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Abstract. In existing component models, control originates in components, and
connectors are channels for passing on the control to other components. This
provides a mechanism for message passing, which allows components to invoke
one another’s operations by method calls (or remote procedure calls) either di-
rectly or indirectly via a channel such as a bus. Thus components in these models
mix computation with control, since in performing their computation they also
initiate method calls and manage their returns, via connectors. Consequently, in
terms of control, components are not loosely coupled. In this paper, we propose
exogenous connectors, and demonstrate their use in a small example. In con-
trast to connectors in existing component models, exogenous connectors initiate
calls and manage their returns, and are used to encapsulate control in a compo-
nent model we are working on. In the example, we demonstrate the feasibility
of exogenous connectors, and compare them with connectors in closely related
architecture description languages.

1 Introduction

Components and connectors are the basis of many software component models. Ar-
chitecture Description Languages (ADLs) [22] have always defined software systems
in terms of components (boxes) and connectors (lines) that link components and thus
define relationships between them. More recently, UML 2.0 [19] also uses connectors
to compose components. Even component models that do not use connectors explicitly
often have composition operators that can be interpreted as connectors at different lev-
els of abstraction. Lower-level connectors act as wiring mechanisms, while higher-level
connectors can correspond to sophisticated protocols or control structures. For example,
direct method calls between components may be regarded as code-level connectors, and
glue code or scripts [21] that combine components can be regarded as interface-level
connectors. A large and detailed taxonomy of software connectors can be found in [16].

In existing component models, connectors are meant to encapsulate interaction or
communication while components are meant to encapsulate computation. In these mod-
els, control originates in components, and connectors are channels for coordinating the
control flow (as well as data flow) between components. This provides a mechanism
for message passing, which allows components to invoke one another’s operations by
method calls (or remote procedure calls) either directly or indirectly via a channel such
as a bus. Thus components in these models mix computation with control, since in

� Partially supported by CoLogNet, a European Network of Excellence funded by IST FET.

G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 90–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Exogenous Connectors for Software Components 91

performing their computation they also initiate method calls and manage their returns,
via connectors. Consequently, in terms of control, components are not loosely coupled.
In particular, although they encapsulate communication, connectors do not encapsulate
control: they only pass it on.

In this paper, we introduce exogenous connectors. These connectors are different in
that they encapsulate control flow between components totally, i.e. they originate and
coordinate all control. This means that components do not invoke methods or proce-
dures in other components via these connectors; rather, this is done by the connectors.

Our main motivation for using exogenous connectors is to encapsulate control in
a component model we are working on, in order to minimize coupling between com-
ponents. In our model, components encapsulate data and functions, and are therefore
loosely coupled in terms of these. Using exogenous connectors to encapsulate con-
trol completes the encapsulation that we wish to achieve, and thereby maximizes loose
coupling, i.e. in terms of data, functions and control. A corollary of such complete
encapsulation in our component model is that reasoning about components and their
composition should become more tractable and hence practicable. This offers hope that
our component model could have the capability for predictable assembly [23].

2 Exogenous Connectors

In this section, we introduce exogenous connectors as defined in our component model.
By way of contrast, we first consider connectors in current component models, and
briefly assess them for encapsulation and loose coupling.

Connectors in current component models fall into two main categories: (i) con-
nectors that represent composition by direct message passing; and (ii) connectors that
represent composition by indirect message passing. In these models, components are
usually software units (typically classes or objects) with their own methods or func-
tions which can be invoked by other components either directly by method calls or
indirectly via code that links the components together.
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Fig. 1. Connecting components by direct message passing.

2.1 Connecting Components by Direct Message Passing

Connecting components by direct message passing is illustrated in Fig. 1. For conve-
nience we borrow the dot notation from object-oriented languages for components and
their methods. For example, in Fig. 1, if component A calls the method a of component
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B, then it does so by passing a message directly to B. In a message passing scheme,
there are two distinct roles: the sender and the receiver of a message. The identity of the
receiver is either statically known to the sender or it is dynamically evaluated at execu-
tion time. Sometimes there can be more than one receiver, as for instance, the message
may be multi-cast to several receivers or broadcast to all receivers in the system. From
the sender’s point of view, the identity of the intended receiver is known a priori, but the
receiver does not have to know the sender at all. Thus the send operation is generally
targeted by the sender at a specific set of receivers. Remote Procedure Calls (RPC),
method and event delegation are well-known examples of message passing schemes.
Software component models that adopt message passing schemes as composition oper-
ators are Enterprise JavaBeans [13], CORBA Component Model [20], COM [8], UML
[19] and KobrA [6].
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Fig. 2. Connecting beans by direct method calls in Enterprise JavaBeans.

For example, in Enterprise JavaBeans (EJB), the beans are Java classes in an EJB
container that are connected by direct method calls, as illustrated by the example in
Fig. 2. Even client applications are connected to the beans by method calls via the
EJB container. In general, when components are connected by direct message passing,
communication expressing control is mixed with computation, and sender components
and their receivers are tightly coupled with each other. The worst problem in this regard
is reentrant calls, when a method y called by a method x calls x itself. Also, there is
no explicit code for connectors, since messages are ‘hard-wired’ into the components,
and so these connectors are not separate entities and therefore cannot be reused. In
particular, they cannot be pre-defined and deposited in a repository.

2.2 Connecting Components by Indirect Message Passing

Connecting components by indirect message passing is illustrated in Fig. 3. Here, con-
nectors are separate entities that are defined explicitly. Typically they are glue code
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or scripts that pass messages between components indirectly. To connect a component
to another component we use a connector that when notified by the former invokes a
method in the latter. For example, in Fig. 3, component A is connected to component
B by connector Con1, so whenever A sends a message to notify Con1, the latter passes
a message to component B to invoke method a in B. In JavaBeans [9], for example,
beans are connected precisely in this way, using adaptor classes as connectors. This
kind of connector is at a slightly higher level of abstraction (and indirection) than direct
method calls, but is nevertheless still rather low-level, since it essentially glues or wires
components together.
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Fig. 3. Connecting components by indirect message passing.

More abstractly, when connected by indirect message passing, components can be
viewed as computational units with in and out ports, and connectors connect matching
ports to pass control as well as data between components. For example, in Fig. 3, com-
ponent A has two out ports, B has one in port, and the connector Con1 connects one of
A’s out ports to B’s in port. In ADLs, components are connected together by connectors
via ports in precisely this way. For example, in Acme [12], Fig. 3 would be drawn as
Fig. 4 (a), where ports are represented by triangles and connectors by two lines joined
by a black dot.
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Fig. 4. Connecting components in ADLs.

In ADLs, a component represents a primary computational element and data store
of a system. The interface of a component is defined as a set of ports through which
its functionalities are exposed. Components are connected by connectors that link their
ports. The connectors mediate the communication and coordination activities among
components. Typical connectors in ADLs are pipes used by components to pass infor-
mation from one to another. Such information may be simple data values or messages
for invoking methods.
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In messaged-based ADLs, it is possible to have a still higher level of abstraction of
indirect message passing. This is exemplified by C2 [25], where components are linked
to a bus, and messages can be passed between components by broadcasting1 them on the
bus. For example, in C2, Fig. 3 would be drawn as Fig. 4 (b). The links are not directed,
so it is not possible to say explicitly which component calls which. Instead, messages
are placed on the bus and components linked to the bus must determine which messages
are intended for them. Besides JavaBeans and ADLs, other software component models
that adopt indirect message passing schemes are Koala [26], PIN [15] and PECOS [18].

In general, when components are connected by indirect message passing, commu-
nication (connectors) is separated from computation (components). However, this does
not necessarily mean that control is separated from computation, since the information
passed from and to a component may contain method calls. As a result, components are
tightly coupled by connectors.

Although they are separate entities, connectors are usually not intended to be de-
fined and deposited in a repository. Rather, they are pieces of code generated for specific
sets of components. Therefore, these connectors are not reusable. For example in Jav-
aBeans, only beans can be stored in a repository, but not connectors. The latter have to
be generated (automatically by the builder tool) as adaptor classes for each specific pair
of bean instances. In ADLs, both components and connectors are meant to represent
design and not stored in a repository.
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Fig. 5. Connecting components by exogenous connectors.

2.3 Connecting Components by Exogenous Connectors

Using connection by message passing, both direct and indirect, connected components
invoke each other’s methods, so their connection effects control, and possibly data,
flow as well as computation. Connected components are thus tightly coupled, albeit
to a varying degree depending on the level of indirection in the message passing; and
control and computation are mixed up. In order to minimize coupling, and to maxi-
mize separation of control from computation, we propose exogenous connectors which
encapsulate control and data flow between connected components. The idea is that in
connected components, the connectors, rather than the components themselves, initiate
method calls in the components, and handle any accompanying data flow, so that any

1 Other modes of communication are possible in C2, but broadcasting is the most indirect.
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control flow between the components is encapsulated by the connectors. This is illus-
trated in Fig. 5. In such a scheme, connected components react to their connector only,
and not directly with each other. Components encapsulate computation, while the con-
nectors encapsulate control. For example, in Fig. 5, the connector Con1 calls method
a in component A and method c in B, but A and B do not directly interact with each
other. Method calls may be accompanied by data flow between A and Con1 or between
B and Con1, but again not between A and B directly.

Connection Scheme Component Models

Direct message
passing
Indirect message
passing
Exogenous
connection

EJB, CCM, COM, 
UML, KobrA

PECOS, Koala, PIN

Our proposed model

JavaBeans, ADLs,

Control mixed with
computation

Calls initiated from
outside components

Fig. 6. Comparison of connection schemes.

Fig. 6 is a comparison of exogenous connectors with connectors used in existing
component models. It shows clearly the contrast between exogenous connectors and
non-exogenous ones: the former do not mix control and computation, whereas the latter
do; using the former, method calls are initiated from outside components, whereas using
the latter, they are initiated by components themselves. In the component model we are
working on, we plan to use exogenous connectors for composition.

Although no existing component model uses it, exogenous connection has been de-
fined as exogenous coordination in coordination languages for concurrent computation
[3]. Also, in object-oriented programming, the courier pattern [11] uses the idea of ex-
ogenous connection whereby a courier object links a producer-consumer pair of objects
by calling the produce method in the producer object and then calling the consume
method in the consumer object with the result of the produce method.

3 Creating and Using Exogenous Connectors

In a component model we are working on, we want to use exogenous connectors as
composition operators. In this section, we identify the types of exogenous connectors
that we will need, and show how we create and use them in a preliminary implementa-
tion of our component model. First we outline the relevant aspects of our model.

In our component model, a component is a unit of software with (i) an interface
that specifies the services it provides and the services it requires, and the dependencies
between the two sets of services; and (ii) code that implements the provided services. In
essence it is similar to Szyperski’s definition [24]. However, components do not request
services in other components. Rather, they perform their provided services only when
invoked externally by connectors. Thus components encapsulate computation.

Connectors are composition operators that compose components into systems. They
are in essence similar to connectors in ADLs, except of course that they are exogenous.
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They initiate and coordinate method calls in components and handle their results. Thus
they determine control flow and data flow, i.e. they encapsulate communication.

An important feature of our component model is the definition of the life cycle of
components as consisting of two stages: (i) repository, or design, phase, and (ii) deploy-
ment, or execution, phase. In the repository phase, components as well as connectors
have to be constructed, catalogued and stored in a repository in such a way that they
can be retrieved later, as and when needed. Components in the repository are templates
that are stateless. In the deployment phase, components are retrieved from the reposi-
tory, and instantiated with initial data. Therefore components have states and are ready
for execution. Similarly, connectors are retrieved and instantiated, and ready to execute.

In a preliminary implementation of our component model, for simplicity and for
ease of implementation, components and connectors are defined as Java classes in the
repository phase, so that instances can be created and deployed in the deployment phase.
We do not yet address issues related to interfaces or repository management.
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Fig. 7. Example architecture using exogenous connection, and equivalent ADL archi-
tectures.

3.1 Types of Exogenous Connectors

Since, in our component model, objects implementing components are not allowed to
call methods in other components, we need an exogenous method invocation connec-
tor. This is a unary operator that takes a component, invokes one of its methods, and
receives the result of the invocation. To structure the control and data flow in a set of
components or a system, we need other connectors for sequencing exogenous method
calls to different components. So we need n-ary connectors for connecting invocation
connectors, and n-ary connectors for connecting these connectors, and so on. In other
words, we need a hierarchy of connectors of different arities and types. This is illus-
trated by the example architecture in Fig. 7 (c), which represents a system that can be
described in Acme and C2 by the respective architectures in Fig. 7 (a) and (b). In Fig. 7
(c), the lowest level of connectors are unary invocation connectors that connect to sin-
gle components, the second-level connectors are binary and connect pairs of invocation
connectors, and the third-level connectors are of variable arities and types.

In general, connectors at any level other than the first can be of variable arities;
connectors at any level higher than two can be of variable arities and types; and we can
define any number of levels of connectors. Connectors at level n for any n > 1 can be
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defined in terms of connectors at levels 1 to (n − 1), according to the following type
hierarchy (omitting methods and their parameters):

Basic types Component, Result;
Connector types L1 ≡ Invocation ≡ Component −→ Result;

L2 ≡ L1 × . . . × L1 −→ Result;
L3 ≡ L × . . . × L −→ Result

where L is either L1 or L2;· · ·
Thus level-one and level-two connectors are not polymorphic, but connectors at higher
levels are. More formally, for an arbitrary number n of levels, the connector type hier-
archy can be defined in terms of dependent types and polymorphism as follows:

L1 ≡ Component −→ Result;
L2 ≡ L1 × . . . × L1 −→ Result;

For 2 < i ≤ n, Li ≡ L(j1) × . . . × L(jm) −→ Result, for some m
where jk ∈ {1, ...., (i − 1)} for 1 ≤ k ≤ m,

and L(i) =






L1 , i = 1
...

Ln , i = n.

3.2 Implementing Exogenous Connectors

Having defined the types of the hierarchy of connectors for our component model, we
need to find a way to implement connectors of these types in a generic way, such that:
(i) in the repository phase, connector templates can be defined and stored in a reposi-
tory (along with components); (ii) in the deployment phase, connector instances can be
created (and deployed with component instances).

package connectors;
import java.lang.reflect.*;

public void execute (Method m, Object [] params) {}
public void execute (Method[] ms, Object [] params) {}

}

public class Connector {

Fig. 8. The Connector superclass.

We can do so by implementing the connectors as a hierarchy of Java classes, with
a superclass Connector (Fig. 8). The Connector class has two execute methods for ex-
ecuting either a single given method (with its parameters) or a given set of methods
(with their parameters). The Method class in the execute methods of Connector is pro-
vided by Java reflection. It provides the invoke method for calling method instances (see
later). Using the Connector class, we can define a generic connector at any level of the
hierarchy. Such a connector inherits from Connector, and implements the appropriate
execute method(s). Any desired instances of this connector can then be created.
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import java.lang.reflect.*;
public class Invocation extends Connector {
private Object component;
public Object result;

(Object c) { ... }Invocationpublic 
public void execute (Method m, Object [] params) {
this.result = m.invoke(component, params);

} }

(a) (b)

Fig. 9. Level-one (invocation) connectors: design and implementation.

A level-one connector is a unary invocation connector. The general design of level-
one connectors is shown in Fig. 9 (a). Each connector L1Connector (with a unique
Name and a Constructor) connects a single component. It executes a method Exe-
cuteMethod that can invoke any method in that component, and yields a single Result.
This design can be implemented in Java using reflection, as the invocation connector
in Fig. 9 (b). The execute method of the invocation connector uses the invoke method
provided by Java reflection to call the chosen method.
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public class Pipe
import java.lang.reflect.*;

extends Connector {

public Object result;
Pipe

package connectors;

public void execute (Method[] ms, Object [] params) {
public (Invocation[] is) { ... }

private Invocation[] invs;

... invs[0].execute(ms[0], params); tmp = invs[0].result;

this.result = invs[invs.length].result;            }    }
... invs[invs.length].execute(ms[invs.length], tmp);  

(a) (b)

Fig. 10. Level-two connectors: design and implementation.
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import java.lang.reflect.*;

extends Connector {
private Connector[] cons;
public Object result;
public Pipem (Connector [] cs) { ... }
public void execute (Method[] ms, Object [] params) {
... cons[0].execute(ms[0], params); tmp = cons[0].result;
... cons[cons.length].execute(ms[cons.length], tmp);
this.result = cons[cons.length].result            } }
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Fig. 11. Level-m connectors: design and implementation.
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Level-two connectors are n-ary connectors that connect invocation connectors (Fig.
10 (a)). There are different kinds of connectors, with different implementations of their
ExecuteMethods. For example, an n-ary pipe connector, used to pass values succes-
sively from the execution of a method of one component to the input of a method of
the next component, can be implemented in the manner outlined in Fig. 10 (b). Another
example of a level-two connector is a n-ary selector connector that selects one con-
nector to execute. The execute method of a selector would first define how to choose
the connector, before calling the execute method of the latter. Thus, for level-two con-
nectors, the implementation of the execute method is connector-specific. However, the
implementation technique is the same for all these connectors, since they are defined in
terms of level-one connectors, which are implemented using Java reflection.

For an arbitrary level m > 2, connectors are n-ary and connect connectors of levels
lower than m. Unlike level-one and level-two connectors, these connectors are polymor-
phic, so choices have to be made depending on the application in question. In general
the design for level m connectors is shown in Fig. 11 (a), where a connector connects
a list ConnectorList of connectors. Fig. 11 (b) shows the outline of the implementation
of a level-m pipe.

4 An Example: The Bank System

Having defined and implemented the hierarchy of exogenous connectors that we need
for our component model, we now demonstrate their use in a simple application, and
use it to compare our approach with closely related work, viz. the Acme and C2 ADLs.
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P2 P3
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Fig. 12. Architectures of the bank example.

The example we have chosen is a simple bank system, whose architecture is de-
scribed in ACME and C2 in Fig. 12 (a) and (b) respectively. The system has just one
ATM that serves two bank consortia (BC1 and BC2), each with two bank branches (B1
and B2, B3 and B4 respectively). The ATM passes customer requests together with cus-
tomer details to the customer’s bank consortium, which in turn passes them on to the
customer’s bank branch. The bank branches provide the usual services of withdrawal,
deposit, balance check, etc.
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4.1 Implementation Using Exogenous Connectors

In our component model, using exogenous connectors, we implemented the architec-
ture in Fig. 12 (c) for the bank system. The first step is to implement the components,
and the second step is to construct a structure of connectors, i.e. a control structure, to
sit on top of the components. The connector structure is constructed level by level. At
level one, an invocation connector is connected to every component. This enables all
the methods of a component to be invoked. Then at level two, invocation connectors are
connected by level-two connectors which effect appropriate behavior among the com-
ponents connected to the invocation connectors. At level three, level-two connectors
are connected by level-three connectors, and so on. Execution of the system starts at the
connector at the highest level; this connector is the one to initiate control flow.

In our implementation of the bank example (Fig. 12 (c)), components are Java ob-
jects with public methods (that can be invoked by the invocation connectors). These
objects do not call methods in other components.

At level two, there is a selector connector S1 that is used to select the customer’s
bank branch from banks B1 and B2, prior to invoking that branch’s methods requested
by the customer. Similarly, there is a level-two selector connector S2 for choosing be-
tween B3 and B4, prior to invoking their methods requested by the customer. To pass
values from one bank consortium to one of its banks we need a pipe connector; at level
three, we have two pipe connectors P2 and P3, for BC1 and BC2 respectively. At
level four, S3 is a selector connector that selects the customer’s bank consortium from
consortia BC1 and BC2. Finally, at level five, the pipe connector P1 initiates the bank-
ing system’s operational cycle by passing customer requests and card information to the
ATM, invoking the ATM’s methods, and then passing resulting value to connector S3.

import java.lang.reflect.*;
package system;

import java.io.*;
import connectors.*;
public class BankSystem {
public static void main (String[] args) {
// create instances of components
ATM atm = new ATM("1"); ... Bank bank4 = new Bank("4");
// create level−one connectors

// create level−two connectors
Invocation[] invsBank12 = new Invocation[2];
Selector s1 = new Selector(invsBank12);
// create level−three connectors
Connector[] consBC1 = new Connector[2];
Pipem p2 = new Pipem(consBC1); ... Pipem p3 = new Pipem(consBC2);
// create level−four connectors
Connector[] consAB = new Connector[2];
Selectorm s3 = new Selectorm(consAB);
// create level−five connectors
Connector[] consm = new Connector[2];
Pipem p1 = new Pipem(consm);
// Display menu and initiate operations
switch(Integer.parseInt(args[0]))) {
case 1:
System.out.println("Your balance is:");
p1.execute(ms, params);

... Invocation invB4 = new Invocation((Object) bank4));

invsBank12[1] = invB2;invsBank12[0] = invB1;

consBC[1] = p3;consAB[0] = p2;

consm[1] = s3;consm[0] = invATM;

consBC1[1] = s1;consBC1[0] = invBC1;

break; ...                   } } }

Invocation invATM = new Invocation((Object) atm));

Fig. 13. Outline of the code for the bank system.
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Fig. 13 shows the outline of the code for the system. It reflects the hierarchical
manner in which the bank system is built, by constructing the connectors level by level.
We can illustrate the bank system’s behavior by considering the example of a customer
of B3 wishing to withdraw money from his account. First the customer inserts his
card into the teller machine and keys in his PIN code. The P1 pipe connector initiates
the system’s operational cycle by passing the customer information and withdrawal
request to the invocation connector of the ATM component to invoke the appropriate
methods of the ATM for validating customer details and determining the customer’s
bank consortium. If the validation succeeds, P1 passes the bank consortium identity,
BC2 (and the withdrawal request), to the selector S3. S3 selects the pipe P3, which
is connected to BC2. P3 uses the invocation connector for BC2 to invoke a method
for identifying the customer’s bank branch, and passes the result, B3, to the selector S2
connector. S2 selects the invocation connector of B3 to invoke the withdraw method
implemented by B3. The result is then the output of this operational cycle. It can be
output by either the selector S2, or even the component B3.

4.2 Comparison with Acme and C2 Implementations

The implementation of the bank example demonstrates the feasibility of using exoge-
nous connectors (and our component model) to build systems. In order to evaluate our
approach against related work, we implemented the same example using Acme and C2,
and compared these implementations with ours. We chose Acme because it is the most
generic archetypal ADL. We chose C2 because, as a message-based ADL, it uses a
higher level of abstraction of indirect message passing than non-message-based ADLs
such as Acme, as explained in Section 2.2; thus connection in C2 is more indirect than
Acme. These two provide a graded comparison with exogenous connection.

Another reason for choosing Acme and C2 is a practical one, namely that there are
tools for generating implementations from architecture descriptions in these ADLs. The
tools we chose are ArchJava [4,2] and ArchStudio 3 [5] for Acme and C2 respectively.
Both these tools are based on Java, and generate Java code, so they allow easy and direct
comparison with our example.

The main point of comparison is the separation of control and communication from
computation. In our component model, components are supposed to encapsulate com-
putation while exogenous connectors are supposed to encapsulate communication in
general and control in particular. This distinguishes it from existing component models,
in particular ADLs like Acme and C2, as shown in Fig. 6. Our experiment with the bank
example bears this out very well.

At design time, as shown in Fig. 12, Acme and C2 architectures look ‘as exoge-
nous as’ our approach. However, when the architectures are implemented, the resulting
Acme/ArchJava and C2/ArchStudio systems show clearly the mixing of control and
computation, and of computation and communication, whereas our system maintains
their separation. Fig. 14 shows the structure of a BankConsortium (BC) component
in Acme/ArchJava, C2/ArchStudio and our approach, distinguishing between code for
computation, code that mixes computation and control, and code for communication.

In the case of Acme/ArchJava, Fig. 14 (a), components communicate through ports
that must be defined in the component’s class. Required operations are specified in in
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port in{
 requires String[] getCardNo (String[] inResult) ...

public class BankConsortium{
...

// from ATM

}
...

port out{

}

}
...

// towards banks

(c)  Exogenous connection

public class BankConsortium{

...
}

computation

public class BankConsortium extends AbstractC2DelegateBrick{

class BankConsortiumMP implements MessageProcessor{
public void handle (Message m){...
NamedPropertyMessage m = (NamedPropertyMessage)m;

res = (String[])m.getParameter("data");

result = identifyBank(res);

if(m.getName().equals("cardNumber")){

...

(b)  C2/ArchStudio

}

(a)  Acme/ArchJava

communicationcomputation/control

}
...result = in.getCardNo(inRes);
...provides String[] identifyBank (String[] inRes)...

public String[] identifyBank (String[] inResult) ... {

...
if (res[1].equals("1"))

num = "Bank1"
else if (res[1].equals("2"))

num = "Bank2"...
m =  new NamedPropertyMessage("DoOperation");
m.addParameter("data", result);
m.addParameter("bankNo", num);
sendToAll(m, topIface);
}}}

...

}

public String[] identifyBank (String[] inResult) ... {...

}

Fig. 14. Computation, control and communication in the BankConsortium component.

ports and provided operations are defined in out ports. Thus the provided operations are
defined in the communication part of the component, i.e. mixing communication and
computation. Moreover, by definition, the provided operations are defined in terms of
the required operations, i.e. the former will call the latter, thus mixing computation with
control. In the bank example, in the computation part (in the communication part) of the
BankConsortium component, the provided operation identifyBank computes result by
calling the required getCardNo operation named in an in port, and thus directs control
flow to the (connector to the) ATM component, that provides this operation.

In the case of C2/ArchStudio (Fig. 14 (b)) to receive and send messages, a compo-
nent must implement its own message processor. Message processors are objects that
implement a handle method to deal with messages. In the bank example, the BankCon-
sortium component uses the BankConsortiumMP inner class as its message processor.
A message processor must identify messages intended for the component, and deter-
mine and execute appropriate actions upon receipt of such messages, which may in-
clude sending a message with the results of the actions. Here, communication is mixed
up with computation that contains control. In the bank example, the message processor
BankConsortiumMP computes result by calling the identifyBank method in the midst
of its communication code, and thus directing control flow to this method.

By contrast, in our approach, Fig. 14 (c), the separation of computation from control
and communication is maintained. A component has only code for computation. In
the bank example, the BankConsortium component has only code for the identifyBank
method. Communication, and control in particular, is embodied in connectors.

Another point of comparison is the supported patterns of communication, i.e. the
set of connectors provided. Compared to Acme and C2, we have a potentially larger set
of connectors, since our hierarchy of connector types is polymorphic and can be used to
generate any number of kinds of connectors at any level. In contrast, Acme has just one
level of connectors, viz. pipes, for indirect message passing such as remote procedure
calls via components’ ports; C2 uses a bus for connecting components at every level.
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5 Evaluation and Discussion

The example in the previous section provides some useful initial feedback on exoge-
nous connectors. In particular, the comparison of the implementation with those in
Acme/ArchJava and C2/ArchStudio shows that exogenous connectors can offer some
advantages. While it would be unwise to draw general conclusions from one small ex-
ample, it is possible to make some general observations and discuss their import. In
this section we evaluate exogenous connectors and discuss their potential usefulness,
advantages and disadvantages, etc. with respect to CBSE.

The bank example demonstrates the feasibility of using exogenous connectors to
encapsulate communication, in particular control flow. Separating computation from
control means that control flow does not originate from components, but from con-
nectors. So in a system, the components are decoupled from the structure of connectors
which provides the control structure. For system maintenance and evolution, this decou-
pling should make it simpler to manage changes in the components and changes in the
connectors separately. Another advantage should be separation of concerns in reason-
ing about system behaviors. The connectors encapsulate the computational paths, while
the components encapsulate computation. In predictable assembly, this separation of
concerns should make it more tractable and easier to reason about system behavior by
reasoning about control and computation separately.

An important implication of this is that it should be possible to verify compo-
nent properties, e.g. functional correctness, statically and store proven components in a
repository. To this end, we plan to develop components with contracts [17], statically
prove their contract compliance, and then place them in the repository. At deployment
time, the developer can assume the components’ contract compliance, and concentrate
on developing the connector structure, and reasoning about its computational paths.
Again, separating control from computation should make it more tractable and hence
practicable to reason about components and their composition. Such an approach would
make a fundamental contribution to CBSE, since it enables bottom-up assembly of com-
ponents, starting with a component repository. The only existing component models
that support this are Koala [26] and KobrA [6], which have repositories for product-
lines. Our approach is different in that the repository components form a flat tier at the
bottom, and the control structure is built to sit on top, as clearly illustrated by Fig. 12
(c). By contrast, top-down design approaches, e.g. ADLs, do not use components from
repositories, and do not allow composites to be constructed and stored in repositories
for reuse in different applications. In fact, even our exogenous connectors can be stored
in a repository, as we saw in the bank example.

Another practical advantage of exogenous connectors is their hierarchical nature.
This provides a hierarchical way for developing systems, resulting in well-structured
code for the final system, which is easy to understand, and therefore maintain. Adding,
changing and replacing connectors is also made easier. It remains to be seen, however,
whether these advantages pertain, or whether our approach is practical, when the ap-
plication is very large, requiring a very sophisticated and involved control structure. It
would be interesting to investigate the design and implementation of more complicated
exogenous connectors than pipes and selectors, and whether their existence would make
our approach practical for such applications.
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The obvious potential disadvantage of exogenous connectors is a potential prepon-
derance of connectors and connector levels, and hence inefficiency in communication.
In the bank example, the number of levels of connectors is only five. Considering the
architecture is a three-level architecture in Acme and C2, this is not bad. However, we
have not studied how to predict the number of levels, nor the total number, of connec-
tors. Also, to measure run-time performance sensibly, we need much larger examples.

6 Conclusion

In this paper we have presented exogenous connectors, their definition and implemen-
tation, and an example illustrating their use in building a simple system. The key dis-
tinguishing characteristic of these connectors is that they encapsulate control totally,
i.e. control originates from them. This is in complete contrast to most software connec-
tors, which encapsulate communication but not control. In ADLs, for example, control
originates in components, and connectors pass it on to other components, and so on.

Our work on exogenous connectors is at a preliminary stage, however. We have
considered only control flow, but not data flow, beyond passing results of method calls
back to connectors. Data flow needs careful consideration, especially if components
have private databases, or if some but not all components in a system share databases.
In such systems, the precise ways in which global data and local data interact must be
clearly defined and rigorously enforced.

We have not considered concurrency in the connectors either. In fact we have only
used sequential composition. As a result, we cannot address the general issues of ar-
chitectural reasoning, whereby typically connectors provide parallel or asynchronous
communication between components. For example, one such issue is that of “correct
architectures” in the sense of architectures with guaranteed temporal properties such as
deadlock-freedom [14]; another issue concerns consistency between architecture and
code, e.g. [1]. However, by using only sequential composition, we manage to avoid the
problem of synchronization, which is present in even the simplest forms of message
passing, such as direct method calls, when there are competing calls to the same callee.

The connectors we have presented in this paper belong to the deployment phase of
our component model. We are in the process of investigating connectors for the other
phase, the repository phase. In this phase, we want to store components as well as con-
nectors. Our aim is to also allow the construction of composite components, and to
store them in the repository, so as to make the task of composition in the deployment
phase simpler. Top-down approaches such as software architectures do not use compo-
nents from, or store them, in repositories. In ADLs, although they can be constructed
and used at design time, composite components are not stored in repositories. By con-
trast, we want to do so. We believe that in the repository phase, it would be useful to
have connectors that can be used to compose components into subsystems or even com-
plete systems that can be stored in the repository. Such connectors would have to yield
components from those they connect. The invocation connectors, pipes and selectors in
this paper return results rather than components, and are therefore deployment phase
connectors, and cannot be used to build composites in the repository phase.



Exogenous Connectors for Software Components 105

In this paper, we have implemented components as Java classes. This is of course
only for convenience. In our component model, components are not necessarily just
classes. In particular, they have proper interfaces that may not be implementable using
classes in object-oriented programming languages. For example, our interfaces contain
contracts which specify the behavior of the components, apart from the signature of its
operations. These contracts cannot be defined properly in Java using the assert state-
ment, which is the only provision in Java for Design by Contract.

Apart from the issue of interfaces, Java is a good implementation language, or at
least as good as any object-oriented language. Inheritance allows us to define our poly-
morphic connector hierarchy straightforwardly. However, the problems with inheritance
are well-known, not least of which is any form of static analysis, which is important for
reasoning purposes in the repository phase. In particular, inheritance works against our
wish to statically verify component and connector contracts in the repository phase.

For predictable assembly, we believe the use of contracts in the repository phase is
crucial, as is their static verification, and we have started investigating using ESC Java
[10] for both components and connectors. We are also investigating other languages, in
particular SPARK [7], which offer tool support for contracts and their static verification.
Finally, in the longer term, it would be interesting to examine the taxonomy in [16] to
see how widely the idea of exogenous connectors can be applied to that taxonomy.
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