Improved *p*-ary Codes and Sequence Families from Galois Rings

San Ling¹ and Ferruh Özbudak²

¹ Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore matlings@nus.edu.sg*

² Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, İnönü Bulvarı, 06531, Ankara, Turkey ozbudak@math.metu.edu.tr[†]

Abstract. In this paper, a recent bound on some Weil-type exponential sums over Galois rings is used in the construction of codes and sequences. The bound on these type of exponential sums provides a lower bound for the minimum distance of a family of codes over \mathbb{F}_p , mostly nonlinear, of length p^{m+1} and size $p^2 \cdot p^{m\left(D - \lfloor \frac{D}{p^2} \rfloor\right)}$, where $1 \leq D \leq p^{m/2}$. Several families of pairwise cyclically distinct *p*-ary sequences of period $p(p^m - 1)$ of low correlation are also constructed. They compare favorably with certain known *p*-ary sequences of period $p^m - 1$. Even in the case p = 2, one of these families is slightly larger than the family Q(D) of [H-K, Section 8.8], while they share the same period and the same bound for the maximum non-trivial correlation.

1 Introduction

Bounds on exponential sums over finite fields, such as the Weil-Carlitz-Uchiyama bound, have been found to be useful in applications such as coding theory and sequence designs. The analog of the Weil-Carlitz-Uchiyama bound for Galois rings was presented by [K-H-C]. An improved bound for a related Weil-type exponential sum over Galois rings of characteristic 4, which is also sometimes called the trace of exponential sums, was obtained in [H-K-M-S] and was used in [S-K-H] to construct a family of binary codes with the same length and size as the Delsarte-Goethals codes, but whose minimum distance is significantly bigger. The shortening of these codes also leads to efficient binary sequences.

^{*} The research of this author is partially supported by NUS-ARF research grant R-146-000-029-112 and DSTA research grant POD0411403.

[†] The research of this author is partially supported by the Turkish Academy of Sciences in the framework of Young Scientists Award Programme (F.Ö./TÜBA-GEBIP/2003-13).

Recently, an analog of the bound of [H-K-M-S] was obtained for Galois rings of characteristic p^2 , for all primes p [L-O]. In this paper, we explore some applications of this bound to the construction of codes and sequences.

We fix the following conventions throughout the paper: p is a prime number; $m \geq 2$ is an integer; \mathbb{F}_p and \mathbb{F}_{p^m} are finite fields of cardinality p and p^m ; $\operatorname{GR}(p^2, m)$ is a Galois ring of characteristic p^2 with cardinality p^{2m} ; \mathbb{Z}_{p^2} is the ring of integers modulo p^2 ; $\operatorname{Tr}_m : \operatorname{GR}(p^2, m) \to \mathbb{Z}_{p^2}$ is the trace map from $\operatorname{GR}(p^2, m)$ onto \mathbb{Z}_{p^2} ; Γ_m is the Teichmüller set in $\operatorname{GR}(p^2, m)$; β is a primitive $(p^m - 1)$ -th root of unity in $\operatorname{GR}(p^2, m)$; $\rho : \operatorname{GR}(p^2, m) \to \operatorname{GR}(p^2, m)/p\operatorname{GR}(p^2, m) \cong \mathbb{F}_{p^m}$ is reduction modulo p map in $\operatorname{GR}(p^2, m)$. We extend ρ to the polynomial ring mapping $\rho : \operatorname{GR}(p^2, m)[x] \to \mathbb{F}_{p^m}[x]$ by its action on the coefficients. Let Frob be the Frobenius operator on $\operatorname{GR}(p^2, m)$ (cf. [K-H-C], [L-O]). Frob is extended to $\operatorname{GR}(p^2, m)[x]$ naturally. A polynomial $f(x) \in \operatorname{GR}(p^2, m)[x]$ is called non-degenerate if it cannot be written in the form $f(x) = \operatorname{Frob}(g(x)) - g(x) + u \mod p^2$, where $g(x) \in \operatorname{GR}(p^2, m)[x]$ and $u \in \operatorname{GR}(p^2, m)$.

2 \mathbb{Z}_{p^2} -Linear Codes

Definition 1. For a finite \mathbb{Z}_{p^2} -module $S \subseteq GR(p^2, m)[x]$, let

 $S_0 = \{a(x) \in \Gamma_m[x] : there \ exists \ b(x) \in \Gamma_m[x] \ such \ that \ a(x) + pb(x) \in S\},\$

and

 $S_1 = \{b(x) \in \Gamma_m[x] : there \ exists \ a(x) \in \Gamma_m[x] \ such \ that \ a(x) + pb(x) \in S\}.$

For a prime number p, the weight function w_p on \mathbb{N} is defined as the sum of digits of the representation of $u \in \mathbb{N}$ in base p. For every $f(x) = a(x) + pb(x) \in \operatorname{GR}(p^2, m)[x]$, where $a(x), b(x) \in \Gamma_m[x]$ are uniquely determined, we recall that the weighted degree D_f of f(x) is

$$D_f = \max\{p \deg(a(x)), \deg(b(x))\}.$$

For a positive integer D, let I(D) be the set of positive integers

$$I(D) = \{i : i \not\equiv 0 \mod p \text{ and } 0 \le i \le D\}$$

and let $S(D) \subseteq \operatorname{GR}(p^2, m)[x]$ be the finite \mathbb{Z}_{p^2} -module

$$S(D) = \{ f(x) \in GR(p^2, m)[x] : f(x) = \sum_{i \in I(D)} f_i x^i \text{ and } D_f \le D \}.$$

Let f(x) = a(x) + pb(x) be a non-degenerate polynomial with $a(x), b(x) \in \Gamma_m[x]$. We recall some definitions which depend on f(x). Let $I_f, J_f \subseteq \mathbb{N}$ be subsets defined as

$$a(x) = \sum_{i \in I_f} a_i x^i \text{ and } b(x) = \sum_{j \in J_f} b_j x^j, \text{ where } a_i, b_j \in \Gamma_m \setminus \{0\}.$$

We define nonnegative integers W_f , $l_{f,m}$ and $h_{f,m}$ as

$$W_f = \max\left\{ p \max\{w_p(i) \mid i \in I_f\}, \max\{w_p(j) \mid j \in J_f\} \right\},\$$
$$l_{f,m} = \left\lceil \frac{m}{W_f} \right\rceil - 1 \text{ and } h_{f,m} = \left\lfloor \frac{m}{W_f} \right\rfloor.$$

The following result is proved in [L-O].

Theorem 1. For a non-degenerate polynomial $f(x) \in GR(p^2, m)[x]$, we have

$$\Big| \sum_{a \in \mathbb{Z}_{p^2} \setminus p\mathbb{Z}_{p^2}} \sum_{x \in \Gamma_m} e^{2\pi i \frac{\operatorname{Tr}_m(af(x))}{p^2}} \Big| \le p^{l_{f,m}+1} \left\lfloor \frac{p^{h_{f,m}} \frac{p^2 - p}{2} (D_f - 1) \left\lfloor 2p^{\frac{m}{2} - h_{f,m}} \right\rfloor}{p^{l_{f,m}+1}} \right\rfloor.$$

Definition 2. For $1 \le D \le p^{m/2}$, let

$$W_D = \max\left\{W_f : f(x) \in S(D) \setminus \{0\}\right\}, \ l_{D,m} = \left\lceil \frac{m}{W_D} \right\rceil - 1$$

and

$$h_{D,m} = \left\lfloor \frac{m}{W_D} \right\rfloor.$$

For $n \geq 1$, the Gray map (cf. [C], [G-S], [L-B], [L-S]) Φ over $\mathbb{Z}_{p^2}^n$ is defined as follows: For $u \in \mathbb{Z}_{p^2}$ let $u = r_0(u) + pr_1(u)$ with $r_0(u)$, $r_1(u) \in \{0, 1, \dots, p-1\}$. We denote the addition modulo p as \oplus . For $(u_0, u_1, \dots, u_{n-1}) \in \mathbb{Z}_{p^2}^n$, we have $\Phi(u_0, u_1, \dots, u_{n-1}) = (a_0, a_1, \dots, a_{pn-1}) \in \mathbb{F}_p^{pn}$ such that for $0 \leq j \leq p-1$ and $0 \leq t \leq n-1, a_{jn+t} = r_1(u_t) \oplus jr_0(u_t)$.

Definition 3. For $1 \leq D \leq p^{m/2}$, let C(D) be the \mathbb{Z}_{p^2} -linear code of length p^m defined as $C(D) = \left\{ \left(\operatorname{Tr}_m(f(0)) + u, \operatorname{Tr}_m(f(\beta)) + u, \dots, \operatorname{Tr}_m(f(\beta^{p^m-1})) + u \right) : f(x) \in S(D) \text{ and } u \in \mathbb{Z}_{p^2} \right\}.$

Theorem 2. For $1 \leq D \leq p^{m/2}$, $\Phi(C(D))$ is a p-ary code of length p^{m+1} of minimum distance

$$d_{\min} \ge p^{m+1} - p^m - p^{l_{D,m}} \left\lfloor \frac{p^{h_{D,m}} \frac{p^2 - p}{2} (D-1) \left\lfloor 2p^{\frac{m}{2} - h_{D,m}} \right\rfloor}{p^{l_{D,m} + 1}} \right\rfloor$$
(1)

and of size $\left| \Phi(C(D)) \right| = p^2 \cdot p^{m\left(D - \lfloor \frac{D}{p^2} \rfloor \right)}$.

Next we consider the nonlinearity of $\Phi(C(D))$. Let T denote the set of ordered pairs $(a,b) \in \mathbb{F}_p^2$ such that $a+b \geq p$ (we identify \mathbb{F}_p with $\{0,1,\ldots,p-1\}$). Let χ denote the characteristic function of T, i.e.,

$$\chi(a,b) = \begin{cases} 1 \text{ if } (a,b) \in T, \\ 0 \text{ otherwise.} \end{cases}$$

For $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{F}_p^n$ and $\mathbf{b} = (b_1, \ldots, b_n) \in \mathbb{F}_p^n$, we define

$$\chi(\mathbf{a},\mathbf{b}) = (\chi(a_1,b_1),\ldots,\chi(a_n,b_n)) \in \mathbb{F}_p^n.$$

Recall that for $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{p^2}^n$, we denote $r_0(\boldsymbol{\alpha}) = (\rho(\alpha_1), \ldots, \rho(\alpha_n)) \in \mathbb{F}_p^n$. The following lemma is found in [L-B, Theorem 4.6].

Lemma 1. If C is a \mathbb{Z}_{p^2} -linear code of length n, then $\Phi(C)$ is a linear code over \mathbb{F}_p if and only if, for all $\alpha, \beta \in C$, we have $p\chi(r_0(\alpha), r_0(\beta)) \in C$.

Using Lemma 1, we determine whether $\Phi(C(D))$ is linear or nonlinear in some cases.

Theorem 3. For $1 \le D \le p-1$, the code $\Phi(C(D))$ is linear. If $p \ge 3$ and $p \le D \le p^{m/2}/2$, then $\Phi(C(D))$ is nonlinear.

Proof. First we prove that $\Phi(C(D))$ is linear for $D \leq p-1$. For $\alpha, \beta \in C(D)$, there exist $f_1(x), f_2(x) \in S(D)$ and $u_1, u_2 \in \mathbb{Z}_{p^2}$ such that

$$\boldsymbol{\alpha} = \left(\operatorname{Tr}_{m}(f_{1}(0)) + u_{1}, \operatorname{Tr}_{m}(f_{1}(\beta)) + u_{1}, \dots, \operatorname{Tr}_{m}(f_{1}(\beta^{p^{m}-1})) + u_{1} \right), \text{ and } \\ \boldsymbol{\beta} = \left(\operatorname{Tr}_{m}(f_{2}(0)) + u_{2}, \operatorname{Tr}_{m}(f_{2}(\beta)) + u_{2}, \dots, \operatorname{Tr}_{m}(f_{2}(\beta^{p^{m}-1})) + u_{2} \right).$$

As $D \leq p-1$, we have $f_1(x), f_2(x) \in pS(D)_1$. Hence

$$r_0(\alpha) = (\rho(u_1), \dots, \rho(u_1)), \ r_0(\beta) = (\rho(u_2), \dots, \rho(u_2))$$
 and

$$p\chi(r_0(\boldsymbol{\alpha}), r_0(\boldsymbol{\beta})) = \begin{cases} (p, \dots, p) \text{ if } \rho(u_1) + \rho(u_2) \ge p, \\ (0, \dots, 0) \text{ if } \rho(u_1) + \rho(u_2) < p. \end{cases}$$

Since $(p, \ldots, p), (0, \ldots, 0) \in \mathbb{Z}_{p^2}^{p^m}$ are elements of C(D), the proof for the case $D \leq p-1$ is completed.

Next we consider the case $p \ge 3$ and $p \le D \le p^{m/2}/2 + 1$. The polynomial f(x) = x belongs to S(D) and hence

$$\boldsymbol{\alpha} = (\operatorname{Tr}_m(0), \operatorname{Tr}_m(\beta), \dots, \operatorname{Tr}_m(\beta^{p^m-1})) \in C(D).$$

Clearly,

$$r_0(\boldsymbol{\alpha}) = (\operatorname{tr}_m(0), \operatorname{tr}_m(\omega), \dots, \operatorname{tr}_m(\omega^{p^m-1})).$$

For each $a \in \mathbb{F}_p$, $\chi(a, a) = 1$ if and only if $a \geq \frac{p+1}{2}$. By the properties of the trace map tr_m, it follows that every element $a \in \mathbb{F}_p$ appears in exactly p^{m-1}

coordinates of $r_0(\boldsymbol{\alpha})$. Hence $\chi(r_0(\boldsymbol{\alpha}), r_0(\boldsymbol{\alpha}))$ has 1 at exactly $p^{m-1}(p-1)/2$ coordinates, and the remaining positions are 0. By (1), the minimum distance d_{\min} of $\Phi(C(D))$ satisfies

$$d_{\min} \ge p^{m+1} - p^m - (p-1)(D-1)p^{m/2}.$$

The distance between $\Phi(p\chi(r_0(\boldsymbol{\alpha}), r_0(\boldsymbol{\alpha})))$ and the zero codeword is $p^m(p-1)/2$. For $D < p^{m/2}/2 + 1$, it is easy to see that

$$p^{m+1} - p^m - (D-1)p^{m/2} > p^m(p-1)/2.$$

Therefore $p\chi(r_0(\boldsymbol{\alpha}), r_0(\boldsymbol{\alpha})) \notin C(D)$, which completes the proof.

3 *p*-ary Sequences with Low Correlation

For a *p*-ary sequence $\{s(i)\}_{i=0}^{\infty}$ and $\tau \geq 0$, the cyclic shift of $\{s(i)\}_{i=0}^{\infty}$ by τ is the *p*-ary sequence $\{s(i+\tau)\}_{i=0}^{\infty}$. Two *p*-ary sequences $\{s_1(i)\}_{i=0}^{\infty}$ and $\{s_2(i)\}_{i=0}^{\infty}$ are cyclically distinct if for each $\tau \geq 1$ neither is $\{s_1(i)\}_{i=0}^{\infty}$ the cyclic shift of $\{s_2(i)\}_{i=0}^{\infty}$ by τ nor is $\{s_2(i)\}_{i=0}^{\infty}$ the cyclic shift of $\{s_1(i)\}_{i=0}^{\infty}$ by τ .

For $n = p^m - 1$, the generalized Nechaev-Gray map (cf. [N], [L-B], [L-S]) Ψ over $\mathbb{Z}_{p^2}^n$ is defined as follows: For $u \in \mathbb{Z}_{p^2}$ let $u = r_0(u) + pr_1(u)$ with $r_0(u), r_1(u) \in \{0, 1, \ldots, p-1\}$. Recall that \oplus denotes the addition modulo p. For $(u_0, u_1, \ldots, u_{n-1}) \in \mathbb{Z}_{p^2}^n$, we have $\Psi(u_0, u_1, \ldots, u_{n-1}) = (a_0, a_1, \ldots, a_{pn-1}) \in \mathbb{F}_p^{pn}$ such that for $0 \leq j \leq p-1$ and $0 \leq t \leq n-1$, $a_{jn+t} = r_1((1-p)^t u_t) \oplus jr_0((1-p)^t u_t)$. It is shown in [L-B, Corollary 3.6] that, if C is a cyclic code over \mathbb{Z}_{p^2} , then $\Psi(C)$ is a cyclic p-ary code.

Let $\mathcal{P}^1_{m,D}$ be the subset of $S(D) \times \mathbb{Z}_{p^2}$ defined as

$$\begin{aligned} \mathcal{P}_{m,D}^1 &= \Big\{ (f(x), u) \in S(D) \times \mathbb{Z}_{p^2} : \rho(f(x)) \neq 0, \\ &\quad \text{and } \{ \mathrm{Tr}_m(f(\beta^i)) \}_{i=0}^\infty \text{ has period } p^m - 1 \Big\}. \end{aligned}$$

We introduce an equivalence relation on $\mathcal{P}^1_{m,D}$: We say that $(f(x), u), (g(x), v) \in \mathcal{P}^1_{m,D}$ are related if there exist $0 \leq j, k \leq p-1$ and $0 \leq t \leq (p^m - 1) - 1$ such that

$$g(x) = (1+p)^{j}(1-p)^{t}f(\beta^{t}x)$$
 and $v = (1+p)^{j}(1-p)^{t}u + kp$.

Let $\widehat{\mathcal{P}}_{m,D}^1$ be a full set of representatives of the equivalence relation. We also assume, without loss of generality, that the elements of $\widehat{\mathcal{P}}_{m,D}^1$ are of the form (f(x), u) with $u \in \{0, 1, \ldots, p-1\} \subseteq \mathbb{Z}_{p^2}$. Let $\mathcal{F}_{m,D}^1$ be the family of *p*-ary sequences given as

$$\mathcal{F}_{m,D}^{1} = \left\{ \left\{ \Psi(\operatorname{Tr}_{m}(f(\beta^{i})) + u) \right\}_{i=0}^{\infty} : (f(x), u) \in \widehat{\mathcal{P}}_{m,D}^{1} \right\}.$$

Let $\mathcal{P}^2_{m,D}$ be the subset of $pS(D)_1 \times (\mathbb{Z}_{p^2} \setminus p\mathbb{Z}_{p^2})$ defined as

$$\mathcal{P}^2_{m,D} = \Big\{ (pf(x), u) \in pS(D)_1 \times (\mathbb{Z}_{p^2} \setminus p\mathbb{Z}_{p^2}) : \{ \operatorname{Tr}_m(pf(\beta^i)) \}_{i=0}^{\infty} \text{ has period } p^m - 1 \Big\}.$$

We say (pf(x), u), $(pg(x), v) \in \mathcal{P}^2_{m,D}$ are cyclically related if there exist $0 \leq j \leq p-1$ and $0 \leq t \leq (p^m-1)-1$ such that $pg(x) = (1+p)^j(1-p)^t pf(\beta^t x)$ and $v = (1+p)^j(1-p)^t u$. Cyclically related elements of $\mathcal{P}^2_{m,D}$ form an equivalence relation. Let $\overline{\mathcal{P}}^2_{m,D}$ denote the set of equivalence classes in $\mathcal{P}^2_{m,D}$. In fact, we can choose a full set of representatives $\widetilde{\mathcal{P}}^2_{m,D}$ of the equivalence classes in $\overline{\mathcal{P}}^2_{m,D}$ such that

$$\widetilde{\mathcal{P}}_{m,D}^2 = \Big\{ (pf(x), u) \in \mathcal{P}_{m,D}^2 : u \in \{1, \dots, p-1\} \subseteq (\mathbb{Z}_{p^2} \setminus p\mathbb{Z}_{p^2}) \Big\}.$$

Let $\mathcal{F}_{m,D}^2$ be the family of *p*-ary sequences given as

$$\mathcal{F}_{m,D}^2 = \left\{ \{ \Psi(\operatorname{Tr}_m(pf(\beta^i)) + u) \}_{i=0}^\infty : (pf(x), u) \in \widetilde{\mathcal{P}}_{m,D}^2 \right\}.$$

Let $\mathcal{F}_{m,D}$ be the family of *p*-ary sequences defined as

$$\mathcal{F}_{m,D} = \mathcal{F}_{m,D}^1 \cup \mathcal{F}_{m,D}^2.$$

Theorem 4. The families $\mathcal{F}_{m,D}^1$, $\mathcal{F}_{m,D}^2$ and $\mathcal{F}_{m,D}$ have the following properties:

- i) The period of each sequence in $\mathcal{F}_{m,D}$ (resp. $\mathcal{F}_{m,D}^1$ and $\mathcal{F}_{m,D}^2$) is $p(p^m-1)$.
- ii) The sequences in $\mathcal{F}_{m,D}$ (resp. $\mathcal{F}_{m,D}^1$ and $\mathcal{F}_{m,D}^2$) are pairwise cyclically distinct.
- $\begin{aligned} iii) \quad |\mathcal{F}_{m,D}^{1}| &= \frac{1}{p^{m-1}} \sum_{l \mid (p^{m}-1)} \mu(l) \left\{ p^{m(\lfloor \frac{D}{l} \rfloor \lfloor \frac{D}{p^{2}l} \rfloor)} p^{m(\lfloor \frac{D}{l} \rfloor \lfloor \frac{D}{pl} \rfloor)} \right\}, \\ |\mathcal{F}_{m,D}^{2}| &= \frac{p-1}{p^{m-1}} \sum_{l \mid (p^{m}-1)} \mu(l) p^{m(\lfloor \frac{D}{l} \rfloor \lfloor \frac{D}{pl} \rfloor)}, \text{ and} \\ |\mathcal{F}_{m,D}| &= |\mathcal{F}_{m,D}^{1}| + |\mathcal{F}_{m,D}^{2}|, \text{ where } \mu(\cdot) \text{ is the Möbius function.} \end{aligned}$
- iv) For the maximal non-trivial correlation θ_{\max} of $\mathcal{F}_{m,D}$ (resp. $\mathcal{F}_{m,D}^1$ and $\mathcal{F}_{m,D}^2$), we have

$$\theta_{\max} \le \frac{1}{p-1} p^{l_{D,m}+1} \left\lfloor \frac{p^{h_{D,m}} \frac{p^2 - p}{2} (D-1) \left\lfloor 2p^{\frac{m}{2} - h_{D,m}} \right\rfloor}{p^{l_{D,m}+1}} \right\rfloor + p.$$

Remark 1. For p = 2, from $\mathcal{F}_{m,D}^1$ we retrieve the family of binary sequences Q(D) of [H-K, Section 8.8]. Let $\mathcal{F}_{m,D}^{1,0}$ be the subfamily of $\mathcal{F}_{m,D}^1$ defined as

$$\mathcal{F}_{m,D}^{1,0} = \left\{ \{ \Psi(\text{Tr}_m(f(\beta^i))) \}_{i=0}^\infty : (f(x),0) \in \widehat{\mathcal{P}}_{m,D}^1 \right\}.$$

Note that $\mathcal{F}_{m,D}^1$ is larger than $\mathcal{F}_{m,D}^{1,0}$ with the same upper bound on the maximal non-trivial correlation. For p = 2, from $\mathcal{F}_{m,D}^{1,0}$ we obtain the family of binary sequences of [S-K-H].

Remark 2. $\mathcal{F}_{m,D}$ is larger than $\mathcal{F}_{m,D}^1$ while the sequences in them have the same period and the same upper bound for their maximal non-trivial correlation in Theorem 4.

For more details of the results above we refer the reader to [L-O2].

References

- [C] C. Carlet, "Z_{2k}-linear codes", *IEEE Trans. Inform. Theory*, vol. 44, no. 4, pp. 1543-1547, July 1998.
- [C-H] I. Constantinescu and T. Heise, "A metric for codes over residue class rings of integers", Prob. Inform. Transmission, vol. 33, pp. 208-213.
- [G-S] M. Greferath and S.E. Schmidt, "Gray isometries for finite chain rings and a nonlinear ternary (36, 3¹², 15) code", *IEEE Trans. Inform. Theory*, vol. 45, no. 7, pp. 2522-2524, November 1999.
- [H-K] T. Helleseth and P.V. Kumar, "Sequences with low correlation", in *Handbook of Coding theory Vol. I, II.* Edited by V.S. Pless and W.C. Huffman, pp. 1765-1853, North-Holland, Amsterdam, 1998.
- [K-H-C] P.V. Kumar, T. Helleseth and A.R. Calderbank, "An upper bound for Weil exponential sums over Galois rings with applications", *IEEE Trans. Inform. Theory*, vol. 41, no. 2, pp. 456-468. March 1995.
- [H-K-M-S] T. Helleseth, P.V. Kumar, O. Moreno and A.G. Shanbhag, "Improved estimates via exponential sums for the minimum distance of Z₄-linear trace codes", *IEEE Trans. Inform. Theory*, vol. 42, no. 4, pp. 1212-1216, July 1996.
- [L-B] S. Ling and J.T. Blackford, " $\mathbb{Z}_{p^{k+1}}$ -linear codes", *IEEE Trans. Inform. Theory*, vol. 48, no. 9, 2592-2605, September 2002.
- [L-O] S. Ling and F. Özbudak, "An Improvement on the bounds of Weil exponential sums over Galois rings with some application", *IEEE Trans. Inform. Theory*, vol. 50, no. 10, pp. 2529-2539, October 2004.
- [L-O2] S. Ling and F. Özbudak, "Improved *p*-ary codes and sequence families from Galois rings of characteristic $p^{2"}$, submitted, 2004.
- [L-S] S. Ling and P. Solé, "Nonlinear p-ary sequences", Appl. Alg. Eng. Comm. Comp., vol. 14, pp. 117-125, 2003.
- [N] A. A. Nechaev, "The Kerdock code in a cyclic form", Discr. Math. Appl., vol. 1, pp. 365-384, 1991.
- [S-K-H] A.G. Shanbhag, P.V. Kumar and T. Helleseth, "Improved binary codes and sequence families from Z₄-linear codes", *IEEE Trans. Inform. Theory*, vol. 42, no. 5, pp. 1582-1587, September 1996.