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Abstract. The grid has emerged as a novel paradigm that supports seamless 
cooperation of distributed, heterogeneous computing resources in addressing 
highly complex computing and data management tasks. A number of soft-
ware technologies have emerged to enable "grid computing". However, their 
exact nature, underlying principles, requirements, and architecture are still 
not fully understood and remain under-specified.  In this paper, we present 
the results of a study whose goal was to try to identify the key underlying re-
quirements and shared architectural traits of grid technologies. We then used 
these requirements and architecture in assessing five existing, representative 
grid technologies. Our studies show a fair amount of deviation by the indi-
vidual technologies from the widely cited baseline grid architecture. Our 
studies also suggest a core set of critical requirements that must be satisfied 
by grid technologies, and highlight a key distinction between "computation-
al" and "data" grids in terms of the identified requirements. 

1 Introduction

The grid is an emerging paradigm concerned with enabling heterogeneous organiza-
tional entities to share computing resources (both hardware and software), data, security 
infrastructure, and the like [4]. Additionally, the grid's goal is to allow such organiza-
tions to operate in a coordinated fashion to solve very complex scientific and informa-
tion management problems [4,14].  Because of this, the grid has become an area of sig-
nificant interest to computing researchers and practitioners, and a number of open 
source and standards-based grid infrastructure implementations exist and have com-
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mercial backing.1

Recently, in collaboration with NASA's Jet Propulsion Laboratory (JPL) our re-
search group decided to port JPL's OODT grid technology [6] onto our Prism-MW mid-
dleware platform for mobile and resource constrained devices [25].  The goal was to 
significantly reduce OODT's footprint and "bring the grid into one's pocket".  The ex-

1. For exposition purposes, we will use the phrases "grid infrastructure", "grid technolo-
gy", "grid solution", "grid platform", and "grid system" interchangeably in this paper
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ercise was successful, JPL deemed our prototype, GLIDE, quite promising, and we de-
cided to document the experience in a research paper [5], which we submitted to a 
workshop on middleware technologies.

When we received the reviews for the paper, one particular comment caught our at-
tention.  One reviewer was unimpressed with what we had done in part because, in the 
reviewer's words, OODT "is in itself a very simple class framework"; another reviewer 
also alluded to this!  This was very surprising, given that OODT has been a highly suc-
cessful grid technology, deployed both within NASA and externally with the National 
Cancer Institute, and was the runner-up for NASA's Software System of the Year award 
in 2003.

The grid literature is very rich in general ("reference") requirements a grid platform 
should satisfy [3, 14, 13], and also details its target ("reference") architecture [15, 21]. 
Based on this, we had gone with the assumption that a grid technology can be relatively 
easily distinguished from "something else".  However, a review of the OODT documen-
tation revealed that no such distinguishing features were obviously stated.  We then 
studied the documentation accompanying several other grid solutions and found that the 
same holds for them.  Thus, the comment we received, from experts in the area, raised 
three questions that directly motivated the study on which we will report in this paper:

1. What, in fact, makes a software system a grid technology?
2. What, if any, is the difference between a grid technology, a middleware platform, 

a software library, and a class framework?
3. Are existing systems that claim to enable grid computing bona fide grid technol-

ogies?
In order to answer these questions, we decided to recover, study, and compare the ar-
chitectures of a number of existing grid technologies.  Specifically, we chose five such 
technologies, including Globus, the most widely used grid system, as well as OODT 
and GLIDE, the two systems that prompted our study in the first place. In principle, the 
only requirement in selecting the candidate grid technologies was that they be open 
source.  Since OODT was compared to a class framework, we also decided to restrict 
our study to object-oriented grids.  While we decided to apply a particular software ar-
chitecture recovery technique in our study [23], the technique is representative of a 
number of architectural recovery approaches, and we do not believe that it significantly 
influenced our results.  The recovered architectures were "interpreted" with the help of 
the reference requirements and reference architecture for grid systems we gathered 
from existing literature.

In this paper, we present the details of this study, and the lessons we learned in the 

process.  The overall conclusion of our work has been that grid technologies, including 
OODT and GLIDE, do in fact adhere to a specific architecture and are thus quite differ-
ent from software libraries and class frameworks.  At the same time, our study also re-
vealed that several aspects of the published grid reference requirements and architecture 
are overly general and open ended, so much so that it was at times difficult to imagine 
what a given grid solution would have to do to deviate from them.  Based on this, we 
suggest some improvements to the current state of the practice in grid computing infra-
structures.
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The remainder of the paper is organized as follows.  Section 2 outlines our back-
ground research which resulted in reference requirements and a reference architecture 
for grid systems, and discusses related work in the area of architectural recovery.  Sec-
tion 3 describes the approach we have taken in our study, while Section 4 summarizes 
the results of applying the approach on five off-the-shelf (OTS) grid technologies. Sec-
tion 5 highlights the lessons we have learned in the process and suggests possible future 
work in the area of grids.  We then conclude the paper in Section 6.

2 Background and Related Work

In order to effectively study grid technologies, we needed to identify their overarching 
requirements and shared architectural traits.  The existing grid literature contains four 
separate studies that attempt to provide such information [3, 4, 14, 18].  However, in 
addition to being dispersed, this information was presented in widely differing ways, at 
times ambiguous, influenced or obscured by details of particular grid solutions, and 
even contradictory.  Our task thus consisted of locating, compiling, rephrasing (if nec-
essary), and consolidating the requirements.

Particularly helpful in this task was the seminal study of grids by Kesselman et al. 
[4]. This study provides a rich target set of requirements by exploring a suggested five-
layer grid reference architecture. Each layer in the architecture defines services (i.e., 
software components) that should satisfy particular requirements (including QoS, char-
acteristics, and capabilities) mentioned in the description of the layer. However, many 
of these requirements are not explicitly called out and had to be "distilled" from the text. 
In addition, some requirements overlap, while others span architectural layers. 

A particular class of grid solutions, called data grids, provides services primarily 
targeted at managing data and metadata resources. Chervenak et al. [3] identify four 
guiding principles for data grids: mechanism neutrality, policy neutrality, compatibility 
with grid infrastructure, and uniformity of information infrastructure. However, we 
found the natural language presentation of these principles ambiguous, especially when 
we initially tried to assess the conformance of grid solutions to them. Moreover, there 
is no mapping of the principles to constituent architectural components in grid solu-
tions. We thus had to rephrase and interpret them. Our further research also identified 
additional requirements for data grids involving replica management, metadata man-
agement, and interfaces to heterogeneous storage systems [2, 10]. 

A significant aspect of our work is the recovery of grid platforms' architectures from 
 

their implementations. A number of architecture recovery approaches have been devel-
oped in the past decade (e.g. [7, 9, 11, 12, 29]). They typically analyze dependencies 
among a system's implementation modules (e.g., procedures or classes) to cluster them 
into higher-level components.  A more detailed overview of these approaches can be 
found in [23].

Recently, a series of studies has been undertaken by Holt et al. to recover the archi-
tectures of several open-source applications [15, 19]. Similarly to our approach, the ap-
proach taken in these studies has been to come up with an "as-intended" (i.e., reference) 
architecture by consulting a system's designers and its documentation, and use it as the 
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basis for understanding the system's "as-implemented" architecture recovered from the 
source code. 

Another related architecture recovery approach is Dynamo-1 [20], which focuses 
on middleware-based software applications. It combines the use-case modeling aspect 
of Focus [23], the approach we have adopted in this work, with the filtering and clus-
tering approach of PBS [26]. Dynamo-1 differs from our approach in that its goal is only 
to recover the architectures of the applications hosted on top of the given middleware 
infrastructure, while our goal is to analyze and recover the architecture of the grid in-
frastructure itself. 

3 Approach

The approach that we used in our case studies is depicted in Figure 1. It involves three 

Table 1: Reference Requirements for Grids
Requirement Impacted Layer

1 Share resources across dynamic and geographically 
dispered organizations

Collective

2 Enable single sign-on Connectivity

3 Delegate and authorize Connectivity

4 Ensure access control Connectivity

5 Ensure application of local and global policies Fabric

6 Control shared resources Collective

7 Coordinate shared resources Collective

8 Ensure "exactly once" level of reliability service Connectivity, Application Resource

9 Use standard, "open" protocols and interfaces Collective, Resource, Connectivity

10 Provide ability to achieve non-trivial QoS Application, Resource, Collective

11 Ensure neutrality of data sharing mechanism All layer’s implementation

12 Ensure neutrality of data sharing policy Collective, Resource, Connectivity, Fabric

13 Ensure compatibility with Grid infrastructure Possibly all layers

14 Provide uniform information infrastructure Application, Resource, Collective

15 Support metadata management Resource

16 Interface with heterogeneous storage systems Fabric

17 Provide the management of data replicas Fabric, Resource, Collective
high-level activities. The first activity has two sub tasks (1a and 1b) that were conducted 
only once, and independently of the other activities. The remaining activities (and their 
subtasks) were conducted iteratively in each grid technology we studied. We detail our 
approach below. 

3.1 Reference Architecture and Requirements
After studying the available grid literature as outlined in Section 2, we identified the de 
facto reference architecture for grid systems [4] (Step 1a in Figure 1). The architecture 
consists of five layers, each of which relies on the services of its subordinate layer(s). 
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The application layer represents the software system built using the grid technology, 
and it relies on the functionality for coordinating system resources available via the col-
lective layer. The collective layer coordinates and manages resources exposed at the re-
source layer. The top three layers directly rely on the connectivity layer for secure and 
distributed communication. The bottom layer is the fabric layer, providing standard in-
terfaces to heterogeneous system resources, such as file systems and device drivers. 

In addition to the reference architecture, we also identified a representative set of 
high-level requirements for grids (Step 1b in Figure 1) in the manner outlined in Section 
2. Due to space restrictions, these requirements are only briefly summarized in Table 1. 
We have also identified the reference architecture layer(s) that are likely impacted by 
each requirement.

Both the reference architecture and reference requirements formulate the targets for 
our study and are used to inform our architecture recovery efforts which we describe 
below.

3.2 Architecture Recovery
Architectural recovery (Step 2 in Figure 1) involves automated examination of the 
source code to extract an "as-implemented" architectural model for each grid technolo-
gy. We refer to this model as the recovered architectural model, or RAM. We used the 
Focus architectural recovery approach [23] in this step. Focus was selected because it 
is specifically geared to object-oriented systems, while it has been shown to produce 
comparable results to other recovery approaches.  The key steps of Focus are briefly 
summarized below. Additional details may be found in [23].

Determine Grid
Reference

Requirements

RAM

Application

Fabric

Connectivity

Resource

Collective

Determine Grid 
Reference

Architecture

1a

1b

2

3a

3b

Cluster Recovered 
Components According to 

Reference Architecture

Analyze Conformance to 
Reference Requirements

Recover the 
Architecture

Grid Technology Source Code

Figure 1   Our approach to studying grid technologies.
 

Focus relies on an OTS source code extraction tool (we used Rational Rose in our 
study) to generate class diagrams from the given grid technology's code. Once a class 
diagram has been extracted from the code, a set of automatable clustering rules are ap-
plied iteratively to group individual classes into higher-level components. These rules 
include grouping classes that share aggregation, generalization, and two-way relation-
ships, grouping clusters of classes that are isolated from the rest of the system, identi-
fying "important" classes that have many incoming and outgoing links, and so forth. Fo-
cus identifies two kinds of components: processing and data. It also attempts to identify 
the key communication elements in a system.
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Once these rules cannot be applied on the system's (clustered) class diagram any 
longer, Focus has produced the RAM. It is important to acknowledge that this architec-
tural model may have several limiting properties: 

• The RAM may not be complete - Any clustering-based approach may fail to iden-
tify all system components. The RAM may also ignore component interaction 
characteristics (i.e., connectors). Further, the RAM may not provide any insight 
into the system's legal configurations.

• The RAM may not conform to the system's intended architecture - Over time, the 
system's implementation may have (significantly) deviated from the designers' 
original intentions. This is referred to as architectural drift or erosion [27].

• There is no obvious relationship between the RAM and the system's requirements
- The only input to Focus (and many other architectural recovery approaches) is 
the source code. As such, the recovered architecture does not identify the require-
ments each component is intended to fulfill.

3.3 RAM Reconciliation
At this point, we have the reference requirements and architecture for grid technologies, 
as well as the RAM for the particular grid system. Since the RAM may deviate from the 
reference architecture, the next step in our approach is to reconcile the RAM and the 
reference architecture, i.e., to place the components identified in the RAM into specific 
layers of the architecture (Step 3a in Figure 1).

For each RAM component, we try to identify its counterpart in the reference archi-
tecture.  To do so, we examine (1) any information about the component's functionality 
from the documentation of the grid system under study, (2) the component's relation-
ships with other components, and possibly (3) the description of similar components in 
the grid literature.

Once the decision is made to place a component in a given architectural layer, the 
relationships among the components are examined more closely to identify two types 
of inconsistencies: (1) the grid reference architecture [4] implies that, with one excep-
tion, the layers are opaque, such that components in a given layer can only access serv-
ices of the layer immediately below; and (2) the layered architectural style prohibits 
components from making "up-calls". At this point we also note any additional discrep-
ancies, such as our inability to assign a component to any layers, "invalid" or unexpect-
ed dependencies among components, and so on. 

Finally, since different grid technologies may have different foci (e.g., computa-
tional vs. data grids, or high-performance computing vs. pervasive grids) and may ap-

proach the problem differently, another relevant piece of information is the degree to 
which the reconciled RAM adheres to the reference requirements (Step 3b in Figure 1). 
The goal of this activity is to identify the requirement(s) satisfied by each component, 
including the components we were unable to fit into the reconciled RAM. We again try 
to identify any discrepancies in the placement of components in the architectural layers 
based on the location guidelines shown in the right-hand column of Table 1. 
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4 Case Studies

We have used the approach detailed above to study five different grid technologies, se-
lected based on the following criteria. First, the technology should be open-source be-
cause we needed the ability to perform architectural recovery from the source code. 
Second, the technology should be object-oriented because, as discussed in the Introduc-
tion, one of our objectives was to discover the relationship of grid solutions and class 
frameworks. Third, we required at least some level of documentation to aid us in deter-
mining the functionality of the recovered grid components. We do not feel this require-
ment to be particularly limiting since the documentation could be as simple as an 
HTML page (as was indeed the case with the JCGrid study discussed below). Fourth, 
we wanted to study grid technologies that are used in "legitimate" industrial and/or ac-
ademic projects in order to ensure the relevance of our results.  Finally, we wanted the 
set of studied systems to include OODT and GLIDE because, as discussed in the Intro-
duction, they were the direct motivators for this study. It should be noted that OODT 
does satisfy all of our criteria; however, GLIDE is currently being evaluated and thus 
can be argued not to satisfy the fourth criterion at this time.

In this section, we detail our studies of OODT and Globus, and summarize the re-
sults of the remaining three studies. Additional details on all five studies can be found 
in [22].

4.1 OODT
OODT [6] is a grid infrastructure developed at JPL in support of scientific, data-inten-
sive grid systems. OODT's implementation consists of approximately 14,000 SLOC. 
The initially recovered OODT class diagram, shown in Figure 2, contained 320 classes. 
For the most part, it was a densely connected graph, but it also contained approximately 
40 classes with no recognized relationships to other classes in the system (shown iso-
lated in the bottom-left portion of Figure 2). UML generalization and interface relation-
ships were most prevalent, with many classes implementing at most one interface.

We applied the iterative clustering rules of Focus on the class diagram to arrive at 
the OODT RAM. The RAM comprised 38 processing and data components, along with 
the identified relationships (i.e., connectors) between each component pair. With the 
help of the component descriptions in OODT's conceptual architecture [6], we were 
able to place 24 of the 38 RAM components into the layered grid reference architecture 
with relative ease. The remaining components had to be "shoehorned" by examining ad-
 

Figure 2   Initial class diagram of OODT. Due to its size and complexity, at this 
magnification the diagram is shown only for illustration
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ditional OODT documentation [21] and, in a few cases, the OODT source code. The fi-
nal result of this process is shown in Figure 3. 

Of note is the fact that only one component was placed in the connectivity layer of 
the reference architecture. The reason is that OODT leverages third-party middleware 
platforms (CORBA and RMI) to support distribution, and those are considered external 
to its code base. There are also several deviations from the reference architecture:

1. Several components in the fabric layer (ProductServicePOA, ProductServiceAd-
aptor, and CORBA_Archive_ServicePOA) communicate with the ExecServer
component in the resource layer. The fabric layer components not only cross two 
layer boundaries, but also make up-calls to perform this communication.

2. Components in the application layer (ConfiguraitonBean and SearchBean) com-
municate with the Configuration component in the connectivity layer, crossing 
three layer boundaries. Similarly, the ProfileClient and ProductClient compo-
nents in the application layer traverse two and four layer boundaries, respectively, 
to communicate with their server components.

3. The Utilities component (shown in the upper-right of Figure 3) was identified by 
Focus as comprising classes with no recognizable relationships with other class-
es. We were unable to determine its correct placement in the reference architec-
ture.

Our analysis of the architecture shown in Figure 3 suggests that OODT satisfies most 
of the reference requirements specific to data grids1.  The lone exception is its lack of 

Collective

Application

Connectivity

Resource

Profile

ProfileAttributes ResourceAttributes

ProfileElement

DDMResultParser

QueryEngine

ServerPOA

ServerImpl

DatabaseProfileHandler

Dataset

DatasetDisplayer

PageBean

Configuration

ConfigurationBean

SearchBean QueryClient

Expression

HTTPFormRecorder

Utilities

DatabaseProfileManagerProfileServiceAdaptor

ProductClient

QueryServicePOA

ProfileClient

QueryServiceHolder

ExecServerProfileServicePOA

RMIQueryServiceFactory
1. Recall the discussion in Section 2 and corresponding requirements 11-17 in Table 1.
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Figure 3    Mapping OODT's RAM onto the grid reference architecture
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support for replica management (requirement 17 in Table 1). In addition, OODT fails 
to address two other reference requirements: single sign-on (requirement 2) and "exact-
ly once" level of reliability service (requirement 8). It appears that this stems from 
OODT's reliance on CORBA and RMI for such basic services.

4.2 Globus
The Globus toolkit [14] has been used successfully across a number of projects [2, 4, 8, 
10, 16], and can be considered to be the de facto standard for grid implementations. The 
initially recovered class diagram of Globus is shown in Figure 4 for illustration. Globus 
consists of 864 classes and approximately 55,000 SLOC; it was the largest and most 
complex grid technology that we studied. Similarly to OODT, Globus also has a set of 
classes (around 60) that share no recognizable relationship with any other classes (ap-
pearing at the bottom of Figure 4). 

After applying Focus on Globus' source code, we arrived at the Globus RAM. The 
RAM contained 86 components, 50 of which were identified as data components. Most 
processing components contained at least one relationship, typically a UML associa-
tion, with another class. 

Relying on the documentation that was included with the Globus core distribution 
[28], along with our study of the existing Globus literature [2, 4, 10, 13, 14], we were 
able to place 81 of the 86 Globus RAM components into the layered grid reference ar-
chitecture. This high percentage was unsurprising since Globus is the realization, and 
served as the direct inspiration, of the reference architecture presented by Kesselman et 
al. in [4]. Still, the architecture we recovered did deviate from the proposed reference 
architecture as discussed below.

As shown in Figure 5 most of the components found their way into the resource and 
connectivity layers, while only two components were assigned to the fabric layer. Sim-
ilarly to OODT, Globus also relies on a third-party distributed communication solution: 
Apache's AXIS implementation of the SOAP protocol.  The Globus release includes 

Figure 4    Initial class diagram of Globus.
 

AXIS; hence the large number of components in the connectivity layer. Globus' major 
deviations from the reference architecture are as follows:

1. The Logging component appears to have a home in both the collective and re-
source layers of the reference architecture. Similarly, the Map data component 
that we placed in the collective layer actually permeates several of the other lay-
ers, and may in fact belong somewhere else. Given that it is a basic data compo-
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nent (indeed, implemented as a Hashtable), we could not confidently discern its 
requisite architectural layer.

2. The JavaClassWriter component in the fabric layer appears to be making an up-
call two layers above to the ServiceEntry component in the resource layer. Simi-
larly, the Java2WSDL component in the resource layer is making a two-layer up-
call to the CLOptionDescripton component in the application layer.

3. There were five components, including a Utilities processing component and an 
Exception data component, which we were unable to assign to any layers of the 
reference architecture. This was because the given component appeared to belong 
to more than one layer, we could not find sufficient documentation for it, and/or 
it did not have enough relationships in the RAM to positively classify it to a par-
ticular layer.

Globus addresses the first 10 grid reference requirements identified in Table 1; howev-
er, it does not satisfy all of the remaining requirements, which are specific to data grids. 
In particular, we discovered that Globus does not natively support requirements 14-16. 
These capabilities are provided by components built on top of the Globus grid infra-
structure, such as the Metadata Catalog Service [10], and the Replica Location Service 
[2] components.

4.3 Summary of Remaining Studies
Due to space limitations, we only summarize the remaining three case studies here; their 
complete treatment is provided in [22].

GLIDE [5] is the grid technology that directly motivated our work presented in this 
paper. It is a lightweight grid infrastructure for data-intensive environments. GLIDE's 
goal is to extend the grid paradigm to the emerging decentralized, resource-constrained, 
embedded, autonomic and mobile environments.
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Figure 5    Mapping Globus's RAM onto the grid reference architecture
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Dspace [1] is an open source grid system, jointly developed by MIT Libraries and 
Hewlett-Packard. It is a distributed digital repository system that captures, stores, in-
dexes, preserves, and redistributes the research material of a university in digital for-
mats.

Finally, JCGrid is a computational grid platform developed in Java and available 
via open source on SourceForge [30]. JCGrid allows one to split CPU-intensive tasks 
among multiple workstations. It has been used in several significant applications to 
date.

The implementation sizes of the three technologies ranged from 2,100 SLOC dis-
tributed over 61 classes in GLIDE, to 24,000 SLOC and 217 classes in DSpace. All 
three technologies violated the reference architecture. Some discrepancies include com-
munication spanning the application and connectivity layers in GLIDE, communication 
across all five layer boundaries in JCGrid (the most significant such deviation observed 
in the five case studies), and a component (WorkflowManager) spanning both the col-
lective and resource layers in DSpace.

The task of mapping the components to the reference architecture was relatively 
straight forward in the cases of GLIDE and JCGrid: GLIDE's components were similar 
to OODT's, while JCGrid RAM's 37 components nicely conformed to different archi-
tectural layers. DSpace was much more challenging in this regard: many of its compo-
nents appeared to span several architectural layers and we could not confidently ascer-
tain their appropriate "homes". 

In terms of the reference requirements, one observation was that neither GLIDE nor 
DSpace supports replica management (requirement 17 from Table 1), even though they 
claim to be data grid solutions. Finally, JCGrid's reliance on a GridServer component 
to manage policy and access control does not bode well for its ability to support appli-
cation of local and global policies (requirements 3-5).

5 Discussion

Our objective in conducting this study was to clearly identify what distinguishes a bona 
fide grid technology from other utility software, such as "ordinary" middleware plat-
forms, software libraries, and frameworks.  We believe that we have achieved a quali-
fied success in this endeavor, but that we have also identified several deficiencies in the 
current level of understanding of the grid.  These deficiencies can, in turn, form a co-
herent research agenda for the grid community.
 

Grid technologies can be thought of most appropriately as specialized middleware 
platforms that share a reasonably well defined reference architecture. In other words, 
grid technologies are an example of domain-specific software architectures [17], for the 
domain of grid computing.

As such, grid systems have little in common with software libraries, although they 
may indeed provide useful services in the form of libraries. Similarly, while the imple-
mentation of each of the five technologies we studied may be looked at as a framework 
of object-oriented classes that is specialized and instantiated to solve a particular prob-
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lem, we believe that to be the wrong abstraction in this case.  The fact that a given tech-
nology is designed and implemented in, say, Java is incidental; a number of successful 
grid technologies have in fact been designed and implemented using the procedural par-
adigm and languages (e.g., C).  The key property of a grid technology is its satisfaction 
of a well defined set of requirements via functional services that are distributed across 
five well defined architectural layers.

Of course, as can be gleaned from Section 4, the preceding statement is only par-
tially true.  The existing grid technologies vary widely in the selection of requirements 
they choose to satisfy, as well as in the functional services they provide in the form of 
components.  If we consider the five grid technologies we studied in depth, they covered 
a very broad range in terms of source code size and implementation class complexity. 
For example, GLIDE was implemented in slightly over 2,000 SLOC, while the current 
implementation of Globus is at about 55,000 SLOC. Likewise, GLIDE's entire imple-
mentation comprises 61 classes, while Globus has over 14 times as many.

This discrepancy can be partly attributed to the differences in the design choices and 
foci of the different grid technologies.  For example, Globus subsumes a relatively large 
third-party middleware platform (AXIS) and provides numerous utilities to its users; on 
the other hand, GLIDE leverages a much smaller middleware platform and provides 
only basic grid services. Furthermore, each grid technology we studied differs in the 
adopted distributed communication mechanism, and the type and degree of support pro-
vided to application developers, as summarized in the below table. 

In addition to the above, at least to some extent the discrepancies found across the 
grid technologies are a by-product of the reference requirements each development 
group has chosen to satisfy.  There are currently no guidelines for which requirements 
are mandatory and which are optional.  Based on our study, it appears that requirements 

Communication Mechanism Application Development 
Support

OODT Remote method invocation Object-Oriented
Globus SOAP Publish and Subscribe Web-services based
GLIDE Event-based and 

 publish-subscribe
Software architectural style-based

DSpace Client-server over HTTP Object-Oriented
JCGrid Client-server with asynchronous 

invocation
Object-Oriented
numbered 1, 5-7, and 9-10 in Table 1 are mandatory (i.e., every grid technology must 
satisfy those), while the rest are optional. Moreover, if we consider more carefully the 
intended uses of the grid systems, we can identify a finer distinction, one that pinpoints 
the difference between "computational grid" and "data grid" systems.  As indicated in 
Section 2, this distinction has been widely used in literature (e.g., [3, 4, 10, 18]), but has 
not been carefully explained or justified to date. DSpace's, OODT's, and GLIDE's pri-
mary stated objective is, in fact, to support data grids.  Then, based on the results of our 
studies we hypothesize that requirements numbered 11-12 and 14-17 must be satisfied 
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in addition to the above set of mandatory grid requirements in order to support data 
grids.

If we shift our focus more toward the architectures of the studied grid systems, 
again some interesting observations emerge. Even though these systems vary widely in 
their size, complexity, and specific focus, for the most part their components map rather 
nicely to the five-layer reference architecture. Upon closer inspection, we believe this 
to be true for several reasons that must be addressed by the grid community.

First, the requirements for grid systems are very broad, and generally applicable to 
a number of middleware solutions. Several of the grid requirements involve basic mid-
dleware QoS requirements such as security, dependability, marshalling of data, and the 
use of standard, open interfaces. These requirements give little help in distinguishing a 
grid solution from "something else"; alternatively, given such generally applicable re-
quirements, it is difficult not to provide at least some grid capabilities.

Secondly, there is overlap between grid layers. An example is the difference be-
tween the resource and collective layers, where one layer coordinates individual re-
sources and the other layer multiple resources. In practice, it has been difficult to deter-
mine the layer to which a given component belongs. For example, if only a single re-
source of a given kind exists, in which layer should the corresponding component be 
placed, or do there still need to be two separate components, one in each layer?

Third, grid technologies regularly violate the reference architecture. Specifically, 
nearly all of the grid systems that we studied fail to conform to the restrictions of the 
layered architecture style. Violations include component communication spanning mul-
tiple layers, up-calls, and dependencies between layers that were not specified in the ref-
erence architecture. This is at least in part caused by the haphazard way in which the 
requirements and architectures of existing grid systems are captured. We believe that 
appropriate use of architectural formalisms, such as architecture description languages 
[24], would provide the needed descriptive power as well as rigor to support the valida-
tion of each of these systems against the constraints specified in their reference archi-
tecture.

Finally, it is also evident that, due to the broad definition of what constitutes a grid 
technology, interoperability between grid solutions poses a key challenge. Even con-
formance to the recently adopted Open Grid Services Architecture (OGSA) [14] does 
not guarantee interoperability between grid middleware systems. This is in part evi-
denced by OGSA's lack of backward compatibility with previous Globus systems, 
which directly influenced OGSA. Many questions still remain, such as, what data do the 
grid services exchange and how is it described? OGSA and the recently announced Web 
 

Service Resource Framework (WS-RF) represent initial steps towards remedying this 
problem, but the problem remains wide open.

6 Conclusion

Our study of grid technologies has corroborated some of the claims made in grid liter-
ature, while suggesting refinements to others. In particular, we found the reference grid 
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architecture [4] a useful baseline for comparing disparate grid solutions, especially 
since their recovered architectures (i.e., RAMs) were quite divergent.  Furthermore, the 
reference requirements we distilled from literature certainly helped to improve our un-
derstanding of the grid. Together, the architecture and requirements suggest a tangible 
distinction between grid technologies on the one hand, and commonly used software 
notions such as middleware, libraries, and frameworks on the other. Another distinction 
rendered more concrete by our study is between computational and data grids.

At the same time, one conclusion of our study is clear: the answer to the question 
"what makes a grid system a grid system?" has many possible answers. This is not nec-
essarily a drawback, as it allows developers of a given grid platform to tailor its func-
tionality, and to some extent its architecture, to the needs at hand.  At the same time, we 
argue that this open-endedness may become an impediment to the on-going standardi-
zation efforts and the claimed goal of grid platform interoperability.
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