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Abstract. Overhearing is an indirect interaction type that enacts agents
to listen to direct interactions among other agents without taking explicit
part in the exchanges. In this paper, we propose a formal model of over-
hearing named T-compound and a methodology to describe generalised
interaction networks in Multi-Agent Systems. The compound is defined
with the π-calculus as an interaction composite. It is handled as an in-
teraction primitive distinct from the traditional point-to-point one, so
that our methodology can treat both cases homogeneously.

1 Introduction

Multi-agent systems (MAS) rely on the interactions among their agents, either
human, hardware or software. Our work highlights the design of interactions in
MAS, and we think relevant to exploit the recent concept of overhearing [1, 2]
in addition to traditional direct interactions. This notion refers to one type of
indirect interactions that occurs frequently in natural systems, typically when
two agents are interacting, say discussing, and a third one is just a passive audi-
ence that could however intervene if required. This presentation of overhearing
presents the positive aspects of the paradigm. The counterpart named ‘eaves-
dropping’ in the MAS community implies various concerns including security
and reliability. In the frame of this paper, we focus on interaction requirements
for cooperative agents to leverage overhearing advantages. We let eavesdropping
as peculiar issue to be addressed separately.

Present work on overhearing exploited this mechanism in various scenarii
such as monitoring agent systems and group formation. These applications show
the relevance of the concept and its generality. However, it results from these
systems that overhearing relies on an unusual interaction infrastructure, since
current technologies only exploit direct links among agents. In this paper, we
propose a formal model named the T-compound, based on the π–calculus [3],
and a methodology to enable and encapsulate systematic use of overhearing
interactions, when required. Exploitation of both direct and indirect interactions
leads to new perspectives on systems, and we will show some situations whereby
this double usage is even necessary.
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This paper begins in Section 2 with a presentation of the concept of over-
hearing, its interest for MAS, and the relevance of formal modeling with the
π–calculus. Then, we propose in Section 3 our model and a methodology to de-
scribe the interaction dimension in MAS. In Section 4, we develop an example
with the proposed method. Finally, we relate our approach to other activities in
modeling overhearing in Section 5, before concluding in Section 6.

2 MAS, Overhearing, and π–Calculus

2.1 MAS and Overhearing

The notion of overhearing was recently introduced in the MAS community as
reported by Gutnik et al. [4]. It was originally proposed to endow agents with
monitoring abilities to reason about the apparent behaviour of other agents, i.e.
their interactions. This concept endows one agent with the capacity to capture
information from the interaction of two or more other agents. Fig.1 depicts such
a situation in its simplest case.

MAS presently exploit direct interactions, such as the discussion link between
agents A and B on Fig.1. Overhearing is an instance of indirect interaction that
might be relevant in the MAS paradigm. In fact, research in the field of natural
sciences show that numerous MAS based on complex societies exploit mean-
ingful forms of communication without explicit receiver. For instance, termites
build their hills by working together, but they do not exchange any information
directly. They rely on the notion of stigmergy whereby they determine their be-
haviours according to the current state of the environment. One termite puts
a piece of material for the hill, and other termites (including the first one) will
then pile on top [5].

Indirect interactions already leveraged relevant results in MAS with stig-
mergy and other techniques [6]. Overhearing has now an increasing number of
applications. Original work refers to monitoring agent systems [7], large group
communication [1], dynamic group formation [2], conversation recognition [4],
and some forms of coordinations [8, 9, 10]. In addition, the phenomenon often
appears in agent systems that focus on a variety of concerns. Hence, the Helper
Agent reacts to silences in an instant messaging discussion between humans to
suggest common topics and increase the interest of the participants [11]. The M
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Fig. 1. Overhearing Situation
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workspaces at run-time [12]. COLLAGEN observes the flight ticket reservation
process of the user to propose alternatives when no solution can be found for
a given request [13]. In the remainder of this paper, we attempt to make more
systematic the usage of overhearing in such systems, and novel applications.

2.2 Interaction and Formal Model

In order to exploit different kinds of interactions, MAS developers need a repre-
sentation scheme. Formal models consist in proper representations of phenom-
ena and remain mostly neutral regarding implementation details. Also, they can
clarify the view of the system and reduce the effects of complexity by using
mathematical compact formulae, based for instance on sets or recursivity.

In consequence, we propose in this paper a formal model that relies on the
π-calculus from Milner [3] to leverage its interaction- and dynamism-oriented
syntax, mechanisms, and expressive power that ‘can in principle model (...) any
computational aspect of agents’ [14]. This heritage provides a robust model of
traditional interactions and our extension enacts an instance of overhearing.

In addition to the grounds provided with the calculus, Milner developed a
set of techniques to study concurrent systems, including equivalence relations.
We expect the comparison between interaction structures and between apparent
behaviours will enable advanced reasoning capabilities in agents exploiting over-
hearing. In particular, one agent may hear a conversation and try to match the
stream to a known protocol [4]. As it is unlikely to perfectly match an existing
models, the notion of equivalence allows more flexibility. In the remainder of this
paper, we focus first on the syntax and semantics of the formal model, whereas
the exploitation of equivalence belongs to our future work.

2.3 The π-Calculus in This Paper

The model presented in this paper exploits a subset of the π–calculus, originally
from R. Milner [3]. This section aims at detailing the elements we retained
and their meaning. The π–calculus features much more elements and advanced
notions, but the present notations and mechanisms are sufficient in this paper.

The π–calculus is a modern process algebra for concurrent systems. It serves
to represent and reason about interactions among concurrent processes and their
dynamics such as mobility and changes in the interaction network (reorganisa-
tion, life-cycle). In the frame of this paper, we call agents the processes of the
π–calculus, in the sense of the MAS community [15].

Pπ is the set of agent names denoted by capitalised words. The set of Greek
letters ℵ = (α, β, ...) represents the interaction channels that can link two agents.
Other strings and small characters in the set Str label the messages that are sent
in the different channels. Finally, I is an interval of integers [0,1,2,...].

system surveys the actions of people in a virtual meeting room to optimise their
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• 0 is the agent termination, in addition to Pπ

→ It is usually omitted at the end of definitions, i.e. P = α.Q is written
instead of P = α.Q.0

• 〈.〉 and (.) represent the sending and reception operators
→ They accept the same syntax for any channel α and message x: α〈x〉 and

α(x). The operator omission denotes any of them is applied.
• ‘.’ (dot) is the successor operator

→ Given the channels α, β and the agent P , well-formed formulae are α.P
and α.β.P (it is also generalised to n agents).

• ‘new’ is the restriction operator
→ Given the channels α, β and the agent P , well-formed formulae are

new(α)P and new(α)new(β)P. In the second case, we also write new(αβ)P
to have more compact formulae.

• + represents the choice operator
→ It allows writting P + Q for any agent P and Q. The generalisation for

n of agents is:
∑n

i=1 Ai = (A1 + ... + An)
• | is the concurrent operator

→ It accepts the formula P | Q for any agent P and Q, and the generalisa-
tion:

∏n
i=1 Ai = (A1 | ... | An)

Finally, the well-formed agents verify the following equation. An agent P is
either of the items in this formula, and also their compositions with recursive
definitions.

P ::= 0 ∨ α.P0 ∨ new(α)P ∨
∑
i∈I

Pi ∨
∏
i∈I

Pi (1)

Semantics. First, the agent termination 0 is a constant that means no activity,
neither internal nor interactive. It is a final state that represents the termination
(end of life) of agents. Along interaction channels, two complementary actions
can occur, namely the sending and reception of messages. The formulae α〈x〉 and
β(y) respectively mean that the message x is sent through α and y is received
through β. The successor operator ‘.’ defines sequences of channels. The agent
α.P means α is used to send or receive messages, and then the behaviour is P .
Also, α.β denotes a sequence of two channels leading to the termination. The
‘new’ operator allows controlling the scope of an interaction, in a similar way
as local variables in functions of programming languages. new(α)P means that
α can only be used in the formula of P. Out of the scope of P, the name α
refers to another link. In particular, the restricted α cannot be used to link P
to external agents. The sum of agents relies on the usual choice operator. P can
behave as any member of the sum. For instance, P = α.P0 + β.P1 will evolve
as P0 if α is used, and as P1 if β is triggered. Similarly, the parallel operator ‘|’
represents the composed execution of P0 and P1. The focus on interactions of
the calculus composes agents by communication channels as presented hereafter
in the system evolution.

Syntax. We now define the well-formed formulae (wff) of our restricted π–
calculus.
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System Evolution. The π-calculus defines how systems evolve. The basic
mechanism is the reaction between two composed agents (parallel execution)
along a common channel; one sending a message and the other one receiving.
Let’s illustrate how this is run.

P
def
= (α〈x〉.P0 + β〈y〉.P1) | α(x).0 (2)

According to the reaction rule, α(x).0 reacts with the first element α〈x〉.P0
of the sum, so that x is passed through α. The second element of the sum is
discarded (choice) and the system becomes (we use the intuitive property that
A in parallel with 0 is equivalent to A [3]):

(P0) | 0 = P0 (3)

3 T-Compound Model

3.1 T-Compound Formula

Informally, the T-compound is depicted on Fig.1, page 91; the shape of the
interaction justifying the name of the composite. The T-compound is formally
a 5-tuple (A, B, P, α, hα)∈ P3

π × ℵ2 that verifies structural properties.
Let us consider 3 different agents (A, B, P ) ∈ P3

π and 2 distinct channels
(α, hα) ∈ ℵ2 for the communications (A, B) and (A, P ) respectively. This con-
figuration is depicted on Fig.2.

The fundamental case where A sends messages to B and P overhears is for-
mally written as follows:

T (A, B, P )
def
= new(αhα)(A|B|P ) where

⎧⎪⎪⎨
⎪⎪⎩

A
def
= α〈x〉.hα〈x〉.A

B
def
= α(x).B

P
def
= hα(x).P

(4)

The definition of the compound means a T is the parallel execution of three
agents, each of them playing specific interactions. Agent definitions are recursive
to represent the interaction cycle of agents as expected along their lives, that
is each agent chooses one of its eligible actions, performs it, and then recovers
the capability to choose from its initial action set. The two interaction names
used in the T-compound are restricted to these three agents to enforce a proper

A B

P

h

Fig. 2. T-compound Interaction Infrastructure
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mechanism of overhearing. Restriction in the π–calculus makes the compound
as a coherent interaction entity. It allows the composition of T-compounds with
other interaction instances as it avoids conflicts among channels (unicity of names
and proper scopes).

In the agent formulae, A can first send x through α and has to send it through
hα to return to its initial state (otherwise the π-calculus semantics blocks the
agent, waiting for triggering hα). Thus, B receives the message x as a direct
interaction through α (the primary intention of A) and P receives a copy of x
through hα representing the overheard event. Fig.2 shows the correspondence
with the formula. In the π-calculus, we represent overhearing as a constraint on
a direct channel, i.e. the dashed arrow is formally hα as copy of α.

Note that a channel between two agents does not mean they are actually
interacting, since this depends on their intentions or imposed protocols. Instead,
channels represent which interactions are possible at this level of modeling, i.e.
the system infrastructure. This is typical for overhearing, where agents may have
this ability and use it only in specific situations (possibly ordered by the user).

3.2 Interaction Design Elements

With the T-compound formal model, we now define agent interactions as two
primitives, and we build a collection of interaction composites relevant in most
practical cases. This collection allows constructing a methodology unfolding steps
to define generalised MAS interaction infrastructures.

Given S ⊆ Pπ an agent set (the system to be modeled), we first define two
interaction primitives over the subsets of S, namely MONO and T0. Then,
frequent compositions of these two basic elements allow defining three practical
cases named DUPLEX, T1, and T2. We compiled these interaction elements in
Table 1 and detail their syntax and semantics hereafter.

In the following equations, X |= φ means that the set of agents X satisfies
the interaction type φ.

∀S0 ⊆ S : S0 |= MONO(A, B) ⇔

⎧⎪⎪⎨
⎪⎪⎩

|S0| = 2, (A, B) ∈ S2
0 , A 
= B,

∃α ∈ ℵ so that
A = α〈x〉.A and
B = α(x).B

(5)

Table 1. Interaction Design Elements

Formal Elements (* primitives) Meaning
MONO(A,B) * A sends messages to B.
DUPLEX(A,B) A and B converse.

T0(A,B,P) * A sends messages to B and P hears them.
T1(A,B,P) A and B converse and P hears A’s talks.
T2(A,B,P) A and B converse and P hears both talks.
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∀S0 ⊆ S : S0 |= T0(A, B, P ) ⇔
⎧⎨
⎩

|S0| = 3,
P ∈ S0 P 
= A, P 
= B
(A, B, P ) verifies formula (4) for x

(6)

MONO represents the fundamental direct interaction, i.e. the usual π–
calculus channel from one agent to another encapsulated in this interaction
compound. T0 corresponds to the definition (4) and represents the basic case
of overhearing.

These two primitives are sufficient to describe MAS interaction infrastruc-
tures extended with systematic overhearing. This is due to the fine-grained ap-
proach of these interaction compounds. However, MAS interactions shall require
coarser-grained elements for practical designs. The simplest and most frequent
example is the conversation between two agents, that must be defined with two
MONO. Therefore, we combine the two primitives into relevant patterns useful
for MAS interaction design.

∀S0 ⊆ S : S0 |= DUPLEX(A, B) ⇔
{

MONO(A, B)
MONO(B,A) (7)

∀S0 ⊆ S : S0 |= T1(A, B, P ) ⇔
{

T0(A, B, P )
MONO(B,A) (8)

∀S0 ⊆ S : S0 |= T2(A, B, P ) ⇔
{

T0(A, B, P )
T0(B, A, P ) (9)

DUPLEX describes usual agent conversations. It is built from two symmet-
rical and complementary MONO that define the utterances from A to B and
B to A respectively. T1 corresponds to situations where agent A and B converse
and P can only overhear the messages from A. In practice, this case has been
demonstrated relevant to reduce the complexity of conversation recognition [4].
In addition, it allows modeling a case typical to overhearing. Human agents A
and P are in the same room and A calls B on the phone (in another room).
In this scenario and with normal conditions, P can only listen to A. Finally, T2
refers to the full case of overhearing where P can hear both A and B. This is the
most frequent situation when the three agents share the same ‘space’.

3.3 MAS Interactions with Our Model

From this collection of interaction elements, we propose two views of interaction
infrastructures, namely the system-level IS and agent-centred IA interaction
sets. These two tools can be of use in the design of MAS interactions, as they
provide points of view orthogonal to the traditional interaction protocols. Our
sets aim at a comprehensive description of system interactions, while interaction
protocols form a library of scenarii played in part or whole of the system. Inter-
action design can be thought of as a common exploitation of the three views. In
the remainder of this section, we describe our methodology to build these two
views from static system specifications (that is, the procedure must be re–run if
the specifications change).
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IS represents all system interactions in a single view. It is a set of interaction
elements from the collection in Table 1 and thus allows explicitly showing over-
hearing cases. This feature is important so that designers keep track of this inter-
action pattern and can better avoid unexpected situations leading to potential
eavesdropping breaches. Also, it treats direct interactions and overhearing with
equal importance, so that system representations are homogeneous. Formally, IS
is defined by the following equation, where ‘*’ denotes that the corresponding
interaction element can appear zero or several times:

IS = {MONO∗, DUPLEX∗, T ∗
0 , T ∗

1 , T ∗
2 } (10)

IA is equivalent to IS , though it represents interactions per agent. Each agent
appears together with its set of interactions in the system. This view implies var-
ious consequences, such as highlighting overloaded agents that perform too many
interactions, defining groups and roles, and aligning the infrastructure with in-
teraction protocols (roles can be assigned to agents in their context). The formal
description of IA is a π–calculus expression showing the concurrent execution of
system agents (Ai)i≤|S| and their respective interactions (

∑
j≤Ii

αj)i≤|S|.

IA =
∏

i≤|S|

∑
j≤Ii

αj .Ai (11)

Algorithm 1 describes our methodology that takes in input the raw system
interaction specifications I and the empty sets IS and IA. Outputs are optimised
interaction sets compiled from I, without specification redundancy and improper
interaction compounds.

Algorithm 1 Interaction Description Methodology
1: I={raw interaction element list (MONO, DUPLEX, etc.)}, IS=∅, IA=∅
2: remove redundant elements(I)
3: compose element types(I)
4: minimize(I)
5: IS=I
6: rewrite(IS ,IA)

The method first removes from the specification set I any obvious redundant
interaction element with the procedure remove redundant elements on line 2.
This algorithm is not detailed as it merely compares elements and eliminates re-
peating ones (note that DUPLEX and T2 feature a ‘symmetry’, so T2(A, B, P )
and T2(B, A, P ) are redundant). Then, compose element types on line 3 combines
elements according to the properties (7), (8), and (9) (see Appendix). Finally,
minimize produces IS by comparing and removing elements that contain com-
mon features. Typically, MONO(A, B) and T0(A, B, P ) can be produced by
the specification to outline two different aspects of the interactions between A
and B. However, T0(A, B, P ) is enough in terms of interaction infrastructure,
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while the other element is redundant (see Appendix). Our hypothesis is that if
an overhearing case has been explicitly defined, it overrides a matching direct
interaction. This hypothesis is appropriate since an overhearing situation must
be explicitly decided by the designer and it is a stronger constraint on agent
behaviours (T0 above ‘includes’ the MONO structural information).

Algorithm 2 rewrite(Input: IS , Input–Output: IA)
1: for all Interaction element in IS do
2: Develop the π-calculus formula
3: if compound agent A in IA then
4: Complete the interaction formula of A:
5: IA=(IA \ {∑

i
aold

i .A}) ∪ {∑
i
aold

i .A +
∑

i
anew

i .A}
6: else
7: IA=IA ∪ {∑

i
ai.A}

8: end if
9: end for

Once IS is finished, the procedure builds IA by calling rewrite on line 6. This
sub-procedure shown on Algorithm 2 browses IS and develops each encountered
interaction element according to its π–calculus formula. Then it extracts the
agents contained in the current expression, together with the interactions in
which they are involved. If an agent is not part of IA, it is added with its
interactions (line 7). Otherwise, the formula of this agent in IA is completed
with the new interaction links (line 4–5). The procedure terminates and the
two aimed interaction sets are completed. The next section now illustrates an
execution of this procedure with an example.

4 Example: The Board of Directors

This example models a meeting among the head of a company and its division
directors. In other words, our system targets a user and its software advisor
agents. In the following, we first suppose all agents can listen to all discussions,
and the user is put aside to receive the final advice from the completed debate.
We run the methodology for this simple specification. Then, we suppose that the
user agent can also send messages to the assistants (to give new orders, etc.). We
consequently modify the initial scenario and apply once more the methodology
to adapt the interaction sets.

4.1 First Specifications

Given n≥3 agents (Ai)i≤n and the integers i and j, αij is the communication
channel from Ai to Aj . The agent U represents the user interface that compiles
the final report from the board and ciu the corresponding channel from agent i.
Consequently, the complete system is S = {(Ai)i≤n, U}. Hereafter is the raw
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A1

A3

A2

α23 and α32α13 and α31

α12 and α21

U

c1u

c2u

c3u

cu1 (specification 2)

cu2 (spec 2)

cu3 (spec 2)

Fig. 3. Board of 3 Directors and the User

interaction set I issued from the specifications for n agents, and we then detail
the case n = 3 to illustrate the methodology.

I = {(T2(Ai, Aj , Ak))i �=j �=k, (MONO(Ai, U))i≤n} (12)

The first term represents the discussions among the advisors and their abil-
ity to overhear conversations in the meeting room, even if they are not active
participants. The second term is the final report from each agent to the user
interface U . Let us now study in more details the case n = 3. Fig.3 shows the
interactions that must appear according to the scenario specifications.

The application of the methodology based on the specifications yields the
following. The input I is processed, and the output is just IS=I and the corre-
sponding IA.

1: I={(T2(Ai, Aj , Ak))i�=j �=k, (MONO(Ai, U))i≤3}, IS=∅, IA=∅
2: remove redundant elements(I) does not change I (no redundant element)
3: compose element types(I) does not change I (T2 and MONO do not combine)
4: minimize(I) does not change I (T2 and MONO involve different agents)
5: IS=I
6: rewrite(IS ,IA) as described hereafter for the two first iterations.

Rewrite procedure: iteration 1 First element of I:

T2(A1, A2, A3) = (
P1 = α12〈x12〉.α13〈x12〉.A1 + α21(x21).A1 |

A1 talks to A2 and allows A3 to overhear, or A1 receives from A2
P2 = α21〈x21〉.α23〈x21〉.A2 + α12(x12).A2 |

A2 talks to A1 and allows A3 to overhear, or A2 receives from A1
P3 = α13(x12).A3 + α23(x21).A3

A3 receives overheard messages from A1 or from A2)
Consequently : IA(iteration1) = (P1 | P2 | P3)

(13)
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Rewrite procedure: iteration 2 Idem with the second element of I:

T2(A2, A3, A1) = ( Q1 = α23〈x23〉.α21〈x23〉.A2 + α32(x32).A2 |
Q2 = α32〈x32〉.α31〈x32〉.A3 + α23(x23).A3 |
Q3 = α21(x23).A1 + α31(x32).A1)

Consequently : IA(iteration2) = (P1 + Q3 | P2 + Q1 | P3 + Q2)

(14)

In the end, IS is equal to the raw specifications, and IA contains four agents
with all their individual interactions.

IS = {(T2(Ai, Aj , Ak)i �=j �=k, (MONO(Ai, U))i≤3} IA = (
3∏

i=1

Ai)|cU (15)

where cU =
∑

i≤3 ciu(riu).cU is the set of interactions for the user agent U. We
detail hereafter the formula of A1 only, as the other formulae are similar.

A1 = (α12〈x12〉.α13〈x12〉.A1 + α13〈x13〉.α12〈x13〉.A1+ //A1 talks,
//others overhear

α21(x21).A1 + α31(x31).A1+ //One talk to A1
α21(x23).A1 + α31(x32).A1+ //A1 overhears
c1u(r1u).A1) //A1 reports

(16)
This example shows how IS represents all system interactions in a compact

syntax, and how IA allows handling interactions individually for each agent.

4.2 Second Specifications

In this second case, the specification revision expands the interactions of U (see
Fig.3). Our methodology solves the inconsistencies that potentially appear, so
that we only need to add the new intended interactions to I. There are two
means to extend I and let U be able to engage conversations with assistants.
Some designers could add explicit DUPLEX(U, Ai); others would complete the
initial reports from assistants to user with symmetrical MONO(U, Ai). Our
methodology accepts both cases and computes the same result. We now unfold
the procedure twice with the two possible extensions of I, namely J1 and J2, and
we show it yields the same expected sets.

J1 = I ∪ {(DUPLEX(Ai, U))i≤n} J2 = I ∪ {(MONO(U, Ai)i≤n} (17)

In both cases, the execution of the methodology is similar to the previous
section and we will just emphasize the differences.

In the case of J2, elements are composed on line 3 so that the MONO added
by the new specifications are combined as expected with the MONO already
representing the reports from assistants to user. Then, the minimization on line 4
does not influence J2 as there is no compatible item to match. The composition
of MONO is performed as follows:
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1: JX={as defined above}, IS=∅, IA=∅
2: remove redundant elements(JX) /*no change*/
3: compose element types(JX) /*only modifies J2*/
4: minimize(JX) /*only modifies J1*/
5: IS=JX

6: rewrite(IS ,IA) is given hereafter

compose element types(J2):
J2 = JM∪JD∪JT0∪JT1∪JT2 = JM∪{∅}∪{∅}∪{∅}∪JT2 (line 1)

Compose steps: Only one iteration affects the output (line 8):
compose(JM , JM , JD)
For x ∈{1,2,3}:
MONO(U, Ax) matches MONO(Ax, U) (compose line 14)
So JM = JM\{MONO(U, Ax)} and JM = JM\{MONO(Ax, U)}, and
JD = JD∪{DUPLEX(U, Ax)} (compose line 15)

→JM ends empty and JD has three new elements
Completion J2 = {∅}∪JD∪{∅}∪{∅}∪JT2 (line 11)
J2 = {(T2(Ai, Aj , Ak))i �=j �=k, (DUPLEX(U, Ai))i≤n}

In the case of J1, the composition has no effect, and modifications are carried
out by the following minimization. As DUPLEX are added to the specifications,
the initial MONO representing the reports to the user agent are redundant and
will be eliminated.

minimize(J1):
J1 = JM∪JD∪JT0∪JT1∪JT2 = JM∪JD∪{∅}∪{∅}∪JT2 (line 1)

Minimize step 1 min(JM , JD ∪ JT0 ∪ JT1 ∪ JT2) (line 2)
For x ∈{1,2,3}:
MONO(Ax, U) matches DUPLEX(U, Ax) (min line 3)
So JM = JM\{MONO(U, Ax)} (min line 4)

→JM ends empty
Minimize step 2 min(JD, JT0 ∪ JT1 ∪ JT2) has no effect (line 3)
Minimize step 3 min(JT0 , JT1 ∪ JT2) has no effect (line 4)
Minimize step 4 min(JT1 , JT2) has no effect (line 5)
Completion J1 = {∅}∪JD∪{∅}∪{∅}∪JT2 (line 6)
J1 = {(T2(Ai, Aj , Ak))i �=j �=k, (DUPLEX(U, Ai))i≤n}

In the end, both approaches lead to the same interaction set IS=J1=J2, and
consequently the same IA as follows, with the detail for agent A1 (n = 3).

IA = (
n∏

i=1

Ai)|cU where cU =
∑
i≤n

(ciu(riu).cU + cui〈rui〉.cU) (18)

Aspecification2
1 = (Aspecification1

1 + //formula (16)
cu1〈ru1〉.A1) //A1 gets orders

(19)

This example shows the robustness of the methodology to design choices
and how incremental design of interactions with IS and IA could be exploited,
especially for open MAS.
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5 Work Related to Overhearing Modeling

Gutnik et al. proposed the first formal model dedicated to overhearing for con-
versation recognition [4]. Their representation embodies conversation notions
(roles, states, transitions, speech acts, etc.) and the practical exploitation for
their issue of identification. Although they propose a ‘comprehensive formal
model of the general problem’ of overhearing, this first attempt is specialised
to a peculiar aspect. Our model aims at describing MAS infrastructures with
traditional and overhearing interactions, and it is consequently a complemen-
tary approach.

Busetta et al. proposed an implementation of overhearing [1]. Albeit this work
is not a formal model, it stands close to our proposal. It is a multicast communi-
cation among agents in a cooperative group. When taking on a channel identified
by a discussion theme, all registered listener agents receive the information. This
work shows a conceptual difference between our framework and implementation
issues. Our approach requires fine-grained details of interactions, whereas the
implementation of Busetta is a single broadcast. Thus, implementing efficiently
a model is not trivial, especially in the case of open MAS. A corollary of this
statement is that our formal model do not scale as the implementation.

6 Conclusion

In this paper, we proposed a formal model of interaction in π-calculus that
embodies the recent concept of overhearing, represented here as an interaction
composite named the T-compound. The aim of this model is to provide a general
description of interactions in MAS, orthogonally to other design issues (agents,
environment or organisation). This description is performed by a methodology
that compiles two views for the study of MAS interactions. The first repre-
sentation shows all interactions that can occur in a given system. The second
one represents an agent-centred description of all these interactions. These two
views of the same system can provide MAS designers with relevant information
for analysis and design.

Our current model covers static interactions of MAS. Dynamism is not in-
cluded yet and we intend to introduce this feature necessary in open systems. It
will enact considering agents that have new acquaintances, join or quit dynam-
ically the system, or feature mobility. We also pointed out the scalability of our
approach is rather low, considering open or large-scale MAS. Hence, we are work-
ing on the agent environment so that overhearing would be relayed through it.
In fact, Omicini et al. and Mamei et al. described two infrastructures to support
coordination among agents [9, 8] based on the environment. These approaches
do not address explicitly the case of overhearing, but they embody related ideas.
Our present endeavours are to study the consequences of such environments
on our formal definition, methodology, and the pragmatics (computation and
management concerns).
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A Algorithm Appendix

Algorithm 3 modifies a set I by combining interaction elements into more com-
plex ones (15 cases) with the sub-procedure compose in Algorithm 4.

Algorithm 4 receives three interaction sets I, J, K from the procedure com-
pose element types in Algorithm 3. Elements of I are matched with elements of
J that feature common agents in reversed order, and new compounds are pro-
duced in K. The procedure applies the composition properties (7), (8), and (9)
and solves other to cases such as T1(A, B, P ) and T1(B, A, P ) that, as T0, breed
T2(A, B, P ) in terms of infrastructure (12 more cases).
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Algorithm 3 compose element types(Input–Output: interaction set I)
1: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

2: for (I1,I2)∈{(ITx ,ITx),(IM ,IT2),(ID,IT2),(ITx ,ITy>x)}, x ≤ 3 and y ≤ 3 do
3: compose(I1, I2, IT2) /*This loop handles rule (9) in compose(IT0 , IT0 , IT2)*/
4: end for
5: for (I1,I2)∈{(IM ,ITx≤1),(ID,ITx≤1)} do
6: compose(I1, I2, IT1) /*This loop handles rule (8) in compose(IM , IT0 , IT1)*/
7: end for
8: for (I1,I2)∈{(IX ,IX),(IM ,ID)}, X ∈ {M, D} do
9: compose(I1, I2, ID) /*This loop handles rule (7) in compose(IM , IM , ID)*/

10: end for
11: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

Algorithm 4 compose(Input–Output: interaction sets I,J,K)
1: for all X ∈ I do
2: for all Y ∈ J do
3: if ∃ agents (A,B,P) so that X(A, B, P ) and Y (B, A, P ) exist then
4: I=I\{X}; J=J\{Y }; K=K∪{T2(A, B, P )}; Break the loop
5: end if
6: if ∃ agents (A,B,P) so that (X(A, B) and Y (B, A, P )) exist then
7: I=I\{X}; J=J\{Y };
8: if Y is T2 then
9: K=K∪{T2(A, B, P )}; Break the loop

10: else
11: K=K∪{T1(A, B, P )}; Break the loop
12: end if
13: end if
14: if ∃ agents (A,B) so that X(A, B) and Y (B, A) exist then
15: I=I\{X}; J=J\{Y }; K=K∪{DUPLEX(A, B)}; Break the loop
16: end if
17: end for
18: end for

Algorithm 5 minimize(Input–Output: interaction set I)
1: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2

2: min(IM , ID ∪ IT0 ∪ IT1 ∪ IT2) /*Line 2–5 minimize each subset
3: min(ID, IT0 ∪ IT1 ∪ IT2) relative to subsets of
4: min(IT0 , IT1 ∪ IT2) more complex interaction
5: min(IT1 , IT2) elements*/
6: I=IM ∪ ID ∪ IT0 ∪ IT1 ∪ IT2
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Algorithm 6 min(Input–Output: interaction set I, Input: set list J={(Ji)i≤n}
1: for all X ∈ I do
2: for all Y in a set of J do
3: if ∃ agents (A,B,P) so that (X(A, B) and Y (A, B)) or (X(A, B) and

Y (A, B, P )) or (X(A, B, P ) and Y (A, B, P )) exist then
4: I=I\{X}
5: if X is DUPLEX(A, B) and Y is T0(A, B, P ) then
6: J0=J0\{T0(A, B, P )} /*corresponds to T0 interactions in that case*/
7: J1=J1∪{T1(A, B, P )} /*corresponds to T1 interactions in that case*/
8: end if
9: Break the loop

10: end if
11: end for
12: end for

Algorithm 5 modifies a set I by matching interaction elements and keep-
ing only the most constraining ones. For example, MONO(A, B, P ) matches
DUPLEX(A, B), T0(A, B, P ), T1(A, B, P ), and T2(A, B, P ). As it is less con-
straining, the procedure will eliminate it if one of the others is found. The min-
imization is performed by the sub-procedure min in Algorithm 6.

Algorithm 6 receives from minimize in Algorithm 5 a set I and a set list J,
ordered by increasing complexity of interaction elements. The aim is to match el-
ements in I with elements in a set of J that feature common agents in the same or-
der (line 3). If a match occurs (we counted 15 cases), the element of I is discarded
(line 4) as it is redundant and less complete. In the case of DUPLEX(A, B)
and T0(A, B, P ) (line 5), there is an exception. The former is a ‘conversation’
and the second a single overhearing, so the result of the match is a ‘conversa-
tion overheard on one side’, i.e. T1(A, B, P ). In such a case, T0(A, B, P ) is also
removed (line 6) and T1(A, B, P ) is created (line 7). The procedure ends with a
minimized I, relative to J.


	Introduction
	MAS, Overhearing, and $\phi$--Calculus
	MAS and Overhearing
	Interaction and Formal Model
	The $\phi$-Calculus in This Paper

	T-Compound Model
	T-Compound Formula
	Interaction Design Elements
	MAS Interactions with Our Model

	Example: The Board of Directors
	First Specifications
	Second Specifications

	Work Related to Overhearing Modeling
	Conclusion
	Algorithm Appendix



