
Deployment of Distributed Multi-agent Systems

Lars Braubach1, Alexander Pokahr1, Dirk Bade1,
Karl-Heinz Krempels2, and Winfried Lamersdorf1

1 University of Hamburg, Dept. of Computer Science,
Distributed and Information Systems,

Vogt-Klln-Str. 30, 22527 Hamburg, Germany
{braubach, pokahr, lamersd}@informatik.uni-hamburg.de

2 University of Aachen, Dept. of Computer Science, Informatik IV,
Ahornstr. 55, 52074 Aachen, Germany
krempels@informatik.rwth-aachen.de

Abstract. The agent metaphor has shown its usefulness for modelling
as well as implementing complex and dynamic applications. Although a
number of agent applications has been successfully realised and used, it
must be stated that the distribution of commercial off-the-shelf applica-
tions is very scarce. For this discontenting situation, at least two reasons
can be identified. On the one hand, the development of agent-based appli-
cations is difficult suffering from insufficient standards and tools and on
the other hand deployment issues are little researched and supported. In
this paper, several deployment-related topics are discussed and a vision
for the deployment of distributed multi-agent systems is conceived. From
the vision, requirements for launching and configuring agent applications
are derived. According to these requirements, a platform independent
reference model of the proposed deployment infrastructure is presented.
The reference model provides the basis for the development of our AS-
CML (Agent Society Configuration Manager and Launcher) tool, which
is currently implemented for the JADE and Jadex multi-agent platforms.

1 Introduction

Multi-agent systems (MAS) are composed of autonomous, interacting, more or
less intelligent entities. The agent metaphor has proven to be a promising choice
for building complex and adaptive software applications, because it addresses
key issues for making complexity manageable already at a conceptual level [1].
Furthermore, agent technology can be seen as a natural successor of the object-
oriented paradigm and enriches the world of passive objects with the notion of
autonomous actors. Therefore, one would suppose agent applications to be in
widespread use in academic as well as in industrial projects. The contrary is the
case. Even though many agent applications are developed in various domains [2],
most of them are specialised solutions that are deployed in at most one setting.
The question arises: Why are agent applications not yet widely distributed?

One reason for this is that the development of MAS is inherently difficult and
error prone, because of several intricate issues. First, the development process for

M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 261–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

262 L. Braubach et al.

building agent applications is in most cases ad-hoc and not based on a generally
accepted methodology, like for example the well-known Unified Process for UML
[3] in the object-oriented world. For agent systems, no such common ground
exists due to different agent architectures and missing standards. In consequence,
a methodology has to be chosen independently for each project among several
alternatives. This choice is crucial for the project’s success and is constrained by
domain and implementation aspects [4]. In addition, whatever methodology is
selected, the tool support is always relatively poor and does not cover all phases
of the development process.

Besides the methodology, the development of agent-based applications is dif-
ficult, because the software is distributed and dynamic in nature and demands
various new skills and a new way of thinking from the developers. E.g. an object-
oriented software engineer cannot easily change to the agent paradigm without
considering ontology descriptions and studying the abstract speech-act based
agent communication. Additionally, intelligent agents often use mentalistic no-
tions or employ rule-based approaches.

Another important reason for the scarce distribution of commercial off-the-
shelf agent applications is that there is currently no support for the deployment
of agent applications. In areas such as distributed object systems, systematical
guidelines and mechanisms for all activities concerned with deployment issues
have been developed. These guidelines ensure that a properly developed dis-
tributed application can be packaged into a reusable, maintainable, and config-
urable piece of software. However, although multi-agent systems composed of au-
tonomous proactively (inter-)acting entities differ considerably from distributed
object systems, the issue of appropriate deployment techniques for MAS is not
yet very much researched.

The vision of this paper is to specify agent applications at a high-level us-
ing constraints to declare what system properties need to be fulfilled for the
application to work properly. E.g. one could demand certain services and agent
roles to be available, whereby the deployment environment has the task to in-
terpret and supervise these constraints and has to start agent instances accord-
ingly. As a first step towards this high-level deployment for MAS we propose a
reference model for the launching of distributed multi-agent applications that
are specified by declaring which and how many agent instances shall be in-
stantiated in what order. As part of the reference model a generic meta-model
for the specification of agent applications is described, which consists of one
layer for the definition of agent types and another one for the ordered com-
position of agent instances belonging to a certain application scenario. To un-
derline the applicability of the proposed model a prototype implementation is
presented.

The rest of the paper is structured as follows. The next section presents some
background on deployment in general and deployment of agents in particular.
We use our vision to derive requirements for deployment of distributed multi-
agent systems in section 3. To meet these requirements, in section 4 a reference
model is presented, and it is explained in section 5 how the reference model is

Deployment of Distributed Multi-agent Systems 263

implemented in our Agent Society Configuration Manager and Launcher tool
(ASCML). The last section summarises the paper, gives some conclusions, and
outlines areas for future work.

2 Background

The Object Management Group (OMG) defines deployment as “the processes be-
tween acquisition of software and execution of software”. In [5] a general deploy-
ment process for distributed systems is specified, which consists of five phases.
In the installation step the software is acquired and stored in a local reposi-
tory that not necessarily needs to be the program’s execution location. Next,
the software can be functionally configured in the sense that application specific
properties are set to certain values. This may result in several different applica-
tion configurations. Thereafter a deployment plan taking into account the target
environments and the software requirements is developed. With the help of this
deployment plan, the code placement can be done in the preparation phase. Fi-
nally, the application can be launched, which demands the starting and runtime
configuration of software at the planned nodes in the target environment.

For agent-based applications, this process is more dynamic and flexible, be-
cause the application constituting elements are autonomous agents instead of
passive components. Nevertheless, the above-mentioned activities are important
for MAS as well and will be discussed with respect to their peculiarities in the
following. Concerning the installation step, two distinct kinds of software have to
be available. On the one hand, the agent infrastructure, which is responsible for
offering the basic agent services like messaging, white and yellow pages service
needs to be acquired. For this purpose, normally agent platforms are used. On
the other hand, the application specific agent software needs to be accessible,
whereby for certain types of applications it may be sufficient to load portions of
agent code dynamically. The functional configuration of MAS can be done by
adjusting the available agent start-parameters and by fine-tuning the number of
agents to be started. E.g. the number of service agents could be used to tune the
application’s scalability for small and large enterprises accordingly. The plan-
ning and preparation steps for MAS involve the decisions about the placement
of infrastructure and application code on the environment nodes. Therefore,
considerations about possibly mobile agents and dynamic code retrieval have to
be taken into account; e.g. movements of agents may require platforms to be
installed on network nodes, where no agents are initially running.

The launching of MAS differs to a great extent from starting a component-
based application. Component-based applications have a hierarchical structure
and are usually launched using a single starting point, which creates the nec-
essary subcomponents. On the contrary, agent-based applications consist of a
bundle of autonomous actors that are self-dependent after birth. Hence, to de-
fine configurations of agent applications notions conceptually more abstract than
single agents are necessary. Minimum for the description of an agent application
at a concrete level is that agent instances and dependencies between these in-

264 L. Braubach et al.

stances can be expressed. Nevertheless, specifications that are more abstract are
desirable and could support a higher degree of robustness and maintainability.

In [6] several agent platforms are compared with respect to their support for
the analysis, design, implementation, and deployment phase. In correspondence
to our actual research, it turns out that only very few platforms address issues
of deployment at all. Positive exceptions can be found within Agent Academy
[7], AgentBuilder [8], ZEUS [9], AgentFactory [10] and BlueJADE [11]. To our
knowledge only the Agent Academy and the somewhat outdated AgentBuilder
frameworks offer tool support for the specification and launching of agent ap-
plications. Both platforms allow the simple designation of parameterised agent
instances from formerly defined agent types. These agent instances will be started
altogether, when the so defined agent application is launched. ZEUS and Agent-
Factory utilise tools for the generation of human readable starting scripts that
contain a list of ordered commands for instantiating and starting agents. In con-
trast to the aforementioned tools, BlueJADE is an attempt to integrate an agent
framework into an application server treating the platform as manageable ser-
vice. Hence, it shifts the responsibility of agent management to the application
server, which allows starting and stopping individual agents as well as platforms.
The conceptual problems of specifying agent applications are not addressed.

One obvious drawback of all solutions found, consists in the missing possibil-
ity to define any kinds of dependencies that may constrain the order of agents to
start. Additionally, the agent application meta-models are specified only implic-
itly, rendering the creation of a cross-platform launching tool almost impossible.
With respect to our vision it has to be stated that currently available solutions
carry out the definition of agent applications merely at the concrete level, what
makes it difficult having flexible and scalable applications. By utilising a more
abstract approach, agents could be started in response to certain application and
environmental demands. This more abstract way of an agent application is also
related to organisational approaches [12, 13]. These aim to structure MAS with
respect to the organisational settings found in the addressed problem domain.
Hence, the motivation for structuring agents is different but the concepts have
some similarities and probably will allow a consolidation of both directions.

Directly related to the starting of agent applications is the dynamic applica-
tion reconfiguration, which either could be done automatically by the configura-
tion environment, or could be done manually by some administration authority.
An abstract application specification could be a promising starting point for dy-
namic configuration mechanisms as well, because application constraints could
be supervised and used to trigger reconfiguration actions.

Until now, the extent to which dynamic reconfiguration is supported by agent
platforms, is mostly reduced to the allocation of agents to network nodes to cope
with varying network loads. E.g. the RECoMa [14] reconfiguration manager of
the RETSINA [15] framework was developed to launch agents, reallocate them
to other computers, and monitor their runtime states. Some aspects of more ad-
vanced configuration mechanisms for agent-based applications have been covered
by a preliminary and now deprecated FIPA specification [16], which underlined

Deployment of Distributed Multi-agent Systems 265

the importance of agent dependency specifications, life cycle management, and
monitoring mechanisms. The idea of the FIPA Agent Configuration Manage-
ment work group was to introduce configuration domains in which a designated
management agent is responsible for monitoring this domain.

Due to the fact that there are only few agent applications in the market, it is
not astonishing that the development of configuration concepts and tools has not
gained much interest until to date. Widening the horizon of considered configu-
ration targets from agent-based to distributed component-based applications, it
is interesting that agent-based approaches for configuring component-based ap-
plications can be found. E.g. in [17] a hierarchical agent-based infrastructure for
monitoring and configuring distributed applications is proposed.

3 Requirements

Having presented the current state of the art with respect to deployment of
multi-agent systems, a lack of concepts, standards, and tools can be identified,
in particular for launching and dynamic reconfiguration of complex agent-based
applications. These two aspects of deployment are essential to achieve the vision
of specifying agent applications at a high level. In the following, we will discuss
the desirable features with respect to the launching of preconfigured multi-agent
systems and investigate what is needed to achieve dynamic reconfiguration of
agent-based applications.

Before going into details about launching of agent applications, we have to
clarify some terms used in the following. Configurations of component-based
applications can be defined at two levels: Component level configurations and
application level configurations [18]. For agent-based systems, the agent level
and the application level can be distinguished. Considering a single agent, a dis-
tinction can be made between the static implementation parts and the running
processes. When we need to highlight this distinction, we refer to the former as
agent type and to the latter as agent instance. This distinction can also be made
at the application level. We use the term society type to refer to the static prop-
erties of a multi-agent application. A society type in our terms is a composition
of agent types, supplemented with some (e.g. interaction) constraints. A society
instance refers to the instantiation of a society, and is composed of single agent
instances and concrete dependencies between those instances. The model should
be recursive to allow societies to be part of larger societies on the type as well
as on the instance level.

3.1 Basic Management Services

To support the launching of distributed multi-agent applications several ba-
sic services can be identified. First of all, services are needed for starting and
stopping agent and society instances. For invoking these services, at least the
following information has to be supplied. The start of an agent instance should
be based on a given agent type definition which has to contain a reference to

266 L. Braubach et al.

the agent implementation (e.g. a Java class) and should declare the parameters
that can be supplied to an agent of this type. To instantiate an agent, its type
definition, the name for the agent instance (according to FIPA) and the assigned
values for the parameters have to be supplied. To stop an agent instance only
the agent identifier has to be known.

A society instance definition should contain all additional information re-
quired to instantiate a multi-agent application based on a society type defini-
tion. Therefore, a society instance definition has to contain the concrete agent
instances with names and parameter assignments, as well as any dependencies
that have to be respected when launching the application. This allows starting
a complete society by just referring to the instance definition. To be able to
identify a running application, a unique name should be given to each started
society. It has to be assured that the agent instances belonging to a society are
known, so that a society instance can also be stopped as a whole.

In order to launch distributed applications these basic services should be avail-
able remotely, therefore issues of security and accounting have to be considered
[19]. In addition, it is desirable that only minimal requirements are necessary
for the manual configuration of network nodes, which could be achieved by code
distribution and a service that allows remotely starting new agent platforms.

The basic services additionally require a launch process management that has
to make sure, that the correct agents, societies, and platforms are launched at the
correct nodes at the correct times. One can imagine several ways to specify this.
At the concrete level, it is possible to directly define the dependencies between
agent instances of a society instance. The launch process management can then
determine the launch order based on a topological sort of the dependency graph.

Constraints that are more abstract such as dependencies to specific services
or roles can be employed to define application characteristics already at the
type level (i.e. in agent type or society type definitions). In addition, application
specific constraints and network load characteristics can be used to determine
the allocation of agent instances to the available network nodes.

3.2 Monitoring and Reconfiguration

Once an application has been launched, the monitoring and reconfiguration of
the running societies and agent instances should be supported. On the one hand,
an administrator might want to observe a running application and manually add
or remove agent instances or reallocate mobile agents to new network nodes. On
the other hand a monitoring service should take care of the constraints and de-
pendencies specified in the type and instance definitions and perform appropri-
ate actions when the constraints get violated, e.g. by starting additional service
agents to assure a given response time. By detecting failures and relaunching of
agents, as well as detecting agents which are no longer needed by any applica-
tion, the monitoring service can increase the robustness of agent applications.
The exact mechanisms available to the monitoring service to alter a running sys-
tem have to be customized carefully for each application to reflect the varying
degree of autonomy for each agent.

Deployment of Distributed Multi-agent Systems 267

To support monitoring and reconfiguration of agents and applications it is
necessary to provide the responsible monitoring entities with relevant state in-
formation about the monitored entities and vice versa to be able to communicate
back reconfiguration commands to the relevant agents. In addition, the recon-
figuration of a larger application often requires a coordinated set of reconfigu-
rations against the individual agents that constitute the system. Furthermore,
reconfigurations need to assure that the system is in a consistent state after the
reconfiguration has been performed [17, 18]. These issues are beyond the scope
of this paper and will not be further elaborated.

4 Deployment Reference Model

In the following, we describe our approach towards realising the vision of dis-
tributed deployment of multi-agent applications. The approach is based on the
idea of specialised service agents that are responsible for launching and managing
agents and societies on their platform. These service agents are called ASCML
(Agent Society Configuration Manager and Launcher). Fig. 1 depicts the deploy-
ment reference model. On each agent platform, at least one ASCML agent will be
available to manage the societies on that platform. ASCML agents may respond
to remote requests, e.g. from other ASCMLs, in order to start (subordinated)
society instances remotely. In the reference model, each society instance will be
managed by exactly one ASCML. A society instance is a virtual concept only
known to the ASCML agent that started it and has no representation on the
agent platform. Therefore, societies may easily span across several platforms,
having one root ASCML responsible for the whole society instance and local
ASCMLs responsible for different subparts. Agent instances (e.g. generic agents
such as a yellow page service) may belong to several society instances at once,
and therefore - knowingly or not - may be under control of several ASCML
agents.

The reference model is able to capture most of the requirements of the last sec-
tion. The ASCML agent provides the basic management services for starting and

Fig. 1. Deployment reference model

268 L. Braubach et al.

stopping agent and society instances, and is also responsible for launch-process-
management as well as monitoring and dynamic reconfiguration. This external
approach is considered advantageous compared to an internal approach where
configuration management is built into the single entities [18]. The ASCML is
a self-contained component with a standardised interface. Porting the ASCML
to different FIPA-compliant agent platforms should be straightforward, making
the reference model well suited to achieve deployment capabilities in heteroge-
neous environments. The reference model does not directly support starting and
stopping of remote agent platforms, as an ASCML and a running agent platform
have to be present at each network node. To meet this requirement some kind
of bootstrapping component would be necessary, which is out of the scope of
this paper.

Launching, as well as the planned monitoring and reconfiguration services
are based on specifications of agents and societies. To facilitate reusability of
specifications a society instance is not defined in one large file, but in two dif-
ferent types of files describing an agent application at different levels. Agent
type specifications define self-contained agents at the single-agent level. Society
specifications define multi-agent applications by referencing the specifications of
included agents and society instances. Both specifications follow an XML schema
definition as described in the next two sections.

While we are currently creating the specification files manually, we envisage
that graphical user interfaces will be used to compose and configure larger agent
applications. Additionally, tools can be developed to crosscheck created specifica-
tions for consistency. Once the specifications have been created, the deployment
engineer has to take care, that each ASCML agent has access to the specification
files for those agents and societies that it has to start on its platform.

4.1 Agent Type Specification

Fig. 2 depicts the structure of an agent type specification. An ASCML agent will
read the agent type specification e.g. when it is requested to instantiate an agent
of that type. The agent element captures important properties of an agent such
as the agent’s implementation class and the type, which identifies the required
agent platform (e.g. JADE [20]). The single-valued parameters and multi-valued
parameter sets represent typed arguments that can be supplied when creating a
new instance of the agent. Additionally, it is possible to specify one or more (for
parameter sets) default values that are used by the ASCML, when no explicit
value is provided for the creation of a specific agent instance. Both kinds of
parameters can be further elaborated with additional constraint elements, used
for restricting the set of allowed values for the parameter. Furthermore, FIPA-
compliant service and agent descriptions [21] can be included in the agent type
definition. These allow specifying the services that an instance of this agent type
can provide when it is instantiated.

available at http://jadex.sourceforge.net/schemas/

1

1

Deployment of Distributed Multi-agent Systems 269

Fig. 2. The agent meta-model

Fig. 3. The agent society meta-model

4.2 Society Type Specification

A society type (see Fig. 3) defines a multi-agent application at the type level.
The society contains a declaration part in which all agent types and enclosed
subsocieties have to be defined. This declaration part is not necessary from
the technical point of view, but it enhances the readability of the application
specifications and facilitates model checking by making explicit the available
element types. The contained society instances represent different application
configurations, whereby each society has to provide at least one default society
instance. This society instance will be selected for instantiation when the society
needs to be launched without further information available.

A society instance consists of concrete agent instances and subsociety in-
stances that need to be created when the society is started. For the specification
of agent instances, at least the mandatory parameter values have to be supplied.
Additionally, platform dependant tool options can be specified in a generic way.
They can be used to activate tools and e.g. can be utilized to facilitate the de-

270 L. Braubach et al.

bugging process by using agent observation tools such as the Sniffer agent in
JADE. Dependency elements are used to establish an implicit ordering of the
entities to be started.

In addition to the agents to be created, a society can contain an arbitrary
number of subsocieties that can contain further subsocieties as well. This allows
a recursive application definition and facilitates the creation of distributed MAS.
Each referenced subsociety instance refers to a concrete society instance, which
itself belongs to a declared society specification. For the purpose of starting a
remote society, a so-called launcher identifier can be declared. This identifier
designates the remote ASCML agent responsible for starting the corresponding
remote society. In analogy to agent instances, dependencies can be specified for
subsocieties as well.

4.3 Dependencies

Dependencies are used to express relationships between elements at the instance
level. If one element declares itself dependent from another element this means
that the declaring element cannot be started until the referenced element is
available. In our model five different types of dependencies can be distinguished:
agent type, agent instance, society type, society instance and service dependen-
cies. An agent type dependency can be used to wait for an arbitrary number
of agents of a specified type to be running, while an agent instance dependency
exactly refers to a designated agent, identified by its unique name. Both kinds
of dependencies also exist for the society element, which means that it is possi-
ble to wait for a specified number of societies with a certain type as well as for
directly known societies. The last kind of dependency is the most abstract one
and allows defining indirect relationships between elements, because the element
depends on a service (following FIPA) to be available.

All kinds of dependencies can either be marked active or passive denoting
if the ASCML has the duty to actively engage in action when the dependency
does not hold. If a dependency is declared active the ASCML will try to start
missing entities, whereby the mechanism for deciding what instance need to be
launched depends on the type of dependency and its parameterisation. In case
of a passive dependency, the ASCML will wait until the dependency condition
holds (e.g. retesting the condition from time to time).

4.4 Example

The following example further explains the meta-model presented in the prior sub-
sections. It relies on a slightly modified version of the JADE Party example appli-
cation provided with the JADE-distribution. In this scenario, guests are invited to
a party by an organizer and spread a rumour until it is known by all guests and
the party ends (cf. JADE Party Java docs). Hence, the JADE Party consists of
two different types of agents, a Host- and a Guest-agent that make up the basis for
the corresponding society type. By defining different settings, e.g. specifying the
number of guests taking part in the party, different society instances may be set up.

Deployment of Distributed Multi-agent Systems 271

Fig. 4. Guest- and Host-agent type definitions

With the agent type definition all required information for starting an agent
of this type is specified (see Fig. 4). The definition of both agent types contains
the name, which is used in connection with the package declaration to uniquely
identify a model within the ASCML’s scope. The class-attribute reflects the
agent’s implementation class, which is instantiated at the agent’s start-up and
the type-attribute serves as the agent-platform type identifier (e.g. JADE) and
is evaluated by the ASCML to choose among the set of platform-dependent
managing-services for starting and stopping agents. Additionally, for the Host
agent type one parameter for the number of party guests is specified, in this case
obliging the Host not to start the party before at least the specified number of
guests has arrived. The parameter is non-optional meaning that a concrete value
has to be specified by an agent instance of this type.

Besides the definition of the agent types, an additional definition of the society
type, together with a set of society instances is needed (see Fig. 5). It contains

Fig. 5. Definition of the JADE Party-society type

1 <agent name="Guest" package="examples.party" class="GuestAgent" type="JADE"/>

1 <agent name="Host" package="examples.party" class="HostAgent" type="JADE">
2 <parameters>
3 <parameter name="guestsToWaitFor" type="Integer" optional="false"/>
4 </parameters>
5 </agent>

01 <society name="BirthdaySociety" package="examples.party">
02
03 [import and declaration of used agenttypes and referenced societies are omitted]
04
05 <societyinstances default="SmallParty">
06
07 <societyinstance name="SmallParty">
08 <agentinstances>
09 <agentinstance name="Birthday Child" type="Host">
10 <parametervalue name="guestsToWaitFor"> 10 </parametervalue>
11 </agentinstance>
12 </agentinstances>
13 <societyinstanceref name="Guests"societytype="BirthdaySociety"societyinstance="SmallGuestpool">
14 <dependency active=”false”>
15 <agenttype name="Host" quantity="1"/>
16 </dependency>
17 <launcher name="ASCML@remotecomputername:5000/JADE">
18 <address> http://192.168.0.170:5010/acc </address>
19 </launcher>
20 </societyinstanceref>
21 </societyinstance>
22
23 <societyinstance name=”SmallGuestpool”>
24 <agentinstances>
25 <agentinstance name=”Guest No_%N” type=”Guest” quantity=”10” />
26 </agentinstances>
27 </societyinstance>
28
29 </societyinstances>
30
31 </society>

272 L. Braubach et al.

the definition of the SmallParty society instance (lines 7-21), which represents the
main application and a helper society instance called SmallGuestpool (lines 23-27).

One agent instance, named “Birthday Child”, is contained within the Small-
Party. This instance relies on the agent type Host, indicated by the attribute type
(line 9), and therefore has to supply a value for the guestsToWaitFor-parameter
(cf. agent type definition). Besides the agent instance also the subsociety Guests
(line 13-20) is defined as reference to the SmallGuestpool society instance. To
make sure the guests do not join the party before the host is ready, a dependency
is specified (lines 14-16) forcing the ASCML to first wait for the dependency be-
fore going on starting the referenced society instance. Once the dependency is
satisfied, the ASCML may try to start the subsociety by sending a request to the
launcher (lines 17-19). The launcher, identified by its FIPA-conform name and a
set of addresses, has to be an ASCML-agent as well. Assuming this ASCML also
has access to the given society instance, it may now start the agent instances
contained within the society instance.

The subsociety SmallGuestPool consists of a collection of guests, which are
agents of the same type (line 25). For convenience, not every individual agent
has to be provided with its own definition. It is sufficient to specify the number
of agents contained within the collection by using the quantity-attribute and a
naming scheme for enumerating the agent instances.

5 Prototype Realization

The deployment reference model is the basis for the currently developed ASCML
prototype. The reference model as described above is platform independent,
therefore allowing agent applications not only to be spread across different hosts
but also to be composed of agents developed for different platforms. The launcher
tool currently exists in two (slightly different) versions, developed for the JADE
[20] and Jadex [22, 23] platforms.

5.1 Architecture

The ASCML is subdivided into three co-operating subsystems: the launcher, the
repository, and the GUI. To enable subsystems being individually exchanged,
modified or enhanced the connection between these components is lightweight
based on interfaces and event mechanisms. In the following each of the subsys-
tems is described in more detail and their role within the ASCML’s architecture
(as depicted in Fig. 6) is highlighted.

The repository-subsystem provides facilities to manage all necessary data
used within the ASCML such as agent- and society models, properties and
project-management data. The repository is used as an abstract shared data
structure and may be accessed by all other subsystems. Furthermore, it is respon-
sible for loading and saving model-objects from and to different data sources,
like XML-files or databases. Changes made to the data contained within the
repository are acquainted by events to all registered listeners.

Deployment of Distributed Multi-agent Systems 273

Fig. 6. The ASCML architecture

The GUI-subsystem facilitates the interaction between the user and the un-
derlying subsystems. It provides dialogs to view and change data contained
within the repository and allows the user to interact with the launcher to perform
actions such as starting and stopping of agent and society instances.

The launcher-subsystem realises the interface between the ASCML and the
underlying agent-platform. It is responsible for the basic agent- and society man-
agement, which includes starting and stopping of agent instances, delegation of
action-requests to remote ASCMLs and resolving dependencies defined by soci-

Fig. 7. The ASCML tool screenshot

274 L. Braubach et al.

eties. It encapsulates the logic for communicating with the local agent-platform
as well as with remote ASCMLs. Therefore parts of the launcher are platform-
dependent, but may easily be exchanged to support different agent-platforms.

5.2 Example Usage

The graphical user interface of our ASCML implementation is depicted in fig-
ure 7. On the left hand side, one can see the specification repository tree with
some known agent and society types, whereas on the right hand side details of
the selected tree element are shown. In this example, the society type called
BirthdaySociety and a couple of tool agents are available. In the BirthdaySo-
ciety, two different instances (SmallGuestpool and SmallParty) are predefined
as ready to run application configurations. In the depicted scenario, two tool
agents (sniffer and introspector) already have been started. On the right hand
side some details of the SmallGuestpool such as the contained agent instances
are presented.

6 Conclusion and Outlook

In this paper, we have argued that deployment techniques are important for the
wide-spread and industrial adoption of multi-agent system technology. We have
investigated the general requirements and the extent to which existing deploy-
ment techniques can be adapted to support the launching and configuration of
distributed multi-agent systems.

To address the arising issues we have proposed a reference model that specifies
the general launching and configuration infrastructure. The reference model is
based on the notions of agents and societies as constituting entities. For the
reference model a FIPA-compliant service interface has been designed, which
allows (parts of) applications to be started on different hosts and possibly on
different platforms. A prototype of the deployment tool (ASCML) has been
implemented for the JADE and Jadex frameworks.

Future extensions will be done on two levels. On the conceptual level we
will further investigate, which elements and relationships are necessary for the
specification of abstract multi-agent applications according to our vision of scal-
able and adaptive systems. For this purpose, we need to extend our definition
of agent societies incorporating more advanced concepts such as roles and con-
straints, taking into account existing organisational models. The usage of roles
promises e.g. to capture the relationships between agents at a more abstract level
enabling dependencies to be specified between roles and not only at the agent
instance level. The introduction of application constraints will not only lever-
age the abstraction level of the application specification, but also can be seen
as a starting point for dynamic application reconfiguration. This is because the
configuration environment could use these constraints to ensure certain proper-
ties of the application and engage in appropriate actions whenever this becomes
necessary.

Deployment of Distributed Multi-agent Systems 275

On the tool level, the ASCML will be extended to live up to its name by
introducing user interfaces for the easy construction of agent-based applications.
This will further improve the tool’s usability and additionally can be exploited to
reduce the number of application specification mistakes. Monitoring capabilities
(e.g. observing the lifecycle state of agents) will be added to the tool to facilitate
automatic reconfiguration of running applications.

Acknowledgements

This work is partially funded by the DFG German priority research programme
SPP 1083: Intelligent Agents in Real-World Business Applications.

References

1. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44 (2001) 35–41

2. Jennings, N.R., Wooldridge, M.J.: Agent Technology - Foundations, Applications
and Markets. Springer Verlag (1998)

3. Arlow, J., Neustadt, I.: UML and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley (2002)

4. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of Agent-
Oriented Software Methodologies – Examination of the Gap Between Modeling
and Platform. In: Proc. of the 5th Int. Workshop on Agent-Oriented Software
Engineering (AOSE-2004). (2004)

5. (OMG), O.M.G.: Deployment and Configuration of Component-based Distributed
Applications Specification. (2003) http://www.omg.org/.

6. Ricordel, P., Demazeau, Y.: From analysis to deployment: A multi-agent platform
survey. In: Engineering Societies in the Agents World, Springer-Verlag (2000) 93–
105

7. Mitkas, P.A., Kehagias, D., Symeonidis, A.L., Athanasiadis, I.N.: A framework
for constructing multi-agent applications and training intelligent agents. In: Proc.
of the 4th Int. Workshop on Agent-Oriented Software Engineering (AOSE-2003).
(2003) 96–109

8. Systems, R.: AgentBuilder User’s Guide. (2000) http://www.agentbuilder.com/.
9. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: a toolkit and approach for build-

ing distributed multi-agent systems. In: Proc. of the 3rd conference on Autonomous
Agents, ACM Press (1999) 360–361

10. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, University College Dublin (2001)

11. Cowan, D., Griss, M., Burg, B.: BlueJADE - A service for managing software
agents. Technical Report HPL-2001-296R1, Hewlett Packard Laboratories (2002)

12. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-
zational View of Multi-Agent Systems. In Giorgini, P., Mller, J., Odell, J., eds.:
AOSE. Volume 2935 of Lecture Notes in Computer Science., Springer (2003) 214–
230

13. Odell, J.J., Parunak, H.V.D., Fleischer, M.: The role of roles in designing effective
agent organizations. In: Software Eng. for Large-Scale MAS, Springer (2003) 27–38

276 L. Braubach et al.

14. Giampapa, J., Juarez-Espinosa, O., Sycara, K.: Configuration Management for
Multi-Agent Systems. In: The 5th International Conference on Autonomous Agents
(Agents 2001), ACM Press (2001) 230–231

15. Sycara, K., Giampapa, J., Langley, B., Paolucci, M.: The RETSINA MAS, a Case
Study. In: Software Engineering for Large-Scale Multi-Agent Systems: Research
Issues and Practical Applications. Volume LNCS 2603. Springer-Verlag (2003)
232–250

16. Foundation for Intelligent Physical Agents: FIPA Agent Configuration Manage-
ment Specification. Document no. FIPA00090 (2001)

17. Castaldi, M., Carzaniga, A., Inverardi, P., Wolf, A.: A Light-weight Infrastructure
for Reconfiguring Applications. In Westfechtel, B., van der Hoek, A., eds.: Software
Configuration Management, ICSE Workshops SCM 2001 and SCM 2003, Springer
(2003)

18. Castaldi, M.: Dynamic Reconfiguration of Component Based Applications. PhD
thesis, Department of Computer Science, University of L’Aquila, Italy (2004)

19. Sloman, M.: Management issues for distributed services. In: Proc. of the 2nd Int.
Workshop on Services in Distributed and Networked Environments, IEEE (1995)
52–55

20. Bellifemine, F., Rimassa, G., Poggi, A.: JADE – A FIPA-compliant agent frame-
work. In: 4th Int. Conf. on the Practical Applications of Agents and MAS (PAAM-
99). (1999)

21. for Intelligent Physical Agents, F.: FIPA Agent Management Specification. Doc-
ument no. FIPA00023 (2002)

22. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP – in search of innovation 3 (2003) 76–85

23. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A Short Overview. In:
Net.ObjectDays 2004: AgentExpo. (2004) 76–85

	Introduction
	Background
	Requirements
	Basic Management Services
	Monitoring and Reconfiguration

	Deployment Reference Model
	Agent Type Specification
	Society Type Specification
	Dependencies
	Example

	Prototype Realization
	Architecture
	Example Usage

	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

