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Abstract. The Lauder-Paterson algorithm gives the profile of the k-
error linear complexity for a binary sequence with period 2n. In this
paper a generalization of the Lauder-Paterson algorithm into a sequence
over GF (pm) with period pn, where p is a prime and m, n are positive
integers, is proposed. We discuss memory and computation complexi-
ties of proposed algorithm. Moreover numerical examples of profiles for
balanced binary and ternary exponent periodic sequences, and proposed
algorithm for a sequence over GF (3) with period 9(= 32) are given.
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1 Introduction

In 1993 M.Stamp and C.Martin proposed the k-error linear complexity (k-LC)
for periodic sequences as one of measurements for randomness [10]. The k-LC is
a generalization of the linear complexity (LC) in order to guard from instability
properties of the LC [11, 12, 1]. At the same time a fast algorithm (Stamp-Martin
algorithm) of the k-LC for a binary sequence with period 2n is shown [10]. Al-
though the sphere complexity, as similar as the k-LC, was proposed earlier than
the k-LC [2], we use the k-LC in sense of a natural extension of the LC. We
generalized the Stamp-Martin algorithm into two algorithms for a sequence over
GF (pm) with period pn, where p is a prime and m,n are positive integers [4, 5].
One of them should be called the generalized Stamp-Martin algorithm because
this algorithm becomes the Stamp-Martin algorithm in case of binary sequences
[5]. Another one has the same function and does not use concepts named “shift”
and “offset” [4]. The procedure of “shift” changes the cost matrix to fit the input
sequence at that step by the cyclic shift for each columns of the cost matrix.
After this, all elements of the value at the first row are same value and the
minimum through all elements of that shifted cost matrix. Therefore we can set
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all-zero at the first row by subtracting that value from all elements of the cost
matrix, called the procedure of “offset”. For binary sequences, “shift” and “off-
set” are very effective because these work for changing the cost matrix into the
cost vector, and decreasing input value k. However in non-binary case, there is
not so much benefits only dropping one row of the cost matrix. In calculations
of the k-LC for non-binary exponent periodic sequences, the algorithm with-
out “shift” and “offset” is simpler than the generalized Stamp-Martin algorithm
with “shift” and “offset”. It is important for applications that a pseudorandom
sequence has good profile of the k-LC, which is the decrease points of the k-
LC against increase of k [2, 8, 6]. Unfortunately, the Stamp-Martin algorithm
and two generalized Stamp-Martin algorithms answer the k-LC against only one
fixed k and one fixed binary sequence with period 2n or one fixed sequence over
GF (pm) with period pn, respectively. Recently A.Lauder and K.Paterson pro-
posed a fast algorithm (Lauder-Paterson algorithm) computing the profile of the
k-LC, i.e., the k-LC for all k ≥ 0, for a fixed binary sequence with period 2n [9].

In this paper the LC and its fast algorithm such as the generalized Games-Chan
algorithm, and the k-LC and the generalized k-LC algorithm are recalled in Section
2 and Section 3, respectively. For preliminaries of a generalization of the Lauder-
Paterson algorithm, we describe the profiles of the k-LC and the Lauder-
Paterson algorithm in Section 4. The main theorem and proposed generalized
Lauder-Paterson algorithm for a sequence over GF (pm) with period pn are given
in Section 5.Because of complications in the algorithmwith “shift” and “offset”,we
propose the generalizedLauder-Patersonalgorithmwithout “shift” and“offset” al-
though the original Lauder-Paterson algorithmuses “shift” and“offset”. In Section
6 some numerical examples for profiles for balanced binary and ternary exponent
periodic sequences, and proposed algorithm for a sequence over GF (3) with period
9(= 32) are given. Finally conclusion and future works are shown in Section 7.

2 Linear Complexity and Generalized Games-Chan
Algorithm

WedefinethelinearcomplexityofasequenceandrecallthegeneralizedGames-Chan
algorithm [3, 2] computing the LC for a sequence over GF (pm) with period pn.

We consider an infinite sequence S = (s0, s1, · · ·) over a finite field K through
this paper.

Definition 1. The linear complexity (LC) of S is defined as

L(S) = min{deg f(x)|f(x) ∈ G(S)},
where the set G(S) consists of the generator polynomial,

f(x) = fLxL + fL−1x
L−1 + · · · + f1x + 1 ∈ K[x],

of S such that
sL+i + f1sL+i−1 + · · · + fL−1si+1 + fLsi = 0 (1)

for all integer i ≥ 0. �
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Definition 2. If there exists an integer N such that si = sN+i for all i ≥ 0
then N is defined the period of S. �

In this paper we call the period of S only the minimum of N satisfying above
condition the period of S.

We denote one period (or subsequence) with length N of an infinite sequence
S by S(N), i.e., S(N) = (s0, s1, · · · , sN−1), and an infinite sequence repeating
a finite sequence F by F∞. Hence we can rewrite an infinite sequence S with
period N by S = (S(N))∞.

The LC can be also defined for a finite sequence with length N by satisfying
(1) for 0 ≤ i ≤ N − L instead of all i ≥ 0. However we only consider the LC of
infinite sequences in this paper then let F be a finite sequence, we simply denote
L(F ) and Lk(F ) instead of L(F∞) and Lk(F∞), respectively. (Lk(F ) will be
defined in next section.)

Definition 3. Let K = GF (pm) with a prime p and a positive integer m. If a
sequence S over K has the period N = pn with a positive integer n then S is
called an exponent periodic sequence. �

For exponent periodic sequences the generalized Games-Chan algorithm is
known as one of fast algorithms computing the LC.

Definition 4. For an exponent periodic sequence S over K = GF (pm) with
period N = pn = pM , we define one period of S by

S(N) = (s(0)(M), s(1)(M), · · · , s(p − 1)(M)),

i.e., s(j)(M) = (sjM , sjM+1, · · · , s(j+1)M−1) for 0 ≤ j < p and a vector b(M,u)

with length M over K is defined by

b(M,u) =Fu(s(0)(M), s(1)(M), · · ·, s(p − 1)(M)) (2)

for 0 ≤ u < p, where

Fu(s) =
p−u−1∑

j=0

(
p − j − 1

u

)
sj (3)

of s = (s0, s1, · · · , sp−1) ∈ Kp is applied componentwise and
(

p − j − 1
u

)
means

the binomial coefficients of p − j − 1 and u. �

We recall the generalized Games-Chan algorithm shown in Fig.1. It is obvious
that the generalized Games-Chan algorithm is induced by Definition 4. The
final L of the generalized Games-Chan algorithm indicates the LC of an infinite
sequence S with its one period S(N).
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input: S(N) = (s0, s1, · · · , sN−1), N = pn

M = pn−1, L = 0, s(N) = S(N),
for j = n − 1 down to 0

b(M,u) for 0 ≤ u ≤ p − 2 from s(pM) by (2)

if b(M,0) �= 0 then case 1

if b(M,u) = 0 for 0 ≤ u ≤ w − 2, b(M,w−1) �= 0 then case w

if b(M,u) = 0 for 0 ≤ u ≤ p − 2 then case p

if case w then s(M) = b(M,w−1) from (2) and L = L + (p − w)M
if M �= 1 then M = M/p

if s
(1)
0 �= 0 then L = L + 1

Fig. 1. Generalized Games-Chan algorithm

3 k-Error Linear Complexity and Generalized k-LC
Algorithm

In this section the k-LC and the generalized k-LC algorithm (see Fig.2) is also
recalled in order to derive a generalization of the Lauder-Paterson algorithm.

Definition 5. The k-error linear complexity (k-LC) of a periodic sequence S
over K with period N is defined as

Lk(S) = min{LC(S + E)|W (E(N)) ≤ k},
where a periodic sequence E over K has period N or the divisor of N , W (E(N))
is the Hamming weight of E(N) = (e0, e1, · · · , eN−1) and a sequence S + E =
(s0 + e0, s1 + e1, · · ·) over K. �

We have Lk−1(S) ≥ Lk(S) for 1 ≤ k ≤ W = W (S(N)), L0(S) = L(S) and
Lk(S) = 0 for W ≤ k ≤ N from Definition 5 obviously.

If a sequence S is an exponent periodic sequence then we can apply the
generalized k-LC algorithm to S.

Definition 6. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q × N matrix Σ = [σ(h, i)] for 1 ≤ h ≤ q,
0 ≤ i < N over the integers, where q = pm, and Σ is called a cost matrix of
S. Moreover let α be a primitive element over K. We need that h-th row of
Σ (1 ≤ h ≤ q) corresponds to an element αh in K, then we set α1 = 0 and
αh = αh−2 for 2 ≤ h ≤ q. �

When the initial cost matrix Σ = [σ(h, i)] is defined as

σ(h, i) =
{

0 if h = 1,
1 if h �= 1 (4)

for 1 ≤ h ≤ q, 0 ≤ i < N , an element σ(h, i) of the cost matrix Σ indicates
the number of changing element at the original sequence with length N for
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substituting s
(M)
i into s

(M)
i + αh at that depth with length M and keeping the

final LC by a previous depth.
From the generalized Games-Chan algorithm we need to set ranges of the LC.

At the step M , meaning its input sequence with length pM , the value T (M,u),
defined in next definition, means the minimum changing number of the LC range
increasing LC value from (p−w−1)M up to (p−w)M , and the set D

(M,u)
i consists

of all error pattern collecting error values at position i,M + i, . . . , (p − 1)M + i
at its input sequence with length pM satisfying above condition.

Definition 7. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q×N matrix Σ(N), and let M = N/p = pn−1.
For 0 ≤ u < p − 1

T (M,u) =
M−1∑
i=0

B
(M,u)
i (5)

is calculated from S and Σ(N) = [σ(h, i)(N)] by

B
(M,u)
i =min

⎧⎨
⎩

p−1∑
j=0

σ(hj , jM + i)
∣∣∣e ∈ D

(M,u)
i

⎫⎬
⎭

for 0 ≤ i < M , where e = (αh0 , αh1 , · · · , αhp−1) ∈ Kp and

D
(M,u)
i = {e|Fj(e) + b

(M,j)
i = 0 (0 ≤ j ≤ u)}

from (2) and (3). �

Next calculations of the cost matrix Σ
(M)
w for next step by case w, its input

sequence with length M , in the generalized k-LC algorithm are defined as follows:

Definition 8. Let a sequence S be an exponent periodic sequence over K =
GF (pm) with period N = pn and a q×N matrix Σ(N), and let M = N/p = pn−1.
Then Σ

(M)
w = [σ(h, i)(M)

w ] is calculated from S and Σ(N) by

σ(h, i)(M)
w =min

⎧⎨
⎩

p−1∑
j=0

σ(hj , jM + i)(N)
∣∣∣e ∈ D̂(h, i)(M)

w

⎫⎬
⎭ , (6)

where e = (αh0 , αh1 , · · · , αhp−1) ∈ Kp and

D̂(h, i)(M)
1 = {e ∈ Kp|F0(e) − αh = 0},

D̂(h, i)(M)
w =

{
e ∈ Kp

∣∣∣∣Fj(e) + b
(M,j)
i = 0 (0 ≤ j < w − 1),

Fw−1(e) − αh = 0

}

for 2 ≤ w ≤ p. �
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These calculations propagate information about the number of change at the
original input sequence with length N from step M to step M/p.

After above preparations, we show the generalized k-LC algorithm of the k-LC
without shift and offset in Fig.2. The final valueL of this algorithm is the k-LC with
a fixed k of its input exponent periodic sequence S. This algorithm and the Lauder-
Paterson algorithm, shown in next section, are used for proposed generalization of
the lauder-Paterson algorithm.

input: k, SN = (s0, s1, · · · , sN−1), N = pn

M = pn−1, L = 0, s(N) = SN ,

Σ(N) = [σ(h, i)(N)], σ(h, i)(N) =

{
0, if h = 1,
1, if h �= 1

for j = n − 1 down to 0

T (M,u) for u = 0, · · · , p − 2 from (5)

if k < T (M,0) then case 1

if T (M,w−2) ≤ k < T (M,w−1) then case w

if T (M,p−2) ≤ k then case p

if case w then s(M) = b(M,w−1) from (2) and L = L + (p − w)M

Set Σ(M) = Σ
(M)
w from Σ(pM) by (6)

if M �= 1 then M = M/p

if σ(h, 0) > k such that αh − s
(0)
1 = 0 then L = L + 1

Fig. 2. Generalized k-LC algorithm

4 Profile of k-LC and Lauder-Paterson Algorithm

In this section we recall the profile of the k-LC and the Lauder-Paterson algorithm.
The Lauder-Paterson algorithm, which gives the profile of the k-LC for a binary
exponent sequence with period 2n, is shown in Fig.3.

Definition 9. Let a triple Ŝ = (S, σ,N) with a binary sequence S with length N ,
a vector σ over the integers1 with length N and N = 2n be a cost binary sequence.
We define B(Ŝ) = (B(S), B(σ), N/2) with length N/2 by

B(S)i = si + si+(N/2), B(σ)i = min{σi, σi+(N/2)}
for 0 ≤ i < N/2. And L(Ŝ) = (L(S), L(σ), N/2) with length N/2 is defined by

L(S)i =
{

si if si =si+(N/2) or σi >σi+(N/2),
si+(N/2) otherwise,

L(σ)i =
{

σi + σi+(N/2) if si = si+(N/2),
|σi − σi+(N/2)| otherwise

(7)

for 0 ≤ i < N/2, where |a| is the absolute value of a. �

1 The vector σ is originally defined over real numbers [9]. However σ is enough to over
integers in this paper.
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input: LP(Ŝ, t, r, c)

if � > 1 then

T =
∑

B(S)i=1
B(σ)i for i = 0 to �/2 − 1

if T > 0 then LP(B(Ŝ), t, min{r, t + T − 1}, c + (�/2))

if t + T ≤ r then LP(L(Ŝ), t + T , r, c)
else /* � = 1 */

if s0 = 0 then output (t, c)
if s0 = 1 and σ0 > 0 then output (t, c + 1)
if s0 = 1 and t+σ0≤r then output (t+σ0, c)

Fig. 3. Lauder-Paterson algorithm

The Lauder-Paterson algorithm is a recurrent algorithm (see Fig.3) and its final
output from the initial input LP(Ŝ = (S(N), σ = (1, 1, · · · , 1), N), 0, N, 0) is equal
to the extended decrease set EDS(S), defined by

EDS(S) = {(0, L(S))} ∪ {
(k, Lk(S))

∣∣Lk(S) < Lk−1(S), 1 ≤ k ≤ W
(
SN

)}

for an exponent periodic sequence S with period N = 2n. From the definition of
the k-LC, EDS(S) shows complete profile of the k-LC for a cost binary sequence
Ŝ with period 2n.

5 Generalization of Lauder-Paterson Algorithm

In this section we propose a generalized Lauder-Paterson algorithm (see Fig.4)
which is not used the concepts of shift and offset as same as the generalized k-LC
algorithm proposed in [4], although the Lauder-Paterson algorithm is using them
as same as the Stamp-Martin algorithm [10] and its second generalization [5].

We can construct proposed algorithm as same as the Lauder-Paterson algo-
rithm which is a recurrent algorithm. we need to consider p branches in each depth
and some conditions are decided by their cost matrix in similar to the generalized
Games-Chanalgorithm.Moreover fromthegeneralizedk-LCalgorithmandDefini-
tion 5 (the definition of the k-LC), for instance, if r = T (M,0) orT (M,w−1) = T (M,w)

or T (M,p−2) = t in case of p = 3 then there is no decrease point in the corresponding
range decided the k-LC. Next main theorem is derived from above discussion.

Theorem 1. Let (S(N), Σ,N, 0, 0, N + 1) be an input of the generalized Lauder-
Patersonalgorithmshown inFig.4,whereΣ = [σ(h, i)] is defined from(4).Thefinal
output of the algorithm indicates the extended decrease set EDS(S) of an exponent
periodic sequence S with period N .

(Sketch of Proof): At first calculations of borders T (N,u) by Definition 7 is cor-
rect from the correctness of the generalized k-LC algorithm. Moreover it is obvi-
ous that p branches are needed at the generalized Lauder-Paterson algorithm from
definition of the k-LC, the Lauder-Paterson algorithm and the generalized k-LC
algorithm. Because the lower border and the upper border to keep that condition
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input: GLP(S, Σ, N , c, r, t)

M = N/p, S(N) = S, Σ(N) = Σ

T (M,u) for u = 0 to p − 2 by (5)
if N > 1 then

if r < T (M,0) = t′ then GLP(b(M,0), Σ
(M)
1 , M , c + (p − 1)M , r, t′)

for w = 1 to p − 2

if r′ = T (M,w−1) < T (M,w) = t′ then GLP(b(M,w),Σ
(M)
w+1,M,c + (p−w−1)M,r′,t′)

if r′ = T (M,p−2) < t then GLP(b(M,p−1), Σ
(M)
p , M , c, r′, t)

else /* N = 1 */

αh = −s
(1)
0

m = min{σ(�, 0)|1 ≤ � ≤ q, � �= h}
if m < σ(h, 0) then output(m, c + 1)
if σ(h, 0) < t then output(σ(h, 0), c)

Fig. 4. Generalized Lauder-Paterson algorithm

as similar as the Lauder-Paterson algorithm, it is induced the correctness of pro-
posed algorithm from the generalized k-LC algorithm and the Lauder-Paterson
algorithm. �

Next we analyze memory and computation complexities about the generalized
Lauder-Paterson algorithm.

Firstly we consider memory complexity in the single step of the algorithm. Four
values M, c, r, t, each elements of Σ(M) and p − 1 times T (M,u) are integers less
than or equal to N , and the number of them is pmM + p + 3. The elements of
sequence S(M) has M elements over GF (pm). If we can use p-state memory, we
need n(pmM + p + 3) + Mm memories from N = pn in the worst case of the
single step. Because the algorithm runs from M = pn−1 to 1 (n steps), we need
n2(p + 3) + pn(npm + m) memories in the worst case of the whole algorithm.

Secondly we consider computation complexity in the single step of the algo-
rithm. Mpmp+1 times addition operations are needed for one T (M,u) calculation.
Since u runs p − 1 times, we need (p − 1)Mpmp+1 additions over GF (pm) from
Definition 7. Moreover we need pmMpmp+1 = Mpm(p+1)+1 additions for Σ

(M)
w

and Mp2 times additions for bM,w. Consequently about Mpm(p+1)+2 additions are
needed in the single step of the algorithm. If we decide one extended decrease point,
the algorithm runs from M = pn−1 to M = 1 (n steps). Hence we need about
pnpm(p+1)+2 = pn+m(p+1)+2 additions for one extended decrease point. Since the
number of the extended decrease set is N in the worst case, the computation com-
plexity of the algorithm is about Npn+m(p+1)+2 = p2n+m(p+1)+2 additions.

6 Numerical Examples

In this section we consider balanced exponent periodic sequences [7] defined as
follows.

Definition 10. If an exponent periodic sequence S over K = GF (pm) has period
pn with n ≥ m and same distributions for all elements in K, i.e., the number of an
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element within one period is pn−m for all elements in K, then a sequence S is called
a balanced exponent periodic sequence (BEPS). �

Especially, if a binary exponent periodic sequence S is balanced sequence we call
S a balanced binary exponent periodic sequence (BBEPS).

6.1 Binary Exponent Periodic Sequences with Period 16

In this section a numerical example of BEPS with period 16 using the LPA [9] is
given in order to study about distributions on the profile of the k-LC. We show
all profiles of them in Table.1, where # is the number of BBEPS with that profile
except the periodic isomorphism, and selected lines in Fig.5. In except the periodic
isomorphism [7], the number of all BBEPS is 800 and the number of BBEPS with
condition of Seq.5 at Table.5 is 16.

Table 1. k-LC of BBEPS (N = 16)

k 0 2 4 6 # k 0 2 4 6 #

Seq.1 15 10 5 2 128 14 3 3 3 8
15 10 3 2 64 Seq.3 13 13 3 3 64
15 9 9 2 128 13 13 2 2 32
15 6 3 2 32 Seq.4 12 9 9 5 32
15 5 5 2 32 12 7 2 2 8
15 3 3 2 8 12 6 3 3 4

Seq.2 15 2 2 2 8 12 5 5 5 8
14 11 5 3 64 11 11 5 5 16
14 11 2 2 32 11 11 2 2 8
14 9 9 3 64 10 10 5 5 8
14 7 2 2 16 10 10 3 3 4
14 5 5 3 16 Seq.5 9 9 9 9 16

Total 800

6.2 Exponent Periodic Sequences over GF (3) with Period 9

In order to study about distributions on the profile of the k-LC, we show numerical
examples to apply the generalized Lauder-Paterson (LP) algorithm to a balanced
exponent periodic sequence (BEPS) S over GF (3) with period 9(= 32). Note that

[0 3 3]t shows a matrix

⎡
⎣0

3
3

⎤
⎦ in next example 1.

Example 1: [Example of Generalized LP Algorithm]

S(9) = (220211010), Σ(9) =

⎡
⎣000000000

111111111
111111111

⎤
⎦

[Depth 1]:
b(3,0) = (111), b(3,1) = (021), b(3,2) = (220),
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0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8

k-
LC

k

"seq.1"
"seq.2"
"seq.3"
"seq.4"
"seq.5"

Fig. 5. Profile of k-LC for BBEPS (N = 16)

c = 0, r = 0, T (3,0) = 3, T (3,1) = 3, t = 10

Case 1 : GLP(b(3,0) = (111),

⎡
⎣000

111
111

⎤
⎦ , 3, 6, 0, 3),

Case 3 : GLP(b(3,2) = (220),

⎡
⎣121

232
313

⎤
⎦ , 3, 0, 3, 10)

[Depth 2]: of Case 1 at Depth 1

b(1,0) = (0), b(1,1) = (0), b(1,2) = (1),

c = 6, r = 0, T (1,0) = 0, T (1,1) = 0, t = 3

Case 3 : GLP(b(1,2) = (1), [0 3 3]t, 1, 6, 0, 3)

[Depth 2]: of Case 3 at depth 1

b(1,0) = (1), b(1,1) = (0), b(1,2) = (2),

c = 0, r = 3, T (1,0) = 3, T (1,1) = 6, t = 10

Case 2 : GLP(b(1,1) = (0), [6 6 3]t, 1, 1, 3, 6),

Case 3 : GLP(b(1,2) = (2), [6 6 6]t, 1, 0, 6, 10)
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[Depth 3]: of Case 3 at Dep.2 and Case 1 at Dep.1

c = 6, m = 0, σ(3, 0) = 3, t = 3, output(0, 7)

[Depth 3]: of Case 2 at Dep.2 and Case 3 at Dep.1

c = 1, m = 3, σ(1, 0) = 6, t = 6, output(3, 2)

[Depth 3]: of Case 3 at Dep.2 and Case 3 at Dep.1

c = 0, m = 6, σ(2, 0) = 6, t = 10, output(6, 0)

EDS(S(9)) = {(0, 7), (3, 2), (6, 0)} �

Table 2. k-LC of BEPS over GF (3) (N = 9)

k 0 1 2 3 4 5 6 #

Seq.1 8 8 4 4 2 2 0 972
Seq.2 8 8 2 2 2 2 0 162
Seq.3 7 7 7 2 2 2 0 342
Seq.4 6 6 4 4 4 4 0 162
Seq.5 4 4 4 4 4 4 0 54

Total 1674

Fig. 6. Profile of k-LC for BEPS over GF (3) (N = 9)

Example 2: [Profiles of the k-LC for BEPS over GF (3) with Period 9]
A numerical example of BEPS over GF (3) with N = 9 using the LPA [9]. We show
all profiles of them in Table.2, where # is the number with that profile of BEPS’s
except the periodic isomorphism [13, 7], and all lines in Fig.6. �



Generalized Lauder-Paterson Algorithm and Profiles of k-LC 177

7 Conclusion

In this paper we proposed the generalized Lauder-Paterson algorithm computing
the profile of the k-LC for an exponent periodic sequence over a finite field. In order
to derive proposed algorithm we recalled the generalized Games-Chan algorithm
of the LC and the generalized k-LC algorithm for an exponent periodic sequence.
The analysis of memory and computation complexities of the generalized Lauder-
Paterson algorithm is given.Numerical examples of proposed algorithm for aBEPS
over GF (3) with period 9(= 32) is given to confirm the algorithm and all profiles
and the number of them for BEPS over GF (3) with period 9.

This proposed algorithm should be called a generalized k-LC spectrum [9] algo-
rithm because this algorithm does not use the concepts of shift and offset. We may
be able to rewrite proposed algorithm into an algorithm using the concepts of shift
and offset.

Future works are fast algorithms of the LC and the k-LC for sequences with
arbitrary period for fast algorithms for the k-LC. Moreover a generalization of the
Lauder-Patersonalgorithmusing the concepts of shift andoffset, remainingprofiles
of the k-LC for BEPS’s and investigations of the k-LC and their profiles for non-
binary sequences and non-exponent periodic sequences are also future works.
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