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Abstract. In this paper, a recent bound on some Weil-type exponential
sums over Galois rings is used in the construction of codes and sequences.
The bound on these type of exponential sums provides a lower bound
for the minimum distance of a family of codes over [F),, mostly nonlinear,

of length p™** and size p* ~pm(D7L"%J), where 1 < D < p™/2. Several
families of pairwise cyclically distinct p-ary sequences of period p(p™ —1)
of low correlation are also constructed. They compare favorably with
certain known p-ary sequences of period p™ — 1. Even in the case p = 2,
one of these families is slightly larger than the family Q(D) of [H-K,
Section 8.8], while they share the same period and the same bound for
the maximum non-trivial correlation.

1 Introduction

Bounds on exponential sums over finite fields, such as the Weil-Carlitz-Uchiyama
bound, have been found to be useful in applications such as coding theory and
sequence designs. The analog of the Weil-Carlitz-Uchiyama bound for Galois
rings was presented by [K-H-C]. An improved bound for a related Weil-type
exponential sum over Galois rings of characteristic 4, which is also sometimes
called the trace of exponential sums, was obtained in [H-K-M-S] and was used in
[S-K-H] to construct a family of binary codes with the same length and size as
the Delsarte-Goethals codes, but whose minimum distance is significantly bigger.
The shortening of these codes also leads to efficient binary sequences.
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Recently, an analog of the bound of [H-K-M-S] was obtained for Galois rings
of characteristic p?, for all primes p [L-O]. In this paper, we explore some appli-
cations of this bound to the construction of codes and sequences.

We fix the following conventions throughout the paper: p is a prime num-
ber; m > 2 is an integer; I, and F,= are finite fields of cardinality p and p™;
GR(p?,m) is a Galois ring of characteristic p? with cardinality p*™; Z,2 is the
ring of integers modulo p?; Tr, : GR(p?,m) — Z,2 is the trace map from
GR(p?,m) onto Zy2; I}, is the Teichmiiller set in GR(p?, m); 3 is a primitive
(p™ —1)-th root of unity in GR(p?,m); p : GR(p?,m) — GR(p?, m)/pGR(p*, m)
& Fpm is reduction modulo p map in GR(p?,m). We extend p to the polyno-
mial ring mapping p : GR(p?, m)[z] — F,m=[z] by its action on the coefficients.
Let Frob be the Frobenius operator on GR(p?, m) (cf. [K-H-C], [L-O]). Frob is
extended to GR(p?, m)[z] naturally. A polynomial f(z) € GR(p?, m)[z] is called
non-degenerate if it cannot be written in the form f(z) = Frob(g(z)) — g(z) +
u mod p?, where g(z) € GR(p?,m)[z] and u € GR(p?, m).

2 Zp2-Linear Codes
Definition 1. For a finite Z,2-module S C GR(p?, m)[x], let

So = {a(z) € I, [x] : there exists b(x) € I, [x] such that a(x) + pb(z) € S},
and

S1 = {b(x) € I,[z] : there exists a(x) € I, [z] such that a(z) + pb(z) € S}.

For a prime number p, the weight function w, on N is defined as the sum of
digits of the representation of u € N in base p. For every f(x) = a(x) + pb(x) €
GR(p?,m)[z], where a(z), b(x) € I,[x] are uniquely determined, we recall that
the weighted degree Dy of f(x) is

Dy = max{pdeg(a(x)), deg(b(x))}.
For a positive integer D, let I(D) be the set of positive integers
I(D)={i:i#0 modpand 0<i<D}
and let S(D) C GR(p?, m)[z] be the finite Z,2-module

S(D) = {f(z) € GR(p>,m)[z] : f(z) = Y fiz' and Dy < D}.

i€I(D)

Let f(x) = a(z) + pb(x) be a non-degenerate polynomial with a(z),b(z) €
Iy x]. We recall some definitions which depend on f(z). Let Iy, J; € N be
subsets defined as

a(z) = Z a;z’ and b(z) = Z bjx?, where a;,b; € Iy, \ {0}.
iGIf jEJf
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We define nonnegative integers Wy, ¢, and hy,, as

Wy = max{p max{wy (i) | i € Iy}, max{w,(j)|j€ J¢} },

Lo = [Wﬂf} 1 and Ay — {WﬂfJ |

The following result is proved in [L-O].

Theorem 1. For a non-degenerate polynomial f(x) € GR(p?, m)[x], we have

2_ m_
g Trm (e f (2)) A plrsm EZP(Dy—1) L2p 3 hf,mj
YD DRl PP .

a€Z,2\pZ,2 vE€Lm

Definition 2. Ffor1 <D < pm/2, let

Wp =max {Wy : f(z) € S(D)\ {0}}, lpm = [Wﬂp-‘ -1

and

m
hpm = | — | .
b {WDJ

For n > 1, the Gray map (cf. [C], [G-S], [L-B], [L-S]) @ over Z7, is defined as
follows: For u € Zy2 let uw = ro(u) + pri(u) with ro(u), r1(u) € {0,1,...,p—1}.
We denote the addition modulo p as &. For (ug,u1,...,up—1) € Z2, we have
D(ug, U1, - -, Un—1) = (@, a1, ..., apn—1) € FH" such that for 0 < j <p—1 and
0<t<n—1, ajnte = ri(u) ® jrous).

Definition 3. For 1< D < p™/2, let C(D) be the L2 -linear code of length p™
defined as C(D) = {(Trm(f(())) +u, T (F(B)) + uy ..., T (F(BP 1) + u) :
f(z) € S(D) andu € sz}.

Theorem 2. For 1 < D < p™/2, &(C(D)) is a p-ary code of length p™*+' of

minimum distance

php,mPQQ—p (D _ 1) L2p%7hp,mJ
plD,rn"Fl

(1)

dmin Z pm+1 - pm _plD’m \‘

and of size |#(C(D))| = p? p(P-1)).
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Next we consider the nonlinearity of #(C(D)). Let T' denote the set of ordered
pairs (a,b) € IFI% such that a + b > p (we identify F,, with {0,1,...,p —1}). Let
x denote the characteristic function of T, i.e.,

[ 1if(a,b) €T,
x(a,b) = {0 otherwise.

For a = (ay,...,a,) € Fy and b = (by,...,b,) € F}, we define

X(a7 b) = (X(ahbl)) s aX(an7bn)) € FZ

Recall that for o = (v, ..., an) € Z7,, we denote ro(a) = (p(a1), - . ., pla))€
;. The following lemma is found in [L-B, Theorem 4.6].

Lemma 1. If C is a Zy2-linear code of length n, then @(C') is a linear code over
F, if and only if, for all o, B € C, we have px(ro(e),ro(8)) € C.

Using Lemma 1, we determine whether ¢(C(D)) is linear or nonlinear in
some cases.

Theorem 3. For 1 < D < p — 1, the code &(C(D)) is linear. If p > 3 and
p < D < p™2/2 then &(C (D)) is nonlinear.

Proof. First we prove that ¢(C(D)) is linear for D < p — 1. For o, 8 € C(D),
there exist fi(x), f2(x) € S(D) and w1, up € Z,> such that

a = (Trm(fl(())) =+ ul,Trm(fl(ﬁ)) + U, ... ,Trm(fl(ﬁp:_l)) =+ Ul) s and
B = (Trm(f2(0)) + ug, Trp (f2(8)) + g, .., Trp (f2(67" 1)) 4 uz) -

As D <p—1, we have fi(z), fo(x) € pS(D);. Hence

ro(a) = (p(u1),...,p(u1)), ro(B) = (p(uz),...,p(uz)) and

Since (p,...,p),(0,...,0) € Zz;n are elements of C(D), the proof for the case
D < p—1is completed.

Next we consider the case p > 3 and p < D < pm/2/2 + 1. The polynomial
f(z) = z belongs to S(D) and hence

a = (Tr,,(0), Tr, (8), . .. ,Trm(ﬁpm—l)) c (D).
Clearly,
ro(a) = (tr,,(0), try, (W), . .. ,trm(wpm—l))'

For each a € F,, x(a,a) = 1 if and only if a > pTH. By the properties of the
trace map tr,, it follows that every element a € F, appears in exactly p™~*
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coordinates of 7q(a). Hence x(ro(c),70(cx)) has 1 at exactly p™~t(p — 1)/2
coordinates, and the remaining positions are 0. By (1), the minimum distance
dmin of @(C(D)) satisfies

dmin > pm+1 - pm - (p - 1)(D - 1)pm/2

The distance between @(px(ro(a), ro(a))) and the zero codeword is p™(p—1)/2.
For D < p™/2/2 4+ 1, it is easy to see that

pmtt—p™ — (D —1)p™? > p™(p — 1) /2.

Therefore px(ro(a), ro(ex)) ¢ C(D), which completes the proof.

3 p-ary Sequences with Low Correlation

For a p-ary sequence {s(i)}2, and 7 > 0, the cyclic shift of {s(i)}2, by 7 is
the p-ary sequence {s(i+7)}32,. Two p-ary sequences {s1(%)}52, and {s2(2)}$2,
are cyclically distinct if for each 7 > 1 neither is {s1(¢)}32, the cyclic shift of
{52(1)}32 by 7 nor is {s2(4)}52, the cyclic shift of {s1(4)}2, by 7.

For n = p™ — 1, the generalized Nechaev-Gray map (cf. [N], [L-B], [L-S])
¥ over Z, is defined as follows: For u € Zy let u = ro(u) + pri(u) with
ro(u), r1(u) € {0,1,...,p — 1}. Recall that @ denotes the addition modulo p.
For (ug,u1,...,upn_1) € Ly, we have U (ug, Uty - -y Un—1) = (@0, a1, .-, Apn—1) €
FP™ such that for 0 < j <p—1land 0 <t <n—1, ajnys = ri((1 — p)tug) @
Jro((1—p)tuy). Tt is shown in [L-B, Corollary 3.6] that, if C is a cyclic code over
Zy2, then ¥(C) is a cyclic p-ary code.

Let P,, p be the subset of S(D) x Z, defined as

Plo = {(f(@),u) € S(D) x Zya s pl(f (@) £ 0,
and {Tr,,, (f(8"))}22, has period p™ — 1}.

We introduce an equivalence relation on P}, 5,: We say that (f(x),u), (¢(x),v) €
Pl p are related if there exist 0 < j, k <p—1land 0 <t < (p™ —1) — 1 such

m

that
g(z) = (1 +p) (1 —p)'f(Blz) and v = (14 p)?(1 —p)u+ kp.

Let 73,1n p be a full set of representatives of the equivalence relation. We also

assume, without loss of generality, that the elements of 7371n p are of the form
(f(x),u) with u € {0,1,...,p = 1} C Zy2. Let F,, 1, be the family of p-ary
sequences given as

Fonp = {(Ton(F(B) +w)} 2o : (f(2),w) € Prp}-
Let ’anyD be the subset of pS(D); x (Zy2 \ pZy2) defined as

Pin = {(0f (@), u) € pS(D)1 x (Zy2 \ pLy2) : {Trm(pf (8))}720 has period p™ — 1},
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We say (pf(x),u), (pg(x),v) € PEn,D are cyclically related if there exist 0 < j <
p—1and 0 <t < (p™ —1)— 1 such that pg(z) = (1 + p)’(1 — p)tpf(Bix) and
v = (14 p)’(1 — p)*u. Cyclically related elements of P2, ;, form an equivalence

. 2 . .
relation. Let P, , denote the set of equivalence classes in an’ p- In fact, we can

N . .2
choose a full set of representatives ’me p of the equivalence classes in P, , such
that

P2 o= {(pf@)w) € P2 piue {1l p—1} C (Z2 \pZy) }.

Let ffn p be the family of p-ary sequences given as

2.0 = {{0(Trn(pf(8Y) + W20 : (f (@),0) € P p |-
Let F,, p be the family of p-ary sequences defined as
Fmp =FmpUFn

Theorem 4. The families .7-"7}”71), F2 5 and Fy,. p have the following properties:

m,

i) The period of each sequence in Fo, p (resp. .7-"71717D and f?n,D) is p(p™ — 1).
i) The sequences in Fn, p (resp. .7-'%1 p and ffn p) are pairwise cyclically dis-

tinct o
iii) |Fh pl = o LZHPW_UH(Z){ m(L 2115 pmuﬂﬂmn}’
[Fim.pl = pm T 2pipm—1) #(D)p mL2=1D | and
|-7:m,D| | m,D‘ + | m,D‘ where u(-) is the Mdbius function.
w) For the mazimal non-trivial correlation Omayx of Fum. p (resp. Fp, p and F, 1),
we have

1
Hmax S — P

p—1

lDmerl phD m p 2 (D 1) L2p?_hD,7nJ
plD,erl +p

Remark 1. For p = 2, from frlm p we retrieve the family of binary sequences
Q(D) of [H-K, Section 8.8]. Let f;’?D be the subfamily of 7, ,, defined as

‘7:mD {{w Tl‘m(f(ﬂ ))) ?iO : (f( 6 P71n D}

Note that .7-';1’ p is larger than .7-' D with the same upper bound on the maximal
non-trivial correlation. For p = 2, from fm, 1 we obtain the family of binary
sequences of [S-K-H].

Remark 2. Fp, p is larger than ]-"%7 p while the sequences in them have the same

period and the same upper bound for their maximal non-trivial correlation in
Theorem 4.

For more details of the results above we refer the reader to [L-O2].
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