
The Utrecht Blend: Basic Ingredients for an
XML Retrieval System

Roelof van Zwol, Frans Wiering, and Virginia Dignum

Centre for Content and Knowledge Engineering,
Utrecht University,

Utrecht, The Netherlands
{roelof, frans.wiering, virginia}@cs.uu.nl

Abstract. Exploiting the structure of a document allows for more pow-
erful information retrieval techniques. In this article a basic approach
is discussed for the retrieval of XML document fragments. Based on
a vector-space model for text retrieval we aim at investigating various
strategies that influence the retrieval performance of an XML-based IR
system.

The first extension of the system uses a schema-based approach that
assumes that authors tag their text to emphasise on particular pieces
of content that are of importance. Based on the schema used by the
document collection, the system can easily derive the children of mixed
content nodes. Our hypothesis is that those child nodes are more impor-
tant than other nodes.

The second approach discussed here is based on a horizontal frag-
mentation of the inverse document frequencies, used by the vector space
model. The underlying assumption states that the distribution of terms
is related to the semantical structure of the document. However, we ob-
served that the IEEE collection is not a good example of semantic tag-
ging.

The third approach investigates how the performance of the retrieval
system can improve for the ’Content Only’ task by using a set of a-priori
defined cut-off nodes that define ‘logical’ document fragments that are
of interest to a user.

1 Introduction

The upcoming XML standard as a publishing format provides many new chal-
lenges. One of these challenges, the scope of INEX [2], is the retrieval of struc-
tured documents. This requires new techniques that extend current developments
in text retrieval. Not only should an XML retrieval system be equipped with an
adequate text retrieval strategy, it is also required that the system is capable to
include the document structure into the retrieval process.

The structure of the XML document is not only used to refine the query
formulation process, it also allows to retrieve more accurate the relevant pieces
of information that a user is interested in. For the ad hoc track of INEX, two

N. Fuhr et al. (Eds.): INEX 2004, LNCS 3493, pp. 140–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 141

tasks are defined that examine these aspects: the Content Only (CO) task and
the ‘Vague Content and Structure (VCAS) task [5]. The aim of both tasks is to
retrieve relevant document fragments. The difference lays in the query formu-
lation. The CO task uses only a keyword specification, as commonly used for
text retrieval and the well-known Internet search engines. The VCAS task, how-
ever, alsouses the document structure for the query formulation, using the NEXI
specification [9]. NEXI is an Xpath-like query language, that allows both struc-
tural and content-based constraints to be specified for a typical user information
request on a structured document collection.

The challenge is thus to build the best content-based XML retrieval system
that allows for the retrieval of relevant text fragments, while taking the structure
of the XML documents into account. Our personal aim is more modest, since we
are primarily interested in the effect of our hypothesis on the retrieval perfor-
mance of an XML retrieval system. Therefore we have built a retrieval system,
that is based on the vector space model for text retrieval and use a strict inter-
pretation of the structural constraints, formerly referred to as the strict content
and structure (SCAS) task [3].

We have three hypothesis that we want to put to the test. First of all our
aim is to investigate whether the retrieval performance of our default XML
retrieval system can be improved by taking into account that the author uses
markup (structure) to emphasise on particular pieces of text that are of extra
importance, i.e. bold/italic text, itemised lists, or enumerations. Focusing on
the XML structure, examples of these text fragments are typically found within
mixed-content nodes. The content model of a mixed-content node contains a
mixture of text and child-elements. Using the DTD or XML-schema definition
the content type of nodes can easily be determined. In this article we refer to
this as the schema-based run.

Another hypothesis that we want to investigate here, takes into account that
some terms will occur more often within certain XML document fragments, than
in other document fragments. We expect that adjusting the term weights by tak-
ing this distribution into account will increase the performance of the ranking
of the retrieval strategy. This hypothesis has already been tested successfully
in the context of XML and semantical schemas [10]. The vector space model
consists of two components: a document statistic, i.e. the term frequency (tf),
and a collection statistic, i.e. the inverse document frequency (idf). These two
statistics are calculated for each term in the document collection. However, the
inverse document frequencies are no longer calculated over the entire document,
but for small text fragments. Assume now that some terms occur less frequently
in abstract, than in other parts of the document. As a result the idf, and thus
the term weight, of those terms is valued relatively low compared to other terms
in the abstract. Using a fragmented document frequency, where the idf is calcu-
lated per XML element name corrects this problem. Our experience is that for
semantically tagged XML documents an increase in retrieval performance can
be achieved, when the query consists of two or more query terms [10]. We refer
to this approach as the fdf run.

142 R. van Zwol, F. Wiering, and V. Dignum

The third hypothesis focuses on the CO task. For the CO task it is not
specified in the query, which document fragments should be returned by the
system. Returning entire documents as the result of a query will result in a low
performance according to the specificity quantisation [4], since it is likely that
only small portions of the XML document will contain relevant information. To
deal with this we have defined a cutoff node set, that consists of XML elements
that provide a partial logical view on the XML document. When retrieving XML
document fragments this node set is used to return smaller fragments, that have
a higher specificity of the content in relation to the query terms. We refer to this
strategy as the cutoff run.

1.1 Organisation

In the remainder of this article we first discuss the approach used to index
the XML collection in Section 2. In Section 3 the different retrieval strategies
for querying XML documents is discussed for the different runs that we have
submitted for INEX 2004. The results of our system are presented in Section 4,
together with the unofficial runs that we computed with improved performance
of the vector space model. Finally we come to our conclusions in Section 5.

2 Indexing the XML Collection

To index the IEEE XML document collection the XML structure of each doc-
ument is analysed and a text retrieval strategy is implemented. In Section 2.1
the indexing of the index structure is discussed, while in Section 2.2 the text
retrieval component is described.

2.1 Processing XML Structures

To index the XML collection the structure of each document is analysed as
follows. The nodes are numbered using the method described in Table 1. This
resembles an approach adopted by others [6], however we have chosen not to
number the individual terms within a text fragment, but to refer to a text
fragment as a whole.

Furthermore we keep track of parent-child relations for each node. All node
information is stored in the Element table, as shown in Table 2. This table

Table 1. XML example illustrating the numbering of nodes

<ElementA>1

TextFragmentA2

<ElementB>3TextFragmentB4</ElementB>5

<ElementC>6TextFragmentC7</ElementC>8

<ElementB/>9

TextFragmentD10

</ElementA>11

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 143

Table 2. Internal data structure

Document

id uri

Element

id name parent document path start end

Textfragment

id parent position length document

Term

content fragment tf tfidf

contains the following information about element nodes: A unique id, the element
name, a reference to its parent, a pointer to the document containing the element,
and the unique path leading to the element node. Finally, for each element node
the start and end positions are stored, as explained above.

Whenever the indexer encounters a text fragment, a new id is generated and
stored in the table TextFragment. A reference to the parent node, its position
in the document, the number of terms, i.e. the length, and a pointer to the
document URI is stored. The text fragment is then handed to the text indexer.

2.2 Processing Text Fragments

The text retrieval component of our indexing system is based on vector space
model [1]. This component analyses the rather small text fragments according
to the following steps:

– pre-processing. A number of basic text operations are called during the
pre-processing step. Among these are lexical cleaning, stop word removal
and stemming [1].

– indexing. Using a bag of terms approach the frequencies of the terms occur-
ring in the text fragment are calculated. After processing a text fragment, all
the terms are stored in the Term table. For each term, its content, a reference
to the corresponding text fragment and the term frequency is stored in the
database.

– post-processing. Once all documents have been indexed the collection
statistics are calculated. For each unique term in the collection the inverse
document frequency is calculated as:

idf(t) = log(
N

n(t)
), (1)

with N being the total number of unique terms, and n(t) the number of text
fragments in which term t occurs.

Later on, we also used a normalised tf factor [8]. The ntf factor reduces
the range of the contributions from the term frequency of a term. This is

144 R. van Zwol, F. Wiering, and V. Dignum

done by compressing the range of the possible tf factor values. The ntf factor
is used with the belief that mere presence of a term in a text should have a
default weight. Additional occurrences of a term could increase the weight
of the term to some maximum value. To compute this factor we used:

ntf(t) = 0.5 + 0.5 ∗ tf(t)
max tf(t)

(2)

tf(t) contains the raw term frequency for the term, while max tf(t) provides
the maximum term frequency found in that text fragment.

The tfidf for each term in Term is then calculated as:

tfidf(t) =
tf(t) ∗ idf(t)

l
(3)

Where l is the length of the text fragment. Please note that this is not
a standard way to normalise the term weights for the length of the text
fragments.

3 Querying the XML Collection

For INEX we submitted six runs, as discussed below. They all use the same
vector space model, with the exception of the fdf runs. Furthermore, we believe
that this implementation of the vector-space model leaves plenty of room for im-
provement. When discussing the results, we will show some simple modifications
that improve the retrieval performance of our system. Our interest in this exper-
iment focuses mainly on the effect of using different XML-based mechanisms for
calculating the relevances of the document fragments retrieved by our system.
The official runs computed for the INEX 2004 topic set are described below.

3.1 Content and Structured XML Retrieval

The so called vague content and structure (VCAS) topics are defined using the
NEXI specification [9]. Our system implements the NEXI grammar for these
types of topics and evaluates the NEXI queries by following the path expressions
and narrowing down the possible set of results. In fact our system enforces
that the path constraints defined by the topic are computed in a strict fashion,
according to the SCAS specification. We computed the following three runs for
the VCAS ad hoc task:

– 33-VCAS-default. Our default approach to compute a ranking of the re-
trieved documents simply determines a set of possible document fragments
for the first structural constraint, and assigns a textual relevance of ‘0’ to
them. If a filter clause is available, this set is narrowed down, according to the
conditions defined in the filter. If an about-clause is defined within that filter,
a relevance ranking of the document fragments is obtained by the system.

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 145

Table 3. NEXI example: INEX 2004, topic 132

//article[about(.//abs, classification)]//sec[about(., experiment compare)]

This basic approach is followed for all VCAS runs submitted. The variance
between the runs is determined by the implementation of the about-clause.
Consider for example the following NEXI-query, presented in Table 3.

During the first step a set of article-fragments is retrieved, having a
relevance score of ‘0’. The next step is to evaluate the about-filter, narrowing
down the set of articles to those containing an abstract, which contains
the word ‘classification’. The relevances computed by the about function are
then summed and associated with the corresponding article-fragments. For
this set, the second path-constraint is computed, which in this case results
in a set of sec-nodes, which inherit the relevances computed for the parent
article nodes. Again the about-filter is evaluated and the relevances are
added to the existing relevance scores of the retrieved sec nodes.

For the default run the relevances for the document fragment are simply
calculated by filtering all the relevant terms from the TERM table, using only
the positive query terms. The relevance for each document fragment, defined
in the offset of the about clause, is then calculated by summing over the terms
of the text fragments that are contained within the start- and end position
of the document fragment.

– 33-VCAS-schema. The structural constraints for this run are computed
similar to the default run. However the about function uses a weighing func-
tion, that increases the weight of those nodes which are considered of more
importance.

The underlying hypothesis is that authors writing text use markup to
emphasise on particular pieces of content that they find of more importance.
Simple examples are those text fragments containing bold and italic text. A
reader’s attention is automatically drawn whenever a bold or italic text frag-
ment is seen. In XML, this markup is typically found within mixed-content
nodes. Mixed content nodes are nodes that allow both text fragments and
additional markup to be used in a mixed context. In our case, we are inter-
ested in the set of child nodes found within such mixed-content nodes. Using
the DTD, or XML-schema definition this node set can be easily computed.
To compute the relevances of the XML document fragments the system first
has to derive the set with text fragments containing relevant terms. If one
or more ancestor nodes are contained in the set with mixed-content nodes a
multiplication factor, i.e. 2, 4, 8, or . . ., is added to the weight of that text
fragment, depending on the number of mixed-content nodes that are found.
Next, the relevance for each document fragment is calculated by summing

146 R. van Zwol, F. Wiering, and V. Dignum

over the terms of the text fragments that are contained within the start- and
end position of the document fragment.

– 33-VCAS-fdf. This run uses an alternative way of calculating the term
weights. The vector space model uses a combination of two statistics to cal-
culate the term weights, i.e. the term frequencies and the inverse document
frequencies. The inverse document frequency is a collection measure, that
determines how frequently a term occurs in different documents of the col-
lection. For the ’fragmented document fragments’-run (fdf) we have used a
fragmented version of the inverse document frequencies (ifdf).

The underlying assumption for this fragmentation is that if the XML
structure of the document is not merely based on presentation, but defines
a semantic structure for the content contained in the document, it is likely
that some terms, associated with the semantic structure will appear more
often in certain document fragments than other terms.

For example, in text fragments discussing cultural information about a
destination, the term ‘church’ is more likely to appear, than in text fragments
that discuss sports activities1. Consider now the following information re-
quest: ‘Find information about basketball clinics in former churches’, the
term church is an important query term in this search, however the idf for
the query term ‘church’ will be relatively low if the document collection con-
tains both cultural- and sports descriptions of destinations. We have found
that the retrieval performance improves significantly [10], when using the
fdf approach. The retrieval strategy, based on the ifdf, is capable of ranking
the relevant documents higher in the ranking, if the query consists of two or
more query terms. In fact, increasing the amount of query terms will result
in a higher retrieval performance.

3.2 Content Only XML Retrieval

For the CO task we have defined four runs.

– 33-CO-default. The content only runs are mainly driven by the text re-
trieval component. The positive query terms defined for each content only
topic are used to find relevant text fragments. The term weights found in
each text fragment are summed over the corresponding parent node of each
text fragment.

In the next step the result set is grouped and summed per document. As
a result the smallest common document fragment that can be retrieved for
each document is returned as the result of a query. This approach ensures
that no redundancy is possible between the document fragments retrieved
by the system.

This approach has two advantages: no redundancy in the retrieved doc-
ument fragments, and the retrieved fragments should score high on the ex-

1 This example is based on the Lonely Planet collection, where the tagging of content
is semantically organised[10].

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 147

haustiveness measure. This also introduces the drawback of this approach:
together with the relevant information a lot of ‘garbage’ is retrieved, result-
ing in poor performance from a specificity point of view.

– 33-CO-schema. This run is a combination of runs 33-CO-default and 33-
VCAS-schema. It uses the multiplication scheme for the children of the
mixed-content nodes, and the combinational logic as defined for the de-
fault approach described above. In this way, for each document the smallest
document fragment is returned that contains all relevant text fragments.

– 33-CO-cutoff. From a user point of view not all document fragments that
can be retrieved are logical units. To facilitate this, we have defined a set of
nodes that provide the users logical document fragments. The aim here is
to find a balance between the exhaustiveness and specificity measures. For
the IEEE collection we have defined a cutoff-node set containing five nodes:
fm, abs, sec, bib, article. The article element forms the root node of many
documents and should always be there, to prevent losing documents from
the result set.

After retrieving the relevant text fragments, the parent nodes are re-
trieved and (child) results merged into larger document fragments, until a
node is found that is contained in the set with cutoff-nodes.

– 33-CO-fdf.2 This run is also a combination of two other runs: 33-VCAS-fdf,
and 33-CO-default. Instead of the default tfidf weights this run uses the tfifdf
index, as explained in Section 3.1

4 Results

In this section we will first present the results CO task and then the results for
the VCAS task. Before diving into the evaluation of the results, we have two
issues to address that highly affected the retrieval performance. First of all, we
did not allow overlapping elements in the result set, and secondly we used a
SCAS interpretation, which also reduces the possible candidate elements for the
resultset. All plots and measures were calculated using the on-line evaluation
tool [7].

4.1 CO Task

We first discuss the results of the official run for the CO task in Section 4.1. To
improve on the performance for the CO task we need a better retrieval strategy
for the text retrieval component.

Official Runs. Figure 1 gives an overview of the performance of our CO runs.
The CO-default-run performed best when evaluated using the strict quantisation

2 For the official INEX runs, this approach was left out, since only six runs per par-
ticipant were permitted.

148 R. van Zwol, F. Wiering, and V. Dignum

INEX 2004: CO-default

quantization: strict; topics: CO
average precision: 0.0010

rank: 62 (69 official submissions)

INEX 2004: CO-schema

quantization: e3s32; topics: CO
average precision: 0.0192

rank: 45 (69 official submissions)

INEX 2004: CO-cutoff

quantization: s3e32; topics: CO
average precision: 0.0009

rank: 62 (69 official submissions)

Fig. 1. Official runs for the CO task - best performances

measure. Slightly better performed the run CO-schema, while using the e3 s32
quantisation, which illustrates that this approach is best used, when searching
for exhaustive document fragments. On the other hand, the CO-cutoff -run per-
formed best for the s3 e32 quantisation measure. This was expected, since the
aim of this approach was to return smaller logical document fragments, that
would score better on the specificity scale.

These aspects are better illustrated in Figure 2, 3, 4, and 5. The average
over all RP measures is showed in the top-left corner. On average, the best
performance with the official runs was obtained with CO-schema, while the CO-
cutoff -run performed worst. Surprisingly however, the run CO-cutoff performed
best when looking at the expected ratio of relevance (bottom-right) for the gen-
eralised recall, and slightly better when evaluation is based on the specificity
quantisation. The top-right graph shows that for the CO task, it makes sense to

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 149

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average over all RP measures

CO-schema
CO-cutoff

CO-default

Fig. 2. Official runs for the CO task (a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over e3-s32

CO-schema
CO-cutoff

CO-default

Fig. 3. Official runs for the CO task (b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over s3-e32

CO-schema
CO-cutoff

CO-default

Fig. 4. Official runs for the CO task (c)

150 R. van Zwol, F. Wiering, and V. Dignum

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600

Generalised recall

CO-schema
CO-cutoff

CO-default

Fig. 5. Official runs for the CO task (d)

INEX 2004: VCAS-default

quantization: s3e32; topics: VCAS
average precision: 0.0219

rank: 37 (52 official submissions)

INEX 2004: VCAS-schema

quantization: e3s32; topics: VCAS
average precision: 0.0218

rank: 38 (52 official submissions)

INEX 2004: VCAS-fdf

quantization: s3e32; topics: VCAS
average precision: 0.0221

rank: 36 (52 official submissions)

Fig. 6. Official runs for the VCAS task - Best performances

The Utrecht Blend: Basic Ingredients for an XML Retrieval System 151

include the markup added by the author to emphasise certain terms in the text
into the ranking process.

4.2 VCAS Task

Figure 6 gives an overview of the performance of our VCAS runs. The VCAS-
default-run performed best when evaluated using the s3e32 quantisation mea-
sure. Not surprising, since the implementation of our system uses the strict
content and structure approach. The same is true for the VCAS-fdf -run. For
the VCAS-schema-run the best performance is gained using the exhaustiveness
quantisation measure. The differences between the runs however are marginal.

5 Conclusions

Our goal within INEX was to investigate the influence of the three hypothesis
on the retrieval performance. Obviously our system does not belong to the top
performing systems. This is mainly caused by two important factors: we did not
allow overlapping elements in the result set, and we used a SCAS interpretation,
which also reduces the possible candidate elements for the result set.

The comparison the schema-based run with thedefault run, clearly showed
that if authors use markup to emphasise on particular pieces of content that
they find of more importance, it makes sense to increase the weights of those
document fragments to improve the retrieval performance. The results show that
more relevant document fragments are ranked higher in the result list.

On the other hand we can increase the specificity of the retrieved document
fragments, by using a so called cutoff node set. The system then returns smaller
document fragments that are more relevant for the given topic. Whereas our de-
fault run returns rather large document fragments, containing the all the relevant
document fragments of one physical document.

Finally, the runs that were using the fragmented document frequencies (fdf)
did not increase the retrieval performance of our system. We feel that this is
mainly caused by the absence of a semantical markup of the content of the IEEE
document collection. However, many of the XML document collections that are
currently available are based on logical and presentation tagging, rather then
semantical tagging. Extending these documents with a semantical markup, will
allow for more meaningful structured document retrieval. Besides that we expect
that the retrieval performance for the FDF run will also improve, as shown in
the past for different document collections.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
1999.

2. N. Fuhr, N. Kazai, and M. Lalmas. INEX: Initiative for the evaluation of XML
retrieval. In In Proceedings of the ACM SIGIR 2000 Workshop on XML and
Information Retrieval, 2000.

152 R. van Zwol, F. Wiering, and V. Dignum

3. N. Fuhr, S. Malik, and M. Lalmas. Overview of the initiative for the evaluation of
xml. In In Proceedings of the Second INitiative for the Evaluation of XML Retrieval
(INEX) Workshop, pages 1–11, Decmber 2003.

4. G. Kazai. Report of the inex’03 metrics working group. In In Proceedings of the
Second INitiative for the Evaluation of XML Retrieval (INEX) Workshop, pages
184–190, Dagstuhl, Germany, 2003.

5. M. Lalmas and S. Malik. Inex 2004 retrieval task and result submis-
sion specification, June 2004. http://inex.is.informatik.uni-duisburg.de:2004/
internal/pdf/INEX04 Retrieval Task.pdf.

6. J. A. List and A. P. de Vries. CWI at inex 2002. In Proceedings of the First
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX), 2002.

7. S. Malik and M. Lalmas. http://inex.lip6.fr/2004/metrics/official.php, 2004.
8. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5):513–523, 1988.
9. A. Trotman and R. A. O’Keefe. The simplest query language that could possibly

work. In Proceedings of the Second Workshop of the INitiative for the Evaluation
of XML retrieval (INEX), 2004.

10. R. van Zwol. Modelling and searching web-based document collections. Ctit ph.d.
thesis series, Centre for Telematics and Information Technology (CTIT), Enschede,
the Netherlands, 26 April 2002.

	Introduction
	Organisation

	Indexing the XML Collection
	Processing XML Structures
	Processing Text Fragments

	Querying the XML Collection
	Content and Structured XML Retrieval
	Content Only XML Retrieval

	Results
	CO Task
	VCAS Task

	Conclusions

