
Analyzing the Properties of XML Fragments
Decomposed from the INEX Document

Collection

Kenji Hatano1, Hiroko Kinutani2, Toshiyuki Amagasa1,Yasuhiro Mori3,
Masatoshi Yoshikawa3, and Shunsuke Uemura1

1 Nara Institute of Science and Technology, Japan
2 Ochanomizu University, Japan

3 Nagoya University, Japan

Abstract. In current keyword-based XML fragment retrieval systems,
various granules of XML fragments are returned as retrieval results. The
number of the XML fragments is huge, so this adversely affects the in-
dex construction time and query processing time of the XML fragment
retrieval systems if they cannot extract only the answer XML fragments
with certainty. In this paper, we propose a method for determining XML
fragments that are appropriate in keyword-based XML fragment re-
trieval. This would help to improve overall performance of XML fragment
retrieval systems. The proposed method utilizes and analyzes statistical
information of XML fragments based on a technique of the dynamics
of terminology in quantitative linguistics. Moreover, our keyword-based
XML fragment retrieval system runs on a relational database system. In
this paper, we briefly explain the implementation of our system.

1 Introduction

Extensible Markup Language (XML) [5] is becoming widely used as a standard
document format in many application domains. In near future, a great variety
of documents will be produced in XML. Therefore, in a similar way to the
development of Web search engines, XML information retrieval systems will
become very important tools for users wishing to explore XML documents.

In the research area of XML retrieval, it is important to develop a method
for retrieving fragments of XML documents. XQuery [4], proposed by the World
Wide Web Consortium (W3C), is known as a standard query language for XML
fragment retrieval. Using XQuery, users can issue a flexible query consisting
of both keywords and XPath notations. If users already have knowledge of the
structure of XML documents, users can issue XQuery-style queries for XML frag-
ment retrieval. Consequently, we can state that XQuery is suitable for searching
for data in XML documents1.

1 In this paper, we refer to this type of XML documents as data-centric XML docu-
ments.

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 168–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analyzing the Properties of XML Fragments 169

At the same time, the XML Query Working Group has been developing pow-
erful full-text search functions [3, 2] for XQuery. This is because there are many
document-centric XML documents like articles in XML form, including struc-
tured information such as the names of authors, date of publication, sections,
and sub-sections, as well as unstructured information such as the text content
of the articles. However, document-centric XML documents like these have dif-
ferent XML schemas in each digital library, making it impossible to comprehend
the structure of XML documents or to issue a formulated query like XQuery into
XML fragment retrieval systems. Therefore, XML information retrieval systems
should employ a much simpler form of query such as keyword search services
without utilizing XQuery-style queries. Keyword search services enable users to
retrieve needed information by providing a simple interface to information re-
trieval systems. In short, it is the most popular information retrieval method
because users need to know neither a query language nor the structure of XML
documents.

Considering the above background of XML fragment retrieval, it is not sur-
prising that much attention has recently been paid to developing a keyword-
based XML fragment retrieval system. Such systems usually decompose document-
centric XML documents into XML fragments by using their markup and then
generate an index of decomposed fragments for searching. In spite of their sys-
tems’ simple approach to XML fragment retrieval, this method enables the user
to retrieve XML fragments related to keyword-based queries fairly well. However,
XML documents are decomposed as much as possible by using their markup;
thus index construction time and query processing time are too long compared
with current document retrieval systems. This is because returning various gran-
ules and the huge number of XML fragments as retrieval results adversely affects
processing time unless XML fragment retrieval systems can extract only the an-
swer XML fragments with certainty.

We believe that the XML fragments required for keyword-based fragment re-
trieval make up only a part of the decomposed fragments from document-centric
XML documents. In short, there is a certain type of XML fragments that are
never returned as retrieval results regardless of the issued keyword-based queries.
In particular, extremely small XML fragments are unlikely to become retrieval
results of keyword-based queries from the viewpoint of information retrieval
research. Therefore, we could perform XML fragment retrieval more efficiently
than with current systems if we could eliminate inappropriate fragments in XML
fragment retrieval from the index file. To cope with this problem, we have to
determine which XML fragments are appropriate in the XML fragment retrieval
extracted from document-centric XML documents.

In this paper, we propose a method for determining the appropriate XML
fragments needed to efficiently search XML fragments. Our method utilizes and
analyzes statistical information of XML fragments decomposed from original
documents based on a technique of the dynamics of terminology in quantitative
linguistics. Our proposal holds the promise of not only reducing index construc-
tion time and query processing time of XML fragment retrieval systems but also

170 K. Hatano et al.

dealing with many types of document-centric XML documents, since statisti-
cal information does not depend on the structures of XML documents. We also
perform some experiments to verify the effectiveness of our proposal.

2 Research Issues

There are two main types of keyword-based XML fragment retrieval systems.
In this paper, we refer to these as data-centric type and document-centric type
for convenience. The former is based on structured or semi-structured database
systems with keyword proximity search functions that are modeled as labeled
graphs, where the edges correspond to the relationship between an element and
a sub-element and to IDREF pointers [1, 13, 16]. Dealing with XML documents as
XML graphs facilitates the development of keyword-based information retrieval
systems that are able to perform the retrieval processing efficiently. The latter
type has been developed in the research area of information retrieval [9, 12], and
it enables us to retrieve XML fragments without indicating the element names
of XML documents. The major difference between these two types of XML
fragment retrieval systems is in the data characteristics of their retrieval targets.
In short, we assume that the former type focuses mainly on XML documents
that have a data-centric view, whereas the latter type deals with those having
a document-centric view. At the same time, almost all XML fragment retrieval
systems currently assume the existence of the DTD of XML documents in either
field of research. It is true that DTD enhances the retrieval accuracy and query
processing time of their systems. However, there are some problems associated
with searching heterogeneous XML fragments on the Web. Thus, other types of
XML retrieval systems that do not utilize DTD are required. Consequently, XML
fragment retrieval systems in the future will have to deal with heterogeneous
XML documents whose structures are not uniform.

To meet the needs of the new architectures for XML fragment retrieval sys-
tems, we have been developing a keyword-based XML fragment retrieval sys-
tem [15]. Our system focuses on retrieval of document-centric XML documents
rather than that of data-centric ones, and it does not utilize any information
on elements of the XML documents, whereas almost all existing XML fragment
retrieval systems take advantage of this information for querying and indexing
XML documents. In our approach, XML documents must be decomposed into
their fragments, and the decomposed fragments are utilized to generate an index
file. XML is a markup language, thus XML documents can be automatically de-
composed into their fragments by using their markup [19]. However, this gives
rise to an unmanageable profusion of XML fragments. In other words, it takes
a very long time to construct an index file and to search for XML fragments re-
lated to a keyword-based query. For this reason, it is critical to avoid inspecting
all decomposed XML fragments, by focusing on the XML fragments that are ap-
propriate to the XML fragment retrieval, in order to reduce index construction
time and query processing time. In the next section, we explain the method for

Analyzing the Properties of XML Fragments 171

determining the appropriate fragments in XML fragment retrieval based on a
technique of the dynamics of terminology in quantitative linguistics.

3 Analysis of INEX Test Collection

Our research group has been analyzing the statistical information of the INEX
document collection since last year. According to our analysis, it was notable that
variances in the statistical information, especially the variance in the length of
XML fragments, were too large. Therefore, we have focused on the length of XML
fragments. In our INEX 2003 paper [14], we regarded small XML fragments as
inappropriate ones in XML fragment retrieval and verified the practicality of our
proposal by using recall-precision curves. However, we simply sketched an outline
of our proposal and did not show strong reasons for adopting it. Consequently,
in this section, we show the practical justification of our proposal.

3.1 Properties of XML Fragments

The Dynamics of Terminology in Quantitative Linguistics. In our INEX
2003 paper, we determined a threshold for the length of XML fragments, thus
regarding XML fragments below this threshold as inappropriate for XML frag-
ment retrieval. However, this approach required a large number of experiments
to determine the threshold, so it was inappropriate for developing a large-scale
XML fragment retrieval system. Therefore, we have to determine the threshold
systematically.

It is well known that statistical information on XML fragments, such as the
number of tokens, length of XML fragments, and so on, is useful for determining
the thresholds. The examination of the relationships among the constituent ele-
ments and the type of conceptual combinations used in the construction of the
terminology permits deep insights into the systematic thought processes under-
lying term creation. And the powerful interaction of linguistic possibilities and
the limitation of conceptual entities are offered by the quantitative analysis of
the patterns of the growth of terminology. In the dynamics of terminology in
quantitative linguistics, statistical information is often used. This is because an-
alyzing the statistical information helps us to discover some rules in a document
set, and the discovery of such rules is essential for constructing a sound basis of
a theory of terminology. In this research area, it is thought that conducting an
examination to discover rules is similar to finding out the systematic processes
underlying a document set. For this reason, we employ a technique of the dy-
namics of terminology to determine the threshold by using the number of tokens
and XML fragments as statistical information[17]. Needless to say, not only the
number of tokens and XML fragments but also other mathematical or algebraic
information can be utilized as statistical information. The reason for using such
statistical information is that it can be extracted easily when our XML fragment
retrieval system simultaneously analyzes XML documents and decomposes them
into fragments.

172 K. Hatano et al.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1,000 10,000 100,000 1,000,000

of token

#
 o
f
X
M
L
 f
ra
g
m
e
n
t

Fig. 1. Relationship between n and N(n)

By adopting a technique of quantitative linguistics, we can determine the
threshold systematically.

Determining Appropriate XML Fragments. In the research area of quan-
titative linguistics, capturing properties of a document set is performed by ana-
lyzing statistical information. Utilizing the number of tokens and documents as
statistical information, we can find a correlation between number of tokens and
number of XML fragments with the same number of tokens. However, a small
minority of documents have no relationship with the statistical information, so
it is said that such documents have an anomalous property. Therefore, it is un-
derstood that such documents are not appropriate for capturing the properties
of the document set and should be disregarded in capturing properties.

This concept can be utilized for determining inappropriate fragments in XML
fragment retrieval. In short, if we are able to define a function between pieces of
statistical information, XML fragments that do not follow the function can be
regarded as inappropriate XML fragments. It is difficult to explain the process of
determining inappropriate XML fragments on a conceptual basis, so we describe
the process using the following example.

Figure 1 shows log-log plots of the relationship between the number of tokens
and XML fragments of the INEX document collection, where n is the number
of tokens in each XML fragment and N(n) is the number of XML fragments
that contain n tokens. This figure shows that the property of the INEX docu-
ment collection is similar to that of Web document collection, since the log-log
plots follow Zipf’s distribution (or power-law distribution) [20]. Therefore, it is
reasonable that statistics information of the INEX document collection follows
Zipf’s distribution. However, it is difficult to determine whether XML fragments,
in general, follow Zipf’s distribution.

From a statistical point of view in the dynamics of terminology, it can be said
that the gaps between the plots in Figure 1 cause a harmful effect on statistical
information. Therefore, statistical information in plots with gaps is not used

Analyzing the Properties of XML Fragments 173

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
r
e
c
is
io
n

APD

MPD

Fig. 2. Recall-precision curves based on the INEX 2003 relevance assessment

for capturing the property of the document set. In short, we consider the XML
fragments in these plots with gaps to be inappropriate in XML fragment retrieval
because we cannot capture the property of the document set accurately. As a
result, we defined the appropriate fragments in XML fragment retrieval as the
XML fragments in the plots in Figure 1 whose number of tokens is no smaller
than 10 nor larger than 10,000 in the case of adopting the INEX document
collection. This definition is sensible, because small XML fragments are not
informative enough and large ones are too informative for users in keyword-
based queries, and thus small/large XML fragments are unlikely to be answers
to the CO-topics.

Verification of XML Fragments’ Properties. In order to verify the validity
of a technique from the dynamics of terminology, we performed some experiments
using the INEX 2003 relevance assessment. In these experiments, we measured
average precisions, index construction time, query processing time, and the num-
ber of indexed XML fragments of the following two types of index files in our
XML fragment retrieval system: the index files of all XML fragments (APD) and
those of the XML fragments other than the inappropriate fragments described
in 3.1 (MPD).

Figure 2 shows the recall-precision curves based on the INEX 2003 relevance
assessment. We initially expected that the recall-precision curves of APD and
MPD would be very close to each other, since the fragments that were judged as
inappropriate in XML fragment retrieval did not rank in the top 1,500 of all frag-
ments. However, the recall-precision curve of MPD was higher than originally
expected. Therefore, we think that the method proposed in 3.1 does not deteri-

174 K. Hatano et al.

Table 1. Comparison of APD with MPD in INEX 2003 relevance assessment

of fragments index construction (s)

APD 8,224,053 513,878
MPD 1,011,202 109,115

query processing (s/topic) average precision

APD 17.66 0.0707
MPD 5.27 0.1038

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
r
e
c
i
s
i
o
n

APD

MPD

Fig. 3. Recall-precision curves based on the INEX 2004 relevance assessment

orate the retrieval accuracy of XML fragment retrieval systems. In addition, the
number of indexed XML fragments was significantly reduced by adopting our
method, thus also reducing index construction time and query processing time
(see Table 1).

As shown above, the proposed method is useful not only in reducing index
construction time and query processing time but also in improving the retrieval
accuracy of an XML fragment retrieval system. Therefore, the proposed method
is also suitable for the INEX 2004 relevance assessment.

3.2 Experiments Using INEX 2004 Relevance Assessment

Proposed method applied to the INEX 2003 relevance assessment worked well for
reduction of index construction time and query processing time; thus we apply
it to the INEX 2004 relevance assessment.

Figure 3 shows the recall-precision curves based on the INEX 2004 relevance
assessment. Unlike the case of using the INEX 2003 relevance assessment, the
recall-precision curves of APD and MPD were very close to each other. The

Analyzing the Properties of XML Fragments 175

Table 2. Success ratios of our method (worst 5)

topic ID
(E, S) = (2, 3) (E, S) = (3, 2) (E, S) = (3, 3)

total
miss all success ratio miss all success ratio miss all success ratio

187 378 554 0.32 1,028 1,463 0.30 646 848 0.25 0.50
166 9 15 0.40 5 48 0.90 27 62 0.56 0.76
192 5 42 0.88 0 0 N/A 1 10 0.90 0.81
194 3 4 0.25 0 5 1.00 4 11 0.64 0.83
179 0 6 1.00 3 5 0.40 0 0 N/A 0.88

XML fragments that were judged as inappropriate in XML fragment retrieval
based on the proposed method did not rank in the top 1,500 of all fragments;
therefore, the recall-precision curves were almost the same. Moreover, average
precisions in the INEX 2004 relevance assessment were smaller than those in
INEX 2003. Our XML fragment retrieval system tends to retrieve relatively small
XML fragments, so it could not retrieve large XML fragments whose root node
is article, bdy, or fm. As a result, the exhaustivity of our system tends to be
small, while its specificity tends to be large and average precision becomes small.
This characteristic of our XML fragment retrieval system has negative effects on
average precision; therefore, we have to propose a new term weighting scheme
for XML fragment retrieval. Currently, some term weighting schemes, including
ours, are already published[21, 6, 10, 9, 11]; however, they are not suitable for
XML fragments that overlap each other. Consequently, we will have to adopt
another weighting scheme that is suitable for XML fragment retrieval2.

In order to investigate the problems of the proposed method, we also cal-
culated the number of indexed XML fragments by using the proposed method
relative to the number of answer XML fragments in the relevance assessment.

Table 2 shows the success ratio, which is the ratio of the number of answer
XML fragments indexed by the proposed method relative to the number of all
answer XML fragments. In this table, we show the topic IDs whose success
ratios were in the bottom five topics. Almost all success ratios of CO-topics of
the INEX 2003/2004 relevance assessments were more than 90%; however, only
the success ratios of these topics listed in Table 2 were remarkably low. In topic
185, especially, the higher the exhaustivity and the specificity, the smaller the
success ratio. Moreover, the number of fragments that were inappropriate in our
method but were answers in the relevance assessment was extremely large. In our
opinion, there is a tendency that keyword-based queries (CO-topics) are used to
retrieve such document fragments that just contain specified keywords, and not
for searching fragments that are most suitable for the users’ intention. If this
concept is valid, the CO-topics whose answers contain small XML fragments

2 Length normalization of XML fragments [18] is one of the term weighting schemes
in XML fragment retrieval. We believe that not only normalization of the length of
XML fragments but also the frequencies of tokens in XML fragments are important
for improving the average precision of our system.

176 K. Hatano et al.

Table 3. Comparison of APD with MPD in INEX 2004 relevance assessment

query processing (s/topic) average precision

APD 25.48 0.0263
MPD 13.03 0.0286

should not be used for the relevance assessment in XML fragment retrieval.
Consequently, we think that not only the controversial issue of the term weighting
scheme for XML fragment retrieval but also inappropriate CO-topics for the
INEX relevance assessment cause the low average precision of our system.

On the other hand, the number of indexed XML fragments was significantly
reduced by adopting our method in the manner done for INEX 2003, so the query
processing time was reduced as shown in Table 3. Therefore, XML fragment
retrieval systems could perform index construction and query processing more
efficiently than current systems if we adopted our method.

3.3 Discussion About the Method

Through the experiments on INEX 2003 and 2004 relevance assessments, we
found that index construction time and query processing time were reduced by
adopting our method based on the dynamics of terminology in quantitative lin-
guistics. Moreover, the average precision of an XML fragment retrieval system
adopting our method did not become worse. As a result, the proposed method
helps to improve the performance of XML fragment retrieval systems. We are
now working to improve the average precision of our XML fragment retrieval sys-
tem. We expect that a novel term weighting scheme for XML fragment retrieval
and a phrase match function will enable us to improve the average precision of
our XML fragment retrieval system.

4 Implementing XML Fragment Retrieval System on
Relational XML Database

It goes without saying that not only accuracy but also performance is an essen-
tial aspect of an XML fragment retrieval system. In fact, this is not an easy task
because we have to deal with several millions of fragments extracted from doc-
ument collection. In our project, we have been attempting to develop an XML
fragment retrieval system based on relational databases. The reason for using
relational databases is that we can utilize a variety of techniques, such as query
optimization, storage management, and top-k ranking, to speed up the process
of XML fragment retrieval.

This section describes our first attempt at constructing such an XML frag-
ment retrieval system. The system is based on a path-based relational XML
database system, XRel [22], that is used for storing and retrieving XML docu-
ments by using off-the-shelf relational databases. In fact, we make an extension
to XRel, which originally supports XPath as its basic query language, for sup-
porting IR queries including CO- and CAS-topics.

Analyzing the Properties of XML Fragments 177

4.1 An Overview of XRel

The Basics. XRel [22] is a scheme to realize XML databases on top of off-the-
shelf relational databases. Using XRel, we can store any well-formed (or valid)
XML documents in a relational database and can retrieve XML fragments from
the database by using XPath expressions.

For storing XML documents, we shred the documents into small fragments
so that they can be stored in relational tuples. Actually, we take a path-based
approach, in which each node in an XML tree, such as element node, attribute
node, and text node, is extracted and stored in a relational table with its simple
path expression from the root and the region in the document. Here, a region
is represented as a pair of integers (start , end), where start and end represent
the starting and ending byte positions of the node in the XML file, respectively.
This information is necessary and sufficient to retain the topology of an XML
tree, and we can therefore achieve lossless decomposition of XML documents
into flat relational tables. An important notice here is that, for given regions, we
can detect the relationships among XML nodes, such as ancestor, descendant,
precedes, and follows, by applying a subsumption theorem3[22, 7]. Optionally,
depth, which represents the depth of a node from the root, may be added as the
third dimension in a region. In this case, we can additionally detect parent and
child relations.

Schema Design. The components extracted from an XML document are stored
in relational tables. Actually, there are countless ways to design the relational
schema. In XRel, we decided to use four kinds of tables according to the node
types, namely, Element, Attribute, Text, and Path. In addition, metadata about
XML files, such as location, size, and identifier, are stored in the Document
table. The actual schema definition of the tables are as follows:

Document (docID, filepath, length)

Element (docID, elementID, parentID, depth, pathID, start, end, index,

reindex)

Attribute (docID, elementID, pathID, start, end, value)

Text (docID, elementID, pathID, start, end, value)

Path (pathID, pathexp)

In this definition, metadata are stored in the Document table with unique
IDs. Also, all possible path expressions are stored in the Path table as character
strings with their unique IDs. The other tables refer to these values in terms of
docID and pathID attributes. For the Element table, each element node is stored
with its document ID (docID), path expression (pathID), and region (start,
end, and depth). Additionally, elementID, which is the unique identifier of an
element node, is included for efficiency reasons, although this information is
not mandatory. Likewise, parentID, which refers to the elementID of its parent
node, is defined so that parent nodes can be easily reached. The index (reindex)

3 Node x is an ancestor (descendant) of node y iff the region of x subsumes (is sub-
sumed by, respectively) the region of y.

178 K. Hatano et al.

<vol no="1">

<article>

<title>TITLE1</title>

<body>The first content.</body>

</article>

<article>

<title>TITLE2</title>

<body>The second content.</body>

</article>

</vol>

Fig. 4. An example XML document

attribute represents the (reverse) ordinal of nodes that share the same parent and
the same path expression, and it is used to speed up positional predicates, such
as /book/author[2] (/book/author[-2]). For the Attribute and Text tables,
all attributes, except for value, act as in the Element table. The value attribute
is used to store textual values of attribute and text nodes.

Figure 5 demonstrates how an XML document in Figure 4 is decomposed
and stored in the relational tables.

Query Processing in XRel. For query retrieval, XRel supports XPath core,
which is a subset of XPath [8], as its query language. Simply speaking, XPath
core permits using “/” and “//” as location steps and using typical predicate
expressions. Given an XPath core expression, XRel translates it into an equiva-
lent SQL query that operates on the relational tables. The point here is that the
translated query can be processed solely by the underlying relational database
system. Then, the query result is obtained in the form of a result table, which is,
in turn, reconstructed as the resultant XML fragments. For example, an XPath
core query, “//article/title[2],” can be expressed as:

SELECT e1.docID, e1.st, e1.ed
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/article#/title’
AND e1.pathID = p1.pathID AND e1.idx = 2
ORDER BY e1.docID, e1.st

We do not go into the details due to the limitations of space, but more
complicated queries containing node tests and/or predicates can be expressed in
this way[22].

4.2 Supporting IR Queries in XRel

Statistics. Although the above tables are sufficient for processing XPath core
queries, when considering INEX tasks, we need more information regarding IR
statistics in order to support IR queries like in CO- and CAS-topics. To this
end, we are attempting to maintain the statistics of XML nodes, in addition to
the basic tables of XRel. These values include TF-IDF scores (including several
variations), numbers of descendant elements, and various kinds of statistics. The
concrete definition of the relational tables is as follows:

Analyzing the Properties of XML Fragments 179

(a) Document

docID filepath length

0 “/path/to/foo.xml” 203

(c) Attribute

docID elemID pathID st ed value

0 0 1 1 1 “1”

(b) Element

docID elemID parID depth pathID st ed idx reidx

0 0 -1 1 0 0 202 1 1
0 1 0 2 2 15 98 1 2
0 2 1 3 3 29 49 1 1
0 3 1 3 4 55 85 1 1
0 4 0 2 2 102 195 2 1
0 5 4 3 3 116 136 1 1
0 6 4 3 4 142 182 1 1
0 7 6 4 5 159 175 1 1

(d) Text

docID elemID pathID st ed value

0 2 3 36 41 “TITLE1”
0 3 4 61 78 “The first content.”
0 5 3 123 128 “TITLE2”
0 6 4 148 158 “The second “
0 7 5 163 170 “content.”

(e) Path

pathID pathexp

0 “#/vol”
1 “#/vol#/@no”
2 “#/vol#/article”
3 “#/vol#/article#/title”
4 “#/vol#/article#/body”
5 “#/vol#/article#/body#/em”

Fig. 5. A storage example of XRel

Token (docID, elementID, nodeFlag, token, articleNo, tf, tfidf,

tfidfMG, tfief, tfipf, tfOrder)

DescendantElementNum (docID, elementID, elementName, count)

ElementStatistics (docID, elementID, sentenceNum, termFreq,

tokenFreq, wordFreq)

Let us take a closer look at the definitions. The Token table is for storing
every occurrence of a distinct token. A token is stored with the document ID,
element ID, and article ID where it appears, term frequency (tf), and several
variations of term scores (tfidf, tfidfMG, tfief, and tfipf). tfOrder is used
for ordering the tuples in the descending order of tf, so as to speed up table
scans. The DescendantElementNum table maintains the number of descendant
elements for each element. The ElementStatistics table is for storing various
kinds of statistics regarding elements, such as the numbers of elements, term
frequencies, token frequencies, and word frequencies.

180 K. Hatano et al.

Processing CO-Topics. Using the above tables as well as the basic XRel ta-
bles, we can express any CO-topic in the form of [key 1, ..., key l, +plus 1,
..., +plus m, -minus 1, ..., -minus n], as an SQL query:

SELECT docID, elementID, SUM(t.tfidf) result
FROM token t
WHERE t.token IN (’key_1’, ..., ’key_l’)
GROUP BY docID, elementID
HAVING (SELECT COUNT(*)

FROM token
WHERE token IN (’minus_1’, ..., ’minus_n’)
AND t.docID = token.docID
AND t.elementID = token.elementID) = 0

AND
(SELECT COUNT(*)
FROM token
WHERE token IN (’plus_1’, ..., ’plus_m’)
AND t.docID = token.docID
AND t.elementID = token.elementID) = m

ORDER BY result DESC;

As can be seen, the calculation of TF-IDF is implemented in terms of an aggre-
gation function. It should also be noted that, in the translated query, “+key”
and “-key” are expressed in terms of a HAVING clause. The resulting query is
sorted in descending order of TF-IDF scores, by the ORDER BY clause.

In the same way, we can express CO-topics with phrase match by using the
value attribute in the Text table. However, this may not be realistic from the
viewpoint of efficiency, due to the fact that the cost for approximate matching
in SQL is quite expensive. Consequently, a naive implementation would cause
serious performance degradation. Actually, we may need an additional index
that supports full-text search of text contents to deal with phrase matching.

4.3 Discussions About the Implementation

As discussed above, our system currently only supports XPath core and CO
queries, and we thus need to accomplish further development to extend its ability
and improve system performance. We are now working to improve overall system
performance. In our scheme, we use a novel technique to reduce the number of
result candidates. Also, we are working to achieve support of CAS- (VCAS-)
topics. Efficient execution of top-k ranking in CO- and CAS-topics is another
important issue.

5 Conclusion

In this paper, we proposed a method for determining XML fragments that are
appropriate in keyword-based XML fragment retrieval based on the dynamics
of terminology. Through some experimental evaluations in 3.1, 3.2, we found
that proposed method helps to improve the performance of our XML fragment
retrieval system. Moreover, we applied our XML fragment retrieval system on
a relational database system, which enabled us to reduce the query processing
time of our system. If we implemented a phrase match function in our system, we

Analyzing the Properties of XML Fragments 181

could expect to improve average precision. Currently, we also have the problem
of finding a term weighting scheme that is suitable for XML fragment retrieval
and query optimization with a ranking function on relational database systems.
These problems are the immediate tasks of our project, so we intend to solve
these tasks in the near future. As an original approach, we are focusing on
XML fragment retrieval without scheme information; accordingly we are going
to address these problems with a view to the heterogeneous collection track of
the INEX project.

Acknowledgments

This work is partly supported by the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan, under grants #15200010, #16016243
and #16700103.

References

1. S. Agrawal, S. Chaudhuriand, and G. Das. DBXplorer: A System for Keyword-
Based Search over Relational Databases. In Proc. of the 18th International Con-
ference on Data Engineering, pages 5–16. IEEE CS Press, Feb./Mar. 2002.

2. S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath,
M. Rys, and J. Shanmugasundaram. XQuery 1.0 and XPath 2.0 Full-Text.
http://www.w3.org/TR/xmlquery-full-text/, July 2004. W3C Working Draft
09 July 2004.

3. S. Amer-Yahia and P. Case. XQuery 1.0 and XPath 2.0 Full-Text Use
Cases. http://www.w3.org/TR/xmlquery-full-text-use-cases/, July 2004.
W3C Working Draft 09 July 2004.

4. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, Oct.
2004. W3C Working Draft 29 October 2004.

5. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Third Edition). http://www.w3.org/TR/REC-xml,
Feb. 2004. W3C Recommendation 04 February 2004.

6. J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document and Data
Retrieval. In Proc. of the 5th International Workshop on the Web and Databases
(WebDB2002), pages 1–6. June 2002.

7. S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang. Storing and querying mul-
tiversion XML documents using durable node numbers. In Proc. of the 2nd In-
ternational Conference on Web Information Systems Engineering, pages 270–279.
2001.

8. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, Nov. 1999. W3C Recommendation 16 November
1999.

9. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine
for XML. In Proc. of 29th International Conference on Very Large Data Bases,
pages 45–56. Morgan Kaufmann, Sep. 2003.

http://www.w3.org/TR/xmlquery-full-text/
http://www.w3.org/TR/xmlquery-full-text-use-cases/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath

182 K. Hatano et al.

10. C.J. Crouch, S. Apte and H. Bapat. Using the Extended Vector Model for XML
Retrieval. In Proc. of the 1st Workshop of the Initiative for the Evaluation of XML
Retrieval (INEX), pages 95–98. ERCIM, March 2003.

11. H. Cui, J.-R. Wen and T.-S. Chua. Hierarchical Indexing and Flexible Element
Retrieval for Structured Document. In Proc. of the 25th European Conference on
Information Retrieval Research (ECIR2003). pages 73–87, April 2003.

12. N. Gövert, N. Fuhr, M. Abolhassani, and K. Großjohann. Content-Oriented XML
Retrieval with HyREX. In Proc. of the First Workshop of the Initiative for the
Evaluation of XML Retrieval, pages 26–32. ERCIM, Mar. 2003.

13. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In Proc. of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 16–27. ACM Press, June 2003.

14. K. Hatano, H. Kinutani, M. Watanabe, Y. Mori, M. Yoshikawa, and S. Uemura.
Keyword-based XML Portion Retrieval: Experimental Evaluation based on INEX
2003 Relevance Assessments. In Proc. of the Second Workshop of the Initiative for
the Evaluation of XML Retrieval, pages 81–88. Mar. 2004.

15. K. Hatano, H. Kinutani, M. Yoshikawa, and S. Uemura. Information Retrieval
System for XML Documents. In Proc. of the 13th International Conference on
Database and Expert Systems Applications, volume 2453 of LNCS, pages 758–767.
Springer, Sep. 2002.

16. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search on
XML Graphs. In Proc. of the 19th International Conference on Data Engineering,
pages 367–378. IEEE CS Press, Mar. 2003.

17. K. Kageura. The Dynamics of Terminology. John Benjamins, 2002.
18. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length Normalization in XML

Retrieval. In Proc. of the 27th Annual International ACM SIGIR Conference on
Research and Development in Informaion Retrieval, pages 80–87. ACM Press, July
2004.

19. M. Kaszkiel and J. Zobel. Passage Retrieval Revisited. In Proc. of the 20th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 178–185. ACM Press, July 1997.

20. J. Nielsen. Do Websites Have Increasing Returns? http://www.useit.com/

alertbox/9704b.html, Apr. 1997. Jakob Nielsen’s Alertbox for April 15, 1997.
21. D. Shin, H. Jang and H. Jin. BUS: An Effective Indexing and Retrieval Scheme

in Structured Documents In Proc. of the 3rd ACM Conference on Digital libraries
(DL’98), pages 235–243. June 1998.

22. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A Path-Based
Approach to Storage and Retrieval of XML Documents using Relational Databases.
ACM Transactions on Internet Technology, 1(1):110–141. June 2001.

http://www.useit.com/
alertbox/9704b.html

	Introduction
	Research Issues
	Analysis of INEX Test Collection
	Properties of XML Fragments
	Experiments Using INEX 2004 Relevance Assessment
	Discussion About the Method

	Implementing XML Fragment Retrieval System on Relational XML Database
	An Overview of XRel
	Supporting IR Queries in XRel
	Discussions About the Implementation

	Conclusion

