–109

2. Sigurbjörnsson, B., Kamps, J., de Rijke, M.: Processing content-and-structure
queries for xml retrieval. In: Proccedings of the First Twente Data Management
Workshop. (2004) 31–38

3. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: Length normalization in xml re-
trieval. In: Proceedings of the Twenty-Seventh Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. (2004) 80–87

4. Ogilvie, P., Callan, J.: Language models and structured document retrieval. In:
Proceedings of the First Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX). (2003)

5. Ogilvie, P., Callan, J.P.: Using language models for flat text queries in xml retrieval.
In: Proc. of the Second Annual Workshop of the Initiative for the Evaluation of
XML retrieval (INEX), Dagstuhl, Germany (2003)

6. McCallum, A., Nigam, K.: Text classification by bootstrapping with keywords,
em and shrinkage. In: Proceedings of the ACL 99 Workshop for Unsupervised
Learning in Natural Language Processing. (1999) 52–58

7. Ponte, J., Croft, W.: A language modeling approach for information retrieval. In:
Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM Press (1998) 275–281

8. Hiemstra, D.: Using language models for information retrieval. PhD thesis, Uni-
versity of Twente (2001)

9. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Transactions on Information Systems 2 (2004)

10. Song, F., Croft, W.: A general language model for information retrieval. In:
Proceedings of the Eighth International Conference on Information and Knowledge
Management. (1999)

11. Westerveld, T., Kraaij, W., Hiemstra, D.: Retrieving web pages using content,
links, URLs, and anchors. In: The Tenth Text REtrieval Conf. (TREC-10), NIST
SP 500-250. (2002) 663–672

12. Trotman, A., Sigurbjörnsson, B.: Narrow Extended XPath I. Technical report
(2004) Available at http://inex.is.informatik.uni-duisburg.de:2004/.

13. Lemur: The Lemur Toolkit for Language Modeling and Information Retrieval.
(http://lemurproject.org/)

Hierarchical Language Models for XML Component Retrieval 237

14. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM (1993) 191–202

15. Fuhr, N., Goevert, N., Kazai, G., Lalmas, M., eds.: Proceedings of the First Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX), ERCIM (2003)

16. Fuhr, N., Maalik, S., Lalmas, M., eds.: Proc. of the Second Annual Workshop
of the Initiative for the Evaluation of XML retrieval (INEX), Dagstuhl, Germany
(2003)

	Introduction
	Modeling Documents with Hierarchical Structure
	Example

	Ranking Items for Queries
	Queries
	Priors

	Methodology
	Experiments
	Related Work
	Conclusions

