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Abstract. In this paper, a recent bound on some Weil-type exponential
sums over Galois rings is used in the construction of codes and sequences.
The bound on these type of exponential sums provides a lower bound
for the minimum distance of a family of codes over Fp, mostly nonlinear,

of length pm+1 and size p2 · pm

(
D−� D

p2 �
)
, where 1 ≤ D ≤ pm/2. Several

families of pairwise cyclically distinct p-ary sequences of period p(pm−1)
of low correlation are also constructed. They compare favorably with
certain known p-ary sequences of period pm − 1. Even in the case p = 2,
one of these families is slightly larger than the family Q(D) of [H-K,
Section 8.8], while they share the same period and the same bound for
the maximum non-trivial correlation.

1 Introduction

Bounds on exponential sums over finite fields, such as the Weil-Carlitz-Uchiyama
bound, have been found to be useful in applications such as coding theory and
sequence designs. The analog of the Weil-Carlitz-Uchiyama bound for Galois
rings was presented by [K-H-C]. An improved bound for a related Weil-type
exponential sum over Galois rings of characteristic 4, which is also sometimes
called the trace of exponential sums, was obtained in [H-K-M-S] and was used in
[S-K-H] to construct a family of binary codes with the same length and size as
the Delsarte-Goethals codes, but whose minimum distance is significantly bigger.
The shortening of these codes also leads to efficient binary sequences.
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Recently, an analog of the bound of [H-K-M-S] was obtained for Galois rings
of characteristic p2, for all primes p [L-O]. In this paper, we explore some appli-
cations of this bound to the construction of codes and sequences.

We fix the following conventions throughout the paper: p is a prime num-
ber; m ≥ 2 is an integer; Fp and Fpm are finite fields of cardinality p and pm;
GR(p2,m) is a Galois ring of characteristic p2 with cardinality p2m; Zp2 is the
ring of integers modulo p2; Trm : GR(p2,m) → Zp2 is the trace map from
GR(p2,m) onto Zp2 ; Γm is the Teichmüller set in GR(p2,m); β is a primitive
(pm−1)-th root of unity in GR(p2,m); ρ : GR(p2,m) → GR(p2,m)/pGR(p2,m)
∼= Fpm is reduction modulo p map in GR(p2,m). We extend ρ to the polyno-
mial ring mapping ρ : GR(p2,m)[x] → Fpm [x] by its action on the coefficients.
Let Frob be the Frobenius operator on GR(p2,m) (cf. [K-H-C], [L-O]). Frob is
extended to GR(p2,m)[x] naturally. A polynomial f(x) ∈ GR(p2,m)[x] is called
non-degenerate if it cannot be written in the form f(x) = Frob(g(x)) − g(x) +
u mod p2, where g(x) ∈ GR(p2,m)[x] and u ∈ GR(p2,m).

2 Zp2-Linear Codes

Definition 1. For a finite Zp2-module S ⊆ GR(p2,m)[x], let

S0 = {a(x) ∈ Γm[x] : there exists b(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S},
and

S1 = {b(x) ∈ Γm[x] : there exists a(x) ∈ Γm[x] such that a(x) + pb(x) ∈ S}.
For a prime number p, the weight function wp on N is defined as the sum of

digits of the representation of u ∈ N in base p. For every f(x) = a(x) + pb(x) ∈
GR(p2,m)[x], where a(x), b(x) ∈ Γm[x] are uniquely determined, we recall that
the weighted degree Df of f(x) is

Df = max{p deg(a(x)),deg(b(x))}.
For a positive integer D, let I(D) be the set of positive integers

I(D) = {i : i �≡ 0 mod p and 0 ≤ i ≤ D}
and let S(D) ⊆ GR(p2,m)[x] be the finite Zp2-module

S(D) = {f(x) ∈ GR(p2, m)[x] : f(x) =
∑

i∈I(D)

fix
i and Df ≤ D}.

Let f(x) = a(x) + pb(x) be a non-degenerate polynomial with a(x), b(x) ∈
Γm[x]. We recall some definitions which depend on f(x). Let If , Jf ⊆ N be
subsets defined as

a(x) =
∑
i∈If

aix
i and b(x) =

∑
j∈Jf

bjx
j , where ai, bj ∈ Γm \ {0}.
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We define nonnegative integers Wf , lf,m and hf,m as

Wf = max
{

p max{wp(i) | i ∈ If}, max{wp(j) | j ∈ Jf}
}

,

lf,m =
⌈

m

Wf

⌉
− 1 and hf,m =

⌊
m

Wf

⌋
.

The following result is proved in [L-O].

Theorem 1. For a non-degenerate polynomial f(x) ∈ GR(p2,m)[x], we have

∣∣∣ ∑
a∈Zp2\pZp2

∑
x∈Γm

e
2πi

Trm(af(x))
p2

∣∣∣≤ plf,m+1

⌊
phf,m p2−p

2 (Df − 1)
⌊
2p

m
2 −hf,m

⌋
plf,m+1

⌋
.

Definition 2. For 1 ≤ D ≤ pm/2, let

WD = max
{
Wf : f(x) ∈ S(D) \ {0}}, lD,m =

⌈
m

WD

⌉
− 1

and

hD,m =
⌊

m

WD

⌋
.

For n ≥ 1, the Gray map (cf. [C], [G-S], [L-B], [L-S]) Φ over Z
n
p2 is defined as

follows: For u ∈ Zp2 let u = r0(u) + pr1(u) with r0(u), r1(u) ∈ {0, 1, . . . , p − 1}.
We denote the addition modulo p as ⊕. For (u0, u1, . . . , un−1) ∈ Z

n
p2 , we have

Φ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈ F
pn
p such that for 0 ≤ j ≤ p − 1 and

0 ≤ t ≤ n − 1, ajn+t = r1(ut) ⊕ jr0(ut).

Definition 3. For 1 ≤ D ≤ pm/2, let C(D) be the Zp2-linear code of length pm

defined as C(D) =
{(

Trm(f(0)) + u,Trm(f(β)) + u, . . . ,Trm(f(βpm−1)) + u
)

:

f(x) ∈ S(D) and u ∈ Zp2

}
.

Theorem 2. For 1 ≤ D ≤ pm/2, Φ(C(D)) is a p-ary code of length pm+1 of
minimum distance

dmin ≥ pm+1 − pm − plD,m

⌊
phD,m p2−p

2 (D − 1)
⌊
2p

m
2 −hD,m

⌋
plD,m+1

⌋
(1)

and of size
∣∣Φ(C(D))

∣∣ = p2 · pm
(

D−� D
p2 �

)
.
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Next we consider the nonlinearity of Φ(C(D)). Let T denote the set of ordered
pairs (a, b) ∈ F

2
p such that a + b ≥ p (we identify Fp with {0, 1, . . . , p − 1}). Let

χ denote the characteristic function of T , i.e.,

χ(a, b) =
{

1 if (a, b) ∈ T ,
0 otherwise.

For a = (a1, . . . , an) ∈ F
n
p and b = (b1, . . . , bn) ∈ F

n
p , we define

χ(a,b) = (χ(a1, b1), . . . , χ(an, bn)) ∈ F
n
p .

Recall that for α = (α1, . . . , αn) ∈ Z
n
p2 , we denote r0(α)=(ρ(α1), . . . , ρ(αn))∈

F
n
p . The following lemma is found in [L-B, Theorem 4.6].

Lemma 1. If C is a Zp2-linear code of length n, then Φ(C) is a linear code over
Fp if and only if, for all α,β ∈ C, we have pχ(r0(α), r0(β)) ∈ C.

Using Lemma 1, we determine whether Φ(C(D)) is linear or nonlinear in
some cases.

Theorem 3. For 1 ≤ D ≤ p − 1, the code Φ(C(D)) is linear. If p ≥ 3 and
p ≤ D ≤ pm/2/2, then Φ(C(D)) is nonlinear.

Proof. First we prove that Φ(C(D)) is linear for D ≤ p − 1. For α,β ∈ C(D),
there exist f1(x), f2(x) ∈ S(D) and u1, u2 ∈ Zp2 such that

α =
(
Trm(f1(0)) + u1,Trm(f1(β)) + u1, . . . ,Trm(f1(βpm−1)) + u1

)
, and

β =
(
Trm(f2(0)) + u2,Trm(f2(β)) + u2, . . . ,Trm(f2(βpm−1)) + u2

)
.

As D ≤ p − 1, we have f1(x), f2(x) ∈ pS(D)1. Hence

r0(α) = (ρ(u1), . . . , ρ(u1)), r0(β) = (ρ(u2), . . . , ρ(u2)) and

pχ(r0(α), r0(β)) =
{

(p, . . . , p) if ρ(u1) + ρ(u2) ≥ p,
(0, . . . , 0) if ρ(u1) + ρ(u2) < p.

Since (p, . . . , p), (0, . . . , 0) ∈ Z
pm

p2 are elements of C(D), the proof for the case
D ≤ p − 1 is completed.

Next we consider the case p ≥ 3 and p ≤ D ≤ pm/2/2 + 1. The polynomial
f(x) = x belongs to S(D) and hence

α = (Trm(0),Trm(β), . . . ,Trm(βpm−1)) ∈ C(D).

Clearly,

r0(α) = (trm(0), trm(ω), . . . , trm(ωpm−1)).

For each a ∈ Fp, χ(a, a) = 1 if and only if a ≥ p+1
2 . By the properties of the

trace map trm, it follows that every element a ∈ Fp appears in exactly pm−1
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coordinates of r0(α). Hence χ(r0(α), r0(α)) has 1 at exactly pm−1(p − 1)/2
coordinates, and the remaining positions are 0. By (1), the minimum distance
dmin of Φ(C(D)) satisfies

dmin ≥ pm+1 − pm − (p − 1)(D − 1)pm/2.

The distance between Φ(pχ(r0(α), r0(α))) and the zero codeword is pm(p−1)/2.
For D < pm/2/2 + 1, it is easy to see that

pm+1 − pm − (D − 1)pm/2 > pm(p − 1)/2.

Therefore pχ(r0(α), r0(α)) �∈ C(D), which completes the proof.

3 p- ry Sequences with Low Correlation

For a p-ary sequence {s(i)}∞i=0 and τ ≥ 0, the cyclic shift of {s(i)}∞i=0 by τ is
the p-ary sequence {s(i+ τ)}∞i=0. Two p-ary sequences {s1(i)}∞i=0 and {s2(i)}∞i=0

are cyclically distinct if for each τ ≥ 1 neither is {s1(i)}∞i=0 the cyclic shift of
{s2(i)}∞i=0 by τ nor is {s2(i)}∞i=0 the cyclic shift of {s1(i)}∞i=0 by τ .

For n = pm − 1, the generalized Nechaev-Gray map (cf. [N], [L-B], [L-S])
Ψ over Z

n
p2 is defined as follows: For u ∈ Zp2 let u = r0(u) + pr1(u) with

r0(u), r1(u) ∈ {0, 1, . . . , p − 1}. Recall that ⊕ denotes the addition modulo p.
For (u0, u1, . . . , un−1) ∈ Z

n
p2 , we have Ψ(u0, u1, . . . , un−1) = (a0, a1, . . . , apn−1) ∈

F
pn
p such that for 0 ≤ j ≤ p − 1 and 0 ≤ t ≤ n − 1, ajn+t = r1((1 − p)tut) ⊕

jr0((1− p)tut). It is shown in [L-B, Corollary 3.6] that, if C is a cyclic code over
Zp2 , then Ψ(C) is a cyclic p-ary code.

Let P1
m,D be the subset of S(D) × Zp2 defined as

P1
m,D =

{
(f(x), u) ∈ S(D) × Zp2 : ρ(f(x)) �= 0,

and {Trm(f(βi))}∞i=0 has period pm − 1
}

.

We introduce an equivalence relation on P1
m,D: We say that (f(x), u), (g(x), v) ∈

P1
m,D are related if there exist 0 ≤ j, k ≤ p − 1 and 0 ≤ t ≤ (pm − 1) − 1 such

that

g(x) = (1 + p)j(1 − p)tf(βtx) and v = (1 + p)j(1 − p)tu + kp.

Let P̂1
m,D be a full set of representatives of the equivalence relation. We also

assume, without loss of generality, that the elements of P̂1
m,D are of the form

(f(x), u) with u ∈ {0, 1, . . . , p − 1} ⊆ Zp2 . Let F1
m,D be the family of p-ary

sequences given as

F1
m,D =

{{Ψ(Trm(f(βi)) + u)}∞i=0 : (f(x), u) ∈ P̂1
m,D

}
.

Let P2
m,D be the subset of pS(D)1 × (Zp2 \ pZp2) defined as

P2
m,D =

{
(pf(x), u) ∈ pS(D)1 × (Zp2 \ pZp2) : {Trm(pf(βi))}∞i=0 has period pm − 1

}
.

a
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We say (pf(x), u), (pg(x), v) ∈ P2
m,D are cyclically related if there exist 0 ≤ j ≤

p − 1 and 0 ≤ t ≤ (pm − 1) − 1 such that pg(x) = (1 + p)j(1 − p)tpf(βtx) and
v = (1 + p)j(1 − p)tu. Cyclically related elements of P2

m,D form an equivalence

relation. Let P2

m,D denote the set of equivalence classes in P2
m,D. In fact, we can

choose a full set of representatives P̃2
m,D of the equivalence classes in P2

m,D such
that

P̃2
m,D =

{
(pf(x), u) ∈ P2

m,D : u ∈ {1, . . . , p − 1} ⊆ (Zp2 \ pZp2)
}

.

Let F2
m,D be the family of p-ary sequences given as

F2
m,D =

{{Ψ(Trm(pf(βi)) + u)}∞i=0 : (pf(x), u) ∈ P̃2
m,D

}
.

Let Fm,D be the family of p-ary sequences defined as

Fm,D = F1
m,D ∪ F2

m,D.

Theorem 4. The families F1
m,D, F2

m,D and Fm,D have the following properties:

i) The period of each sequence in Fm,D (resp. F1
m,D and F2

m,D) is p(pm − 1).
ii) The sequences in Fm,D (resp. F1

m,D and F2
m,D) are pairwise cyclically dis-

tinct.
iii) |F1

m,D| = 1
pm−1

∑
l|(pm−1) µ(l)

{
p

m(�D
l �−� D

p2l
�) − pm(�D

l �−� D
pl �)

}
,

|F2
m,D| = p−1

pm−1

∑
l|(pm−1) µ(l)pm(�D

l �−� D
pl �), and

|Fm,D| = |F1
m,D| + |F2

m,D|, where µ(·) is the Möbius function.
iv) For the maximal non-trivial correlation θmax of Fm,D(resp. F1

m,D and F2
m,D),

we have

θmax ≤ 1
p − 1

plD,m+1

⌊
phD,m p2−p

2 (D − 1)
⌊
2p

m
2 −hD,m

⌋
plD,m+1

⌋
+ p.

Remark 1. For p = 2, from F1
m,D we retrieve the family of binary sequences

Q(D) of [H-K, Section 8.8]. Let F1,0
m,D be the subfamily of F1

m,D defined as

F1,0
m,D =

{{Ψ(Trm(f(βi)))}∞i=0 : (f(x), 0) ∈ P̂1
m,D

}
.

Note that F1
m,D is larger than F1,0

m,D with the same upper bound on the maximal
non-trivial correlation. For p = 2, from F1,0

m,D we obtain the family of binary
sequences of [S-K-H].
Remark 2. Fm,D is larger than F1

m,D while the sequences in them have the same
period and the same upper bound for their maximal non-trivial correlation in
Theorem 4.

For more details of the results above we refer the reader to [L-O2].
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