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Abstract. Nonlinear methods are attractive alternatives to the linear
congruential method for pseudorandom number generation. We intro-
duce a new particularly attractive explicit nonlinear congruential method
and present nontrivial results on the distribution of pseudorandom num-
bers generated by this method over the full period and in parts of the
period. The proofs are based on new bounds on certain exponential sums
over finite fields.
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1 Introduction

Let Fp = {0, 1, . . . , p − 1} be the finite field of prime order p ≥ 3. Further let
η ∈ F

∗
p be an element of multiplicative order T ≥ 2. For a given polynomial

f(X) ∈ Fp[X] of positive degree D we generate a sequence γ0, γ1, . . . of elements
of Fp by

γn = f(ηn) for n = 0, 1, . . . . (1)

This sequence is purely periodic with least period t for some t|T . We may restrict
ourselves to the case where t = T and D < T . If D < T , then we have t = T
if and only if, for all proper divisors d of T , the polynomial f(X) is not of the
form f(X) = g(XT/d) with a polynomial g(X) ∈ Fp[X]. For example, this is
guaranteed if T is a prime or if f(X) is a permutation polynomial of Fp (or
more generally, f(X) is injective on the group generated by η).

We study exponential sums over Fp which in the simplest case are of the form

N−1∑
n=0

χ(γn) for 1 ≤ N ≤ T,

where χ is a nontrivial additive character of Fp. Upper bounds for these expo-
nential sums are then applied to the analysis of a new nonlinear method for
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pseudorandom number generation. This new method is defined as follows. We
derive explicit nonlinear congruential pseudorandom numbers of period T in the
interval [0, 1) by putting

yn = γn/p, n = 0, 1, . . . .

After some auxiliary results in Section 2 we prove some new bounds for
complete and incomplete exponential sums over finite fields in Section 3 which
allow us to give nontrivial results on the distribution of sequences of explicit
nonlinear congruential pseudorandom numbers of period T . The application to
explicit nonlinear congruential pseudorandom numbers is presented in Section 4.

Similar results on a different family of explicit nonlinear congruential pseu-
dorandom numbers of period p were obtained in [13].

2 Auxiliary Results

We recall Weil’s bound on additive character sums (see [8–Theorem 5.38], [19–
Chapter II, Theorem 2E]).

Lemma 1. Let χ be a nontrivial additive character of Fp and g be a nonconstant
polynomial over Fp. Then we have∣∣∣∣∣∣

∑
ξ∈Fp

χ(g(ξ))

∣∣∣∣∣∣ ≤ (deg(g) − 1)p1/2.

For the following analog on hybrid character sums see [19–Chapter II, The-
orem 2G].

Lemma 2. Let χ be a nontrivial additive character and ψ a nontrivial mul-
tiplicative character of Fp and g a nonconstant polynomial over Fp. Then we
have ∣∣∣∣∣∣

∑
ξ∈Fp

χ(g(ξ))ψ(ξ)

∣∣∣∣∣∣ ≤ deg(g)p1/2.

Lemma 3. Let γ0, γ1, . . . be a sequence of the form (1). If µ0, µ1, . . . , µs−1 ∈ Fp

and
s−1∑
i=0

µiγn+i = c, 0 ≤ n ≤ T − 1,

for some c ∈ Fp, then either

µ0 = µ1 = . . . = µs−1 = 0

or
s ≥ w(f),

where w(f) denotes the weight of f(X), i. e., the number of nonzero coefficients
of f(X).
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Proof. We assume that not all µi are zero and denote by j the largest index with
µj �= 0 (so 0 ≤ j ≤ s − 1). Then we have

j∑
i=0

µiγn+i = c, 0 ≤ n ≤ T − 1, (2)

and
j+1∑
i=1

µi−1γn+i = c, 0 ≤ n ≤ T − 1. (3)

Subtracting (3) from (2) yields

µ0γn +
j∑

i=1

(µi − µi−1)γn+i − µjγn+j+1 = 0, 0 ≤ n ≤ T − 1.

Hence, j + 1 is at least as large as the linear complexity L of the sequence
γ0, γ1, . . ., i.e., the order of the shortest linear recurrence relation over Fp

γn+L =
L−1∑
i=0

σiγn+i, 0 ≤ n ≤ T − 1,

satisfied by the sequence. Lemma 3 follows from the well-known result

L = w(f) (4)

of Blahut [1]. We refer to [7–Section 6.8] for a proof. �

Put eT (z) = exp(2πiz/T ).

Lemma 4. For any integer 1 ≤ N ≤ T we have

T−1∑
u=1

∣∣∣∣∣
N−1∑
n=0

eT (un)

∣∣∣∣∣ ≤ T

(
4
π2

log T + 0.8
)

.

Proof. We have

T−1∑
u=1

∣∣∣∣∣
N−1∑
n=0

eT (un)

∣∣∣∣∣ =
T−1∑
u=1

∣∣∣∣ sin(πNu/T )
sin(πu/T )

∣∣∣∣
≤ 4

π2
T log T + 0.38T + 0.608 + 0.116

gcd(N,T )2

T

by [2–Theorem 1]. �
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3 Bounds for Exponential Sums

Let γ0, γ1, . . . be the sequence of elements of Fp generated by (1). For a nontrivial
additive character χ of Fp, for µ0, µ1, . . . , µs−1 ∈ Fp, and for an integer N with
1 ≤ N ≤ T we consider the exponential sums

SN =
N−1∑
n=0

χ

(
s−1∑
i=0

µiγn+i

)
.

Theorem 1. Let 1 ≤ s < w(f) and suppose that µ0, µ1, . . . , µs−1 ∈ Fp are not
all 0. Then we have

|ST | ≤
(

D − T

p − 1

)
p1/2 +

T

p − 1
.

Proof. We have

|ST | =

∣∣∣∣∣
T−1∑
n=0

χ

(
s−1∑
i=0

µif(ηn+i)

)∣∣∣∣∣
=

T

p − 1

∣∣∣∣∣∣
∑
ξ∈F∗

p

χ

(
s−1∑
i=0

µif(ηiξ(p−1)/T )

)∣∣∣∣∣∣ .

Since at least one µi is nonzero and s < w(f), Lemma 3 implies that

s−1∑
i=0

µif(ηiX(p−1)/T )

is not constant and the result follows by Lemma 1. �

Theorem 2. Let 1 ≤ s < w(f) and suppose that µ0, µ1, . . . , µs−1 ∈ Fp are not
all 0. Then we have

|SN | < Dp1/2

(
4
π2

log T + 1.8
)

for 1 ≤ N < T.

Proof. With σn =
∑s−1

i=0 µiγn+i we have

SN =
T−1∑
n=0

χ(σn)
N−1∑
t=0

1
T

T−1∑
u=0

eT (u(n − t))

=
1
T

T−1∑
u=0

(
N−1∑
t=0

eT (−ut)

) (
T−1∑
n=0

χ(σn)eT (un)

)

=
N

T

T−1∑
n=0

χ(σn) +
1
T

T−1∑
u=1

(
N−1∑
t=0

eT (−ut)

) (
T−1∑
n=0

χ(σn)eT (un)

)
,
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and so

|SN | ≤ N

T
|ST | + 1

T

T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ .

For 1 ≤ u ≤ T − 1 we define the nontrivial multiplicative character ψu of Fp by

ψu(ϑn) = eT (un), 0 ≤ n ≤ p − 2,

with a primitive element ϑ of Fp. Then we have∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ =
T

p − 1

∣∣∣∣∣∣
∑
ξ∈F∗

p

χ

(
s−1∑
i=0

µif(ηiξ(p−1)/T )

)
ψu(ξ)

∣∣∣∣∣∣
≤ Dp1/2

by Lemma 2. Lemma 4 yields

T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
∣∣∣∣∣
T−1∑
n=0

χ(σn)eT (un)

∣∣∣∣∣ ≤ Dp1/2
T−1∑
u=1

∣∣∣∣∣
N−1∑
t=0

eT (ut)

∣∣∣∣∣
≤ Dp1/2T

(
4
π2

log T + 0.8
)

.

Hence we obtain by Theorem 1,

|SN | ≤ N

T

((
D − T

p − 1

)
p1/2 +

T

p − 1

)

+Dp1/2

(
4
π2

log T + 0.8
)

.

Simple calculations yield the theorem. �

4 Discrepancy Bound

We use the bounds for exponential sums obtained in Theorems 1 and 2 to de-
rive results on the distribution of sequences of explicit nonlinear congruential
pseudorandom numbers of period T over the full period and in parts of the
period.

Let γ0/p, γ1/p, . . . be a sequence of explicit nonlinear congruential pseudo-
random numbers of least period T ≥ 2 obtained from (1) with a polynomial
f(X) of degree D ≥ 1. For any integer 1 ≤ N ≤ T we define the s-dimensional
(extreme) discrepancy

Ds(N) = sup
J

∣∣∣∣AN (J)
N

− V (J)
∣∣∣∣ ,

where the supremum is extended over all subintervals J of [0, 1)s, AN (J) is the
number of points
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(γn/p, . . . , γn+s−1/p) ∈ [0, 1)s, 0 ≤ n ≤ N − 1,

falling into J , and V (J) denotes the s-dimensional volume of J .
In the following we establish an upper bound for Ds(N).

Theorem 3. For any fixed integer 1 ≤ s < w(f), the s-dimensional discrepancy
Ds(N) satisfies

Ds(N) < 1 −
(

1 − 1
p

)s

+
Dp1/2

N

(
4
π2

log T + 1.8
) (

4
π2

log p + 1.72
)s

for 1 ≤ N < T and

Ds(T ) ≤ 1 −
(

1 − 1
p

)s

+
((

D − T

p − 1

)
p1/2

T
+

1
p − 1

)(
4
π2

log p + 1.72
)s

.

Proof. By a general discrepancy bound in [14–Corollary 3.11] we obtain

Ds(N) ≤ 1 −
(

1 − 1
p

)s

+
B

N

(
4
π2

log p + 1.72
)s

,

where B is the maximum over all (µ0, . . . , µs−1) ∈ F
s
p \ (0, . . . , 0) of the expo-

nential sums SN . The result follows from Theorems 1 and 2. �

5 Final Remarks

For 1 ≤ D ≤ T − 1 with gcd(D, p − 1) = 1 and a, b ∈ F
∗
p, the polynomial

f(X) = a(X + b)D = a

D∑
i=0

(
D

i

)
bD−iXi (5)

of weight D + 1 is a permutation polynomial of Fp, and so the sequence (1) has
least period T . It has linear complexity D + 1 by (4). Therefore and by [17–
Section 2] it passes the D-dimensional lattice test introduced by Marsaglia (see
[9]). In contrast to sequences defined with a general polynomial of large weight,
it can be rather efficiently generated.

Theorem 3 is nontrivial only if D is at most of the order of magnitude
Tp−1/2(log p)−s. However, for polynomials of the form (5) with D close to p− 2
(in case T = p − 1), or more generally for rational functions of the form

f(X) = a(X + b)−d

(with the convention 0−1 = 0) with small d, we can obtain similar results using
the following analogs of Lemmas 1 and 2 for rational functions which can be
found in [12, 18].
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Lemma 5. Let χ be a nontrivial additive character of Fp and let f/g be a ra-
tional function over Fp. Let v be the number of distinct roots of the polynomial
g in the algebraic closure Fp of Fp. Suppose that f/g is not constant. Then∣∣∣∣∣∣∣

∑
ξ∈Fp

g(ξ)�=0

χ

(
f(ξ)
g(ξ)

)∣∣∣∣∣∣∣ ≤ (max(deg(f),deg(g)) + v∗ − 2)p1/2 + δ,

where v∗ = v and δ = 1 if deg(f) ≤ deg(g), and v∗ = v +1 and δ = 0 otherwise.

Lemma 6. Let χ be a nontrivial additive character and ψ a nontrivial multi-
plicative character of Fp and let f/g be a rational function over Fp. Let v be the
number of distinct roots of the polynomial g in the algebraic closure Fp of Fp.
Then ∣∣∣∣∣∣∣∣

∑
ξ∈F∗p

g(ξ)�=0

χ

(
f(ξ)
g(ξ)

)
ψ(ξ)

∣∣∣∣∣∣∣∣
≤ (max(deg(f),deg(g)) + v∗ − 1)p1/2,

where v∗ = v if deg(f) ≤ deg(g), and v∗ = v + 1 otherwise.

The particularly interesting case d = 1 is investigated in [20]. In this case we
have the following main character sum bound.

Theorem 4. If µ1, µ2, . . . , µs are not all 0, then we have

|SN | < s
(
2p1/2 + 1

) (
4
π2

log T + 1.8
)

for 1 ≤ N < T.

These inversive generators have also desirable structural properties (see [3,
4, 10]).

Mordell [11] established the bound∣∣∣∣∣∣
∑
ξ∈Fp

ep(f(ξ))

∣∣∣∣∣∣ ≤ (k1k2 · · · kw gcd(p − 1, k1, k2, . . . , kw))1/2wp1−1/2w

for polynomials of the type

f(X) = c1X
k1 + · · · + cwXkw , 1 ≤ k1 < . . . < kw < p − 1, p � |c1 · · · cw.

This bound is nontrivial for a restricted set of polynomials of large degree and can
be used to obtain nontrivial discrepancy bounds for these particular polynomials.

For the p-periodic sequences γ0, γ1, . . . defined by

γn = f(n) for n = 0, 1, . . .
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we have discrepancy bounds of the same order of magnitude as in Theorem 3
for all dimensions s with 2 ≤ s ≤ deg(f) (see [13]). For the analogous results on
the inversive sequence

γn = (an + b)−1 for n = 0, 1, . . .

see [5]. Appropriate bounds for corresponding sequences over arbitrary finite
fields were obtained in [16].

Recursively defined generators

γn+1 = f(γn) for n = 0, 1, . . .

with some initial value u0 were investigated in [15]. However, the results are
much weaker than for the explicitly defined sequences. For the particular case
of inversive sequences

γn+1 = aγ−1
n + b for n = 0, 1, . . .

much better results were proven in [6]. The character sum bounds are of the
order of magnitude O(N1/2p1/4) (vs. O(p1/2 log p) in Theorem 4 or in [5]). The
method of [6, 15] can also be applied to explicit generators yielding character
sum bounds of the order of magnitude O(N1/2p1/4).
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