
Reputable Mix Networks

Philippe Golle

Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304
pgolle@parc.com

Abstract. We define a new type of mix network that offers a reduced
form of robustness: the mixnet can prove that every message it outputs
corresponds to an input submitted by a player without revealing which
input (for honest players). We call mixnets with this property reputable
mixnets. Reputable mixnets are not fully robust, because they offer no
guarantee that distinct outputs correspond to distinct inputs. In par-
ticular, a reputable mix may duplicate or erase messages. A reputable
mixnet, however, can defend itself against charges of having authored the
output messages it produces. This ability is very useful in practice, as it
shields the mixnet from liability in the event that an output message is
objectionable or illegal.

We propose three very efficient protocols for reputable mixnets, all
synchronous. The first protocol is based on blind signatures. It works
both with Chaumian decryption mixnets or re-encryption mixnets based
on ElGamal, but guarantees a slightly weaker form of reputability which
we call near-reputability. The other two protocols are based on ElGamal
re-encryption over a composite group and offer true reputability. One
requires interaction between the mixnet and the players before players
submit their inputs. The other assumes no interaction prior to input sub-
mission.

Keywords: Mix Network, Privacy, Anonymity.

1 Introduction

The motivation for this paper lies in the following question: Why is it so difficult
to recruit volunteers willing to operate remailers? We identify two answers to
that question:

1. The overhead of setting up and operating a remailer deters potential volun-
teers. This issue appears on the verge of resolution. Newly developed infras-
tructures for anonymous communication such as Mixminion [DDM03] offer
remailing clients that are fast becoming as easy to set-up and operate as
some hugely popular Peer-to-Peer clients.

2. The risk and liability (both real and perceived) of operating a remailer deters
potential volunteers. Remailers may unwittingly relay illegal or objectionable
messages (e.g. a death threat, child pornography), but can neither filter

D. Martin and A. Serjantov (Eds.): PET 2004, LNCS 3424, pp. 51–62, 2005.

52 P. Golle

those messages (since they are encrypted) nor defend themselves effectively
against accusations of having authored them. Potential volunteers thus shy
away from the risks and liability that come with operating a remailer or mix
server.

This paper addresses the second problem (the risk and liability of operating
a remailer), which we now examine in more detail. We note first that any legal
protection that remailers might enjoy, while useful as an ultimate recourse, will
not be sufficient to convince a lot of volunteers that it is safe to run a remailer.
Few volunteers will run remailers if they must face the threat and inconvenience
of lawsuits, even if they were guaranteed to win in court every time. To spur
the deployment of remailers on a large scale, what is needed instead is a simple
technological solution that allows a remailer to prove beyond a doubt that it did
not author a certain message.

We review first briefly two possible approaches to this problem and explain
why they are unsatisfactory:

– Robust mixnets. A first approach is to base anonymous communication
on robust mix networks [OKST97, Nef01, JJR02]. A robust mixnet can prove
that the set of output messages it produces is exactly a permutation of the
set of input messages it received from players, without revealing anything
about the correspondence between inputs and outputs. Thus in particular,
a robust mixnet can prove that it did not produce any output that was not
already present in the input. This proof is given without compromising the
privacy of any player. But robust mixnets are computationally expensive and
require many rounds of interaction between mix servers. This makes them
unsuitable for a general-purpose anonymous communication system.

– Keeping Logs. Another approach is for each mix server (or remailer) to
keep logs of the relationships between the input messages it has received
and the output messages it has produced (if the mix derives its randomness
from a seed, it only needs to remember that seed, since the log can be
reconstructed from it). If a mix server is accused of delivering an offensive
or illegal email, it can defend itself by breaking the privacy of the message
in question and revealing the corresponding input message. The mix servers
are exonerated, but at the price of exposing the player who submitted the
message. This approach is extremely undesirable. Indeed, the existence of
logs leaves mixnets vulnerable to threats and makes them maybe more willing
to compromise the privacy of their users to avoid trouble for themselves.
Keeping logs thus weakens the privacy of all users.

The contribution of this paper is to propose a new type of mixnet, called
reputable mixnet, which offers a limited form of robustness. A reputable mixnet
can prove that every message it outputs corresponds to an input submitted
by a player, without revealing which input (at least as long as players obey
the protocol: see discussion below). Reputable mixnets thus offer a simple and
effective defense against accusations of authoring objectionable outputs.

Reputable Mix Networks 53

Reputable mixnets are much more computationally efficient than even the
fastest robust mixnets [JJR02, BG02]. However, reputability is a weaker prop-
erty than robustness, because the mix can not prove that distinct outputs
correspond to distinct inputs. In particular, a malicious server in a reputable
mix can erase or replicate inputs with impunity. In Chaumian mixnets, servers
can easily detect and eliminate multiple fraudulent copies of the same input.
In re-encryption mixnets on the other hand, the ability to make copies of in-
puts goes undetected and potentially allows a malicious server to trace selected
inputs [PP89, Pfi94].

For this attack to be successful, the adversary must control a non-negligible
fraction of remailers. This is easier to achieve when the total number of remailers
is small. If reputable mixnets lead to a large increase in the number of volunteers
who operate remailers, reputable mixnets will offer much better anonymity in
practice than systems with fewer remailers, in spite of the attack just described.
Indeed, we believe that the small number of remailers currently constitutes a
much graver threat to players’ privacy than the risk of a dishonest remailer
tracing a message by making copies of it.

We propose three very efficient protocols for reputable mixnets, all syn-
chronous. The first protocol is based on blind signatures. It works both with
Chaumian decryption mixnets or ElGamal-based re-encryption mixnets, but
guarantees a slightly weaker form of reputability which we call near-reputability
(defined below in section 1.1). The other two protocols are based on ElGamal
re-encryption over a composite group and offer true reputability. One requires
interaction between the mixnet and the players before players submit their in-
puts. The other assumes no interaction prior to input submission.

Organization of the Paper. In the rest of this section, we present our model,
define near-reputable and reputable mixnets and review related work. In sec-
tion 2, we present a near-reputable mixnet protocol based on blind signatures.
We present our two reputable protocols in section 3, and conclude in section 4.

1.1 Model and Definition

We review first briefly how mix networks are used for private communication.
To send an anonymous message to Bob, Alice encrypts her message (including
Bob’s email address) under the public key of the mixnet. The mixnet collects
ciphertexts submitted by different senders to form a batch. It decrypts (or re-
encrypts, then decrypts) all these ciphertexts and delivers them (in a random
order) to their recipients. The identity of the sender of the message is hidden
from the recipient of the message.

We define a reputable mixnet as follows. Let A be the set of input ciphertexts
submitted to a mixnet, and let B be the corresponding set of output plaintexts
produced by the mixnet (for re-encryption mixnets, we assume that the outputs
are jointly decrypted after having been re-encrypted by ever server, hence the
outputs are always plaintext). Since we consider synchronous mixes throughout
this paper, A and B are simply the inputs and outputs of a batch.

54 P. Golle

Definition 1. (Reputable Mixnet) A mixnet M is f-reputable if for every
batch output B there exists a subset f(B) ⊆ B such that the mixnet can prove
to a third party that unless all mix servers collude, every output in f(B) is a
decryption of an input in A without revealing which one.

Example. Let f0 be the function that maps every set to the empty set. Every
mixnet is trivially f0-reputable. Let f1 be the identity function. A mixnet that
is f1-reputable can prove that every output it produces is the decryption of an
input received from a player.

Definition 2. (Near-reputable Mixnet) A mixnet M is f-near-reputable if
for every batch output B there exists a subset f(B) ⊆ B and a set of players
PB such that the mixnet can prove to a third party that unless all mix servers
collude, every output in f(B) was authored by one of the players in PB without
revealing which one.

Example. If we define PB to be the set of players who submitted the inputs
in A, then f -near-reputable and f -reputable are the same. But near-reputation
is more general than reputation, because the set of players PB need not be the
players who submitted the inputs in A. For example, the set PB could be a set
of players who committed themselves to submit at a later time.

Our definitions of reputation and near-reputation make no assumption about
whether the players execute the submission protocol correctly or about whether
the servers execute the mixing protocol correctly (although, as we shall explain,
the function f depends on the behavior of players and servers). The only as-
sumption we make is that the number of servers that collude is below a certain
threshold. As long as the number of colluding servers is below the threshold,
servers gain nothing by colluding. But if the number of colluding servers reaches
or exceeds the threshold, they may falsely convince a third party that they are
f -reputable or f -near-reputable even though they are not.

A reputable or near-reputable mixnet makes no claim about how messages
are processed between the time they are input and the time they are output.
In particular, reputable mixnets do not guarantee that messages are correctly
mixed, nor even that messages will go through every server along the mixing
route that was set for them. Recall that the goal of reputable mixnets is to let
servers defend themselves against accusation of having authored their output,
without breaking the privacy of the outputs. This indirectly enhances the privacy
of players, but it does not offer privacy where there is none (e.g. if servers do
not mix correctly).

Finally it should be made clear that, naturally, an f -reputable mixnet does
not prove that messages in f(B) did not originate with a mix server. Indeed,
servers may submit messages in the input of the mix like any other player.
What a reputable mixnet can prove however is that every message in f(B) was
submitted by a player in the input (or a player in PB for near-reputable mixnets).
That fulfills our stated goal of shielding the servers from liability related to the
outputs they produce. We do not and can not shield servers from liability related

Reputable Mix Networks 55

to other activities they may choose to engage in, such as for example being a
player as well as a server.

An analogy might help clarify this last point. A reputable mixnet is akin to
a postal mail sorting facility where workers are searched before reporting for
work to make sure they do not smuggle letters from outside into the sorting
facility. This search procedure shields the sorting facility from liability in case
illegal pieces of mail are found to have passed through the facility. Indeed, those
pieces of mail may have been sorted at the facility, but were provably not created
there. Of course, nothing can prevent a worker at the facility from mailing illegal
material from home while off-duty. The search procedure proves the innocence
of the facility and of the workers while on-duty at the facility, but need not
and does not account for what workers do when they are off-duty. Similarly, a
reputable mixnet proves only the innocence of the mixing operation (which is
all we care about).

1.2 Related Work

Chaum defined mix networks in his seminal paper [Cha81] in the context of an
anonymous email system. Chaum’s mixnet, based on RSA decryption, is not
robust. His paper inspired a long line of work on non-robust private communi-
cation, from Type I Cypherpunk remailers [Par96] to Onion Routing [GRS99],
Babel [GT96] and most recently Mixminion [DDM03]. We refer the interested
read to [FHP] for a complete annotated bibliography of the most significant
results in anonymity.

A parallel but separate line of work is the development of robust mixnets
based on ElGamal re-encryption. The first techniques for robust mixing were
based on cut-and-choose zero-knowledge proofs [SK95, OKST97] that are very
computationally expensive . A number of recent schemes [FS01, Nef01, JJR02]
offer more efficient proofs of robust mixing but they remain very expensive com-
pared to Chaumian mixes. As already noted, robust mixnets can prove to a third
party that the set of output they produce is a permutation of the set of inputs
without revealing the correspondence between inputs and outputs. This implies
that robust mixnets are Id-reputable (where Id is the identity function), but the
converse is not true. An Id-reputable mixnet does not guarantee that distinct
messages in the output correspond to distinct messages in the input. The near-
reputable and reputable mixnet protocols described in this paper are much more
computationally efficient than robust mixnets.

In our protocols, we use blind signature to authenticate messages. This ap-
proach is similar to the work on hybrid mixes by Jakobsson and Juels [JJ01].

2 Near-Reputable Mixnet with Blind Signatures

In this section, we present a protocol for a near-reputable mixnet based on blind
signatures [Cha82]. Our protocol works both with decryption or re-encryption
mixnets.We assumethroughoutthat messages are mixed synchronously inbatches.

56 P. Golle

Recall first that a blind signature scheme allows a player to obtain a sig-
nature S on a message m without revealing m to the entity that produces the
signature. The RSA signature scheme and the Schnorr signature scheme for ex-
ample have blind variants. For concreteness, we base our presentation on RSA
blind signatures. Let N be an RSA modulus, e a public verification key and d a
private signing key such that ed = 1 mod ϕ(N). To obtain a blind signature on
message m, a player chooses at random a blinding factor r ∈ ZN and submits
mre mod N to the signer. Let S′ be a signature on mre. It is easy to see that
the signer learns nothing about m, yet S = S′/r is a signature on m.

We show how to use blind signatures to convert a mixnet into a near-reputable
mixnet. Let M be a mixnet protocol (either decryption or re-encryption mix)
that processes messages synchronously. The description of M consists of a pub-
lic encryption function E and a mixing protocol MIX. Players submit encrypted
inputs E(m) to the mixnet. The protocol MIX takes a batch of encrypted inputs
and produces as output the corresponding plaintexts in random order.

Near-reputable Mixnet. In a setup phase, the near-reputable mixnet pub-
lishes the encryption function E. In addition, the mix servers jointly generate
an RSA modulus and a shared signing key d and they publish the corresponding
verification key e (see [BF01] for detail on shared generation of RSA parame-
ters). These parameters may be replaced at any time, but they are meant to
be long-lived and reused to mix many batches. In what follows, the symbol ||
denotes string concatenation. The mixnet processes a batch in two phases:

1. Signature phase. All mix servers jointly generate a random (say, 160-bit)
value b. This value serves as a unique identifier for the current batch. The
value b is published. To submit a message m for processing in batch b, a
player obtains from the mixnet a blind signature S on m||b and submits as
input E(m||b||S). We denote by Pb the set of players who request a blind
signature during batch b. Note that a player may cheat and obtain a signature
on an improperly formatted message (for example, a message with the wrong
batch identifier).

2. Mixing phase. At some point (e.g. when enough inputs have been submit-
ted), the mixnet stops issuing signatures and starts mixing the batch. The
mixnet executes the protocol MIX on the batch of inputs and outputs in
random order the set of plaintexts m||b||S. The mixnet need not verify that
the signature S on m||b is valid.

When mixing is over, the mixnet returns to the signature phase. It generates a
new random batch identifier b′ and starts accepting messages for that new batch.

Proposition 1. We define the function f as follows. The set f(B) contains
every message in B that was (1) submitted by an honest player and (2) processed
correctly by the mix. The mixnet defined above is f-near-reputable for the set of
players Pb.

Given the definition of the set f(B), it comes as no surprise that every output
in f(B) was authored by a player. The property of being near-reputable lies not

Reputable Mix Networks 57

in the truth of that statement, but in the ability to prove to a third party that
the statement is true.

Proof. (Proposition 1) By definition of the set f(B), every output m||b||S in
f(B) contains a valid signature S on m||b. This signature allows the mixnet to
convince a third party that the author of message m||b belongs to the set of
players Pb who requested signatures during batch b. Indeed, the only window
of opportunity for a player to obtain with non-negligible probability a valid
signature for a message submitted in batch b is after the value b is published, and
naturally before submission is closed for batch b. Furthermore since the signature
is blind, it reveals nothing about the correspondence between outputs in f(B)
and players in Pb. Note that a regular signature would afford players no privacy
precisely because it would expose the correspondence between f(B) and Pb. ��

If accused of authoring a message that is not in f(B) (e.g. a message that
contains an invalid signature, or no signature at all), the mixnet has no other
option but to break the privacy of that message and trace it back either to an
input, or to a malicious server who introduced the input into the batch fraud-
ulently. In either case, honest servers are exonerated. It is consequently in the
best interest of players and servers to execute the protocol correctly.

Efficiency. The protocol is efficient: the only additional overhead comes from
the shared signing of messages, at a cost of one exponentiation per server per
message.

3 Reputable Mixnet Protocols

In this section, we propose two reputable mixnet protocols. These protocols are
based on synchronous ElGamal re-encryption mixnets over composite groups.
The section is organized as follows. We review first briefly the properties of the
ElGamal cryptosystem. We present next a reputable mixnet protocol. We end
with a variant protocol that eliminates the need for interaction between mix
servers and players prior to input submission.

3.1 Preliminaries: The ElGamal Cryptosystem

We review briefly the ElGamal cryptosystem and introduce two properties of
this cryptosystem that underpin the design of our reputable mixnets: the re-
encryption and ciphertext-signing operations. The first property, re-encryption,
is well-known and has long been used in the design of mixnets [OKST97]. The
second property, ciphertext-signing, is used here for the first time to guarantee
the reputation of the mixnet.

ElGamal is a probabilistic public-key cryptosystem, defined by the follow-
ing parameters: a group G of order n, a generator g of G, a private key x and
the corresponding public key y = gx. To encrypt a message m ∈ G, a player
chooses a random element s ∈ Zn and computes the ciphertext E(m) ∈ G × G

58 P. Golle

as the pair E(m) = (gs, mys). To decrypt, one uses the private key x to compute
mys/(gs)x = m. ElGamal is semantically secure under the assumption that the
Decisional Diffie Hellman (DDH) problem is hard in the group G.

Re-encryption. Re-encryption mixnets exploit the fact that the ElGamal cryp-
tosystem allows for re-encryption of ciphertexts. Given an ElGamal ciphertext
C = (gr, myr) and the public key y under which C was constructed, anyone
can compute a new ciphertext C ′ = (gr+s, myr+s) by choosing a random s and
multiplying the first and second element of the pair by gs and ys respectively.
Note that C and C ′ decrypt to the same plaintext m. Furthermore, without
knowledge of the private key x, one cannot test if C ′ is a re-encryption of C if
the DDH problem is hard in G.

Signatures. In typical implementations of ElGamal, the group G is a multiplica-
tive subgroup of Zp of prime order q. We will instead be working with ElGamal
over a composite group. Let p, q be two large primes (say, 1024 or 2048 bits)
and let N = pq. We define G to be the group Z

∗
N . The ElGamal encryption,

decryption and re-encryption operations are exactly the same over a composite
group as over a group of primer order. See [McC88, FH96] for more detail on the
security of ElGamal over composite groups.

We can define an RSA signature scheme for ElGamal ciphertexts over a com-
posite group G as follows. We choose a public exponent e and compute the corre-
sponding secret key d such that ed = 1 mod ϕ(N), where ϕ(N) = (p−1)(q−1).
Let E(m) = (gr, myr) be an ElGamal ciphertext over G. We define the signa-
ture on E(m) to be S = ((gr)d, (myr)d) = (grd, mdyrd). The signature S is itself
an ElGamal encryption of the plaintext md in the cryptosystem defined by the
public parameters (G, gd, yd) and private key x. The signature S can therefore
be re-encrypted like any other ElGamal ciphertext.

Signatures and Re-encryption. Let S be a signature on E(m). We have
already noted that both S and E(m) can be re-encrypted. It remains to show
how to verify signatures. The common strategy to verify a signature fails: raising
both elements of the ciphertext S to the power e yields nothing recognizable
after S or E(m) have been re-encrypted. Instead, we verify the signature by first
decrypting S (we get plaintext a) and E(m) (we get plaintext b) and verifying
that ae = b. This verification is compatible with re-encryption.

3.2 A First Reputable Mixnet

The reputable mixnet protocol presented here is based on a re-encryption mixnet
with ElGamal over a composite group. While our presentation is self-contained,
readers unfamiliar with re-encryption mixnets may consult [OKST97] for more
detail.

Setup. The mix servers jointly generate an RSA modulus N , a shared signing
key d and the corresponding public verification key e. See [BF01] for an effi-

Reputable Mix Networks 59

cient protocol to generate shared RSA parameters. The mix servers publish the
modulus N and the public key e. The mix servers then jointly generate the pa-
rameters of an ElGamal cryptosystem over the composite group Z

∗
N . Each mix

server holds a share of the private key x. The corresponding public key y = gx

is published. See [Ped91, GJKR99] for efficient protocols to generate shared El-
Gamal keys. Finally, the mix servers jointly compute and publish gd and yd. All
these parameters can be changed at any time, but they are meant to be long
lived and reused to process a number of batches.

Creation of a Batch of Inputs. The creation of a batch of inputs proceeds
in 2 steps.

1. Submission of inputs. All mix servers jointly generate a random (say, 160-
bit) value b. This value serves as a unique identifier for the current batch.
The value b is published. Players submit their input m to the batch as
follows. A player encrypts m||b under the ElGamal public key of the mixnet
to create the ciphertext E(m||b) = (gr, (m||b)yr) and posts this ciphertext to
a bulletin board. Note that players may submit inputs that are improperly
formatted.

2. Signing. When all ciphertexts have been posted to the bulletin board, the
mix servers jointly compute for every ciphertext E(m||b) a threshold signa-
ture S = ((gr)d, ((m||b)yr)d) and append this signature to the ciphertext.
The bulletin board now contains pairs of the form (E(m), S).

Mixing. Each server in turn mixes and re-encrypts the set of messages in the
batch. The first server takes as input the list of pairs (E(m), S) posted on the
bulletin board. Let E(m) = (a, b) and S = (α, β) be one particular input. To
re-encrypt this input, the server chooses independently at random r, r′ ∈ ZN and
computes two new pairs (agr, byr) and (αgdr′

, βydr′
). Every pair is re-encrypted

in the same way. Finally, the first server outputs these pairs of values in a ran-
dom order. These outputs become the input to the second server, who processes
them in the same way. More generally, mix server Mi receives as input the set
of pairs of ElGamal ciphertexts output by mix server Mi−1. Server Mi permutes
and re-randomizes (i.e. re-encrypts) each element of all these pairs of ciphertexts,
and outputs a new set of pairs of ciphertexts, which is then passed to Mi+1.

Decryption. The mix servers jointly decrypt the final output. Note that the
servers need not provide a zero-knowledge proof of correctness for decryption
(we are not aiming for robustness). The servers need not verify the validity of
signatures either.

Proposition 2. We define the function f as follows. The set f(B) contains
every message in B that was (1) submitted by an honest player and (2) processed
correctly by the mix. The mixnet defined above is f-reputable.

Proof. Signatures ensure that every output in f(B) corresponds to an input,
assuming that the number of colluding servers is below the threshold required
to generate a fake signature. ��

60 P. Golle

Efficiency. The computational and communication cost of our reputable mixnet
is exactly twice that of the mixing cost of a standard plain-vanilla re-encryption
mixnet, since every input consists of a pair of ElGamal ciphertexts. All expo-
nentiations for re-encryption depend only on fixed public parameters and can
therefore be pre-computed before the batch is processed.

3.3 A Reputable Mixnet with Non-interactive Submission of
Inputs

The near-reputable and reputable protocols described so far both rely on the
ability of the mix servers to interact with players before they encrypt and submit
their inputs. Indeed, the mix servers must communicate the batch identifier b
to the players. In some circumstances, this requirement may be too restrictive.
A mix server may be given as input a set of ciphertexts, without the ability to
interact with the players who created these ciphertexts.

Consider for example the last k servers in a mix cascade that consists of
K > k servers. These k servers may decide to form a reputable sub-cascade
and prove that every ciphertext they output corresponds to one of their input
ciphertexts. The protocol of the previous sections do not work in this case. In
this section, we describe a variant of the reputable protocol of section 3.2 that
allows a reputable mixnet to work with already encrypted inputs.

Variant protocol. In a setup phase, the mix servers jointly generate and pub-
lish an RSA modulus N , then jointly generate the parameters of an ElGamal
cryptosystem over the composite group Z

∗
N . The secret key x is shared among the

servers while the corresponding public key y = gx is published. The submission
of inputs involves the following 2 steps:

1. Generation of a signing/verification key pair. All mix servers jointly
generate a shared RSA signing key d and the corresponding public verifi-
cation key e over the group ZN . New keys d and e are generated for each
batch.

2. Submission and signing of inputs. Players submit their input m en-
crypted under the ElGamal public key of the mixnet as E(m) = (gr, myr).
The mix servers jointly compute for every ciphertext E(m) a threshold sig-
nature S = ((gr)d, (myr)d) and append this signature to the ciphertext. The
bulletin board now contains pairs of the form (E(m), S).

From here onwards, the mixing and decryption proceed as in the protocol of
section 3.2. In essence, the signatures in this protocol are tied to a batch not
via a batch identifier appended to the plaintext, but rather by using a new and
different signing/verification key pair for every batch.

Proposition 3. We define the function f as follows. The set f(B) contains
every message in B that was processed correctly by the mix. The variant mixnet
defined above is f-reputable.

Reputable Mix Networks 61

Observe that here the set f(B) depends only on the honesty of the servers,
not that of the players. This is arguably a small difference, since we have already
shown that it is in the best interest of players to execute the protocol correctly.
Nevertheless, this variant protocol offers the strongest guarantee of reputability.

4 Conclusion and Future Work

We defined a new property of mix network: reputability. Reputable mixnets can
prove to a third party that every output they produce is a decryption of an
input submitted by a player without revealing which input for honest players
(dishonest players forfeit their own privacy). In practice, reputable mixnets offer
a twofold advantage.

– First, reputable mixnets are almost as efficient as non-robust mixnets, yet
they offer better privacy than non-robust mixnets because they are not vul-
nerable to accusations of having authored the outputs they produce. For
private communication systems, we believe that such accusations constitute
a much graver threat to players’ privacy than the risk of a mix server cheating
in the execution of the mixing protocol.

– Second, reputable mixnets may spur the development of anonymous email
systems as volunteers need not fear the threats and liability to which non-
robust non-reputable mixnets are exposed.

We proposed three very efficient protocols for near-reputable and reputable
mixnets, all synchronous. An interesting direction for future work would be to
look into the design of reputable protocols for asynchronous mixnets.

Acknowledgements

The author would like to thank the anonymous referees for valuable comments
that helped improve the presentation of this paper.

References

[BF01] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In
Journal of the ACM (JACM), Vol. 48, Issue 4, pp. 702–722, July 2001.

[BG02] D. Boneh and P. Golle. Almost entirely correct mixing with applications to
voting. In Proc. of the 9th ACM Conference on Computer and Communi-
cations Security, pp. 68–77. ACM Press, 2002.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Communications of the ACM, 24(2):84-88, 1981.

[Cha82] D. Chaum. Blind signatures for untraceable payments. In Proc. of Crypto
’82, pp. 199–203. Plenum Press, N.Y., 1983.

[CFN88] D. Chaum, A. Fiat, M. Naor. Untraceable electronic cash. In Proc. of
Crypto’88, pp. 319–327. Springer-Verlag, LNCS 403.

62 P. Golle

[DDM03] G. Danezis, R. Dingledine and N. Mathewson. Mixminion: design of type
III anonymous remailer protocol. In Proc. of the 2003 IEEE Symposium on
Security and Privacy, pp. 2-15. On the web at http://mixminion.net/

[FH96] M. Frankling and S. Haber. Joint encryption and message-efficient secure
computation. In Journal of Cryptology, pp. 217–232, Vol. 9, No. 4, Autumn
1996.

[FHP] The Free Haven Project. On the web at http://www.freehaven.net/
anonbib/

[FS01] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proc.
of Crypto ’01, pp. 368-387. Springer-Verlag, 2001. LNCS 2139.

[GJKR99] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. In Proc. of Eurocrypt
’99, pp. 295-310. LNCS 1592.

[GRS99] D. Goldschlag, M. Reed and P. Syverson. Onion routing for anonymous and
private internet connections. In Communications of the ACM, 42(2):39-41,
1999.

[GJJS03] P. Golle, M. Jakobsson, A. Juels and P. Syverson. Universal re-encryption
for mix networks. In Proc. of the 2004 RSA Conference, Cryptographer’s
track.

[GT96] C. Gulcu and G. Tsudik. Mixing E-mail with Babel. In Proc. of Network
and Distributed Security Symposium - NDSS ’96. IEEE, 1996.

[JJ01] M. Jakobsson and A. Juels. An optimally robust hybrid mix network. In
Proc. of PODC ’01, pp. 284–292. ACM Press, 2001.

[JJR02] M. Jakobsson, A. Juels and R. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In Proc. of USENIX’02.

[McC88] K. McCurley. A key distribution system equivalent to factoring. In Journal
of Cryptology, pp. 95–105, Vol. 1, No. 2, Autumn 1988.

[Nef01] A. Neff. A verifiable secret shuffle and its application to E-Voting. In Proc.
of ACM CCS’01, pp. 116-125. ACM Press, 2001.

[OKST97] W. Ogata, K. Kurosawa, K. Sako and K. Takatani. Fault tolerant anony-
mous channel. In Proc. of ICICS ’97, pp. 440-444, 1997. LNCS 1334.

[Par96] S. Parekh. Prospects for remailers. First Monday, 1(2), August 1996. On
the web at http://www.firstmonday.dk/issues/issue2/remailers/

[Ped91] T. Pedersen. A Threshold cryptosystem without a trusted party. In Proc.
of Eurocrypt’91, pp. 522-526, 1991.

[PP89] B. Pfitzmann and A. Pfitzmann. How to break the direct RSA-
implementation of mixes. In Proc. of Eurocrypt ’89, pp. 373-381. Springer-
Verlag, 1989. LNCS 434.

[Pfi94] B. Pfizmann. Breaking an Efficient Anonymous Channel. In Proc. of Euro-
crypt’94, pp. 332–340. Springer-Verlag, LNCS 950.

[SK95] K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In Proc. of
Eurocrypt ’95. Springer-Verlag, 1995. LNCS 921.

http://mixminion.net/
http://www.freehaven.net/
anonbib/
http://www.firstmonday.dk/issues/issue2/remailers/

	Introduction
	Model and Definition
	Related Work

	Near-Reputable Mixnet with Blind Signatures
	Reputable Mixnet Protocols
	Preliminaries: The ElGamal Cryptosystem
	A First Reputable Mixnet
	A Reputable Mixnet with Non-interactive Submission of Inputs

	Conclusion and Future Work

