
M.-P. Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW 2004, LNAI 3451, pp. 245 – 260, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SONIA: A Methodology for Natural Agent Development

Fernando Alonso, Sonia Frutos, Loïc Martínez, and César Montes

Facultad de Informática, Universidad Politécnica de Madrid,
28660 Boadilla del Monte (Madrid), Spain

{falonso, sfrutos, loic, cmontes}@fi.upm.es

Abstract. Agent-Oriented Software Engineering has emerged as a powerful
engineering discipline that can deal with the complexity of today's software
systems (primarily in distributed and open environments) better than other more
traditional approaches. However, AOSE does not provide a software
development process that naturally leads, if the problem so requires, to an agent
architecture. Current agent development methodologies have two separate
drawbacks. One is that development processes tend to target an agent
organization, which is not necessarily always the best structure, as of the
requirements definition stage. The other is that the identification and design of
agents are complex, and designer experience plays an essential role in their
definition. In this paper, we present the SONIA methodology (Set of mOdels
for a Natural Identification of Agents) in an attempt to solve these problems.
Based on a generic problem-independent analysis and a bottom-up agent
identification process, SONIA naturally outputs an agent-based system.

1 Introduction

Agent-Oriented Software Engineering (AOSE), based on the agent paradigm, has
materialized as a powerful technology for developing complex software systems, and
it is well suited for tackling the complexity of today's software systems [1]. Having
emerged, like so many other disciplines, from Artificial Intelligence, it is now a
melting pot of many different computing sciences areas (Artificial Intelligence,
Software Engineering, Robotics, and Distributed Computing).

The AOSE concept includes the development of autonomous software agents
(autonomous elements, with reactive and proactive social ability, trying to accomplish
their own task [2]), multi-agent systems (MAS) (a set of autonomous agents that
interact with each other, each representing an independent focus of system control
[3]), and agent societies (where the social role of the agents and social laws delimit
agent operation [4]).

Agents, MAS and agent societies are now well enough known for researchers and
companies to be attracted by the prospects of large-scale agent engineering. The
interest they are showing is actually the logical consequence of the successes
achieved in this direction, resembling the sequence of events that already took place
in other development engineering disciplines (like objects, for example) [5].

246 F. Alonso et al.

In this paper, we describe the SONIA methodology, an approach for naturally
producing a MAS from the system requirements. In section 2, we explain what
problems AOSE faces. Section 3 contains an analysis of current agent development
methodologies. Section 4 describes the structure of the proposed SONIA
methodology and its application to the ALBOR project. Finally, section 5 states the
conclusions on the natural development of agents.

2 Problems of AOSE

AOSE is obviously not a panacea, as its use is not always justified. There are
problems that an agent approach cannot solve, and others where the outlay and
development time required by such an approach would be too costly to be acceptable
for companies. We have identified a set of topics to be taken into account when
applying AOSE to real problems [6]:

− Reach agreement on agent theory. This new paradigm will not be able to expand
unless the agent model is standardized with respect to what characteristics define
an agent, what types of architecture are available for agents, what agent
organizations are possible, what types of interactions there are between agents, etc.
Just as UML (Unified Modeling Language) [7] was established to model objects, a
modeling language for agents needs to be agreed upon (perhaps AUML [8]).

− Provide mechanisms for deciding whether the problem should be dealt with using a
MAS. Even if it is initially justified to conceive a multi-agent solution for a given
problem, a MAS could turn out to be no good in the end, because, for example, no
agents can be identified or there are no interactions between the identified agents.

− Train development team members in the field of agents and MAS. A team of
developers is not usually familiar with agents and MAS these days, which means
that they will have to be trained beforehand in this field if they are to be receptive
to such projects and to prevent delays in project development.

− Provide special-purpose programming languages and development tools. Although
the last few years have seen new languages for programming agent behavior take
root, general-purpose languages like Java and C++, etc., are widely used. On the
other hand, there are fewer development tools for representing agent structure, and
they focus mainly on a particular agent architecture.

− Use methodologies suited to the development processes. For organizations to adopt
MAS development, the right methodology needs to be provided to guide the team
of developers towards the achievement of objectives, without this requiring in-
depth training in this field. A critical stage in the development of a MAS is the
selection of the methodology to be followed. A good methodology should provide
the models for defining the elements of the multi-agent environment (agents,
objects and interactions) and the design guidelines for identifying these elements,
their components and the relationships between them.

As regards the question of methodology, a wide variety of methodological
proposals have emerged for AOSE development [9][10][11][12]. Although they have

 SONIA: A Methodology for Natural Agent Development 247

all played an important role in establishing this field, they do not provide suitable
mechanisms for formulating a natural process for developing a MAS system or an
agent society from system requirements. That is, the gradual discovery and
identification of concepts, relationships, tasks, knowledge, behaviors, objects, agents,
MAS and agent societies from the problem statement. Additionally, a good
methodology should not force a given architecture (object-oriented, agent-oriented,
etc.) upon developers from the beginning. It is the system specifications analysis that
should point developers towards the best suited architecture for solving the problem.

Based on research and development efforts in the field of AOSE, we think that an
agent-oriented development methodology should have the following features [6]:

− It should not condition the use of the agent paradigm right from analysis. It is too
risky to decide whether the system is to be designed using a multi-agent architecture
in the analysis or conceptualization phase, as the problem is not fully specified at this
early stage of development. It is not until the design phase that enough is known
about the problem specifications and architecture to make this decision.

− It should naturally lead to the conclusion of whether or not it is feasible to develop
the system as a MAS. At present, it is the developer who has to decide, based on his
or her expertise, whether or not to use a MAS to solve the problem. Because of its
high cost, this is a tricky decision that cannot be made using heuristics. Note that,
depending on the application domain, design and implementation using a multi-
agent architecture may have a high development cost (time, money and resources),
apart from calling for experienced personnel. On the other hand, the modularity of
multi-agent systems may improve development costs.

− It should systematically identify the components of a MAS. Current methodologies
leave too much to the designer with respect, for example, to agent identification.
Designer experience is therefore vital for producing a quality MAS.

Component-driven bottom-up agent identification is the most objective
criterion, as it depends exclusively on the problem and eases the systematization
and automation of the identification process. On the other hand, the role (or actor)-
driven criterion is more subjective, as roles or actors depend on the
analyst/designer who identifies them.

− If the problem specifications call for an agent society, it should naturally lead to
this organizational model. The development of a software system using a
reductionist, constructivist or agent society architecture should be derived from the
problem specifications, which will lead to the best suited architecture. Current
agent-oriented methodologies focus on the development of the actual agent
architecture (internal agent level) and/or its interactions with other MAS agents
(external agent level), but very few cover the concept of social organization.

− It should produce reusable agents, should be easy to apply and not require
excessive knowledge of agent technology. The concept of reuse has been one of the
biggest contributions to software development. The provision of libraries has
furthered procedure-, object-, or component-oriented engineering. For this advance
to take place in AOSE, agent components (interaction protocols, etc.) need to be
reusable and easy to use. Current agent-oriented design methodologies and
methods do not account for reusable systems and call for high proficiency in MAS

248 F. Alonso et al.

technology for use. As MAS technology is related to many disciplines (artificial
intelligence, psychology, sociology, economics, etc.), intensive knowledge of agent
technology is required. This relegates the design of these systems to universities,
research centers and companies with the latest technology.

The specific characteristics of MAS and MAS development-related problems
indicate that agent-based problem solving cannot be dealt with intuitively. It calls for
a methodological process that naturally leads to the use of agents in problem solving.

3 Analysis of Current Agent Development Methodologies

On account of the advance in agent technology over the last ten years, several
methodologies have emerged to drive MAS development [9][10][11][12]. These
methodologies are classed according to the discipline on which they are based (Fig. 1):

− Agent Technology-Based Approaches: they focus on social level abstractions, like
the agent, group or organization.

− Object Orientation-Based Approaches: they are characterized by extending object-
oriented techniques to include the notion of agency.

− Knowledge Engineering-Based Approaches: they are characterized by emphasizing
the identification, acquisition and modeling of knowledge used by the agent
components.

OO-based
methodologies

OO-based
methodologies

KE-based
methodologies

KE-based
methodologies

Agent-based
methodologies
Agent-based

methodologies

Agent-Oriented MethodologiesAgent-Oriented Methodologies

ODAC (2002)
MaSE (2001)

MASSIVE (2001)
DESIRE (1997)

AAII (1996)
AOMEM (1996)
AOAD (1996)
MASB (1994)

ODAC (2002)
MaSE (2001)

MASSIVE (2001)
DESIRE (1997)

AAII (1996)
AOMEM (1996)
AOAD (1996)
MASB (1994)

MAS-CommonKADS (1999)
CoMoMAS (1997)

MAS-CommonKADS (1999)
CoMoMAS (1997)

Tropos (2004)
Gaia (2003)

Prometheus (2003)
SODA (2001)
Styx (2001)
HLIM (1999)

Cassiopeia (1995)

Tropos (2004)
Gaia (2003)

Prometheus (2003)
SODA (2001)
Styx (2001)
HLIM (1999)

Cassiopeia (1995)

Fig. 1. Agent-Oriented Methodologies

3.1 Agent Technology-Based Methodologies

Agent Technology-Based Methodologies focus on social level abstractions, like the
agent, group or organization.

The most representative methodologies are: Tropos [13], Gaia [14], Prometheus
[15], SODA [16], Styx [17], HLIM [18] and Cassiopeia [19]. Table 1 describes the
most significant methodological aspects of agent technology-based methodologies for
our analysis.

 SONIA: A Methodology for Natural Agent Development 249

Table 1. Agent Technology-Based Methodologies

Although this methodological line is gaining in importance in agent development,
the methodologies suffer from some limitations on key points:

− These methodologies propose the use of the agent paradigm as of the specification
(Prometheus, HLIM, Cassiopeia) or analysis (Tropos, Gaia, SODA, Styx) phases.
The choice of a multi-agent system should be a design decision. Therefore, a good
agent-oriented methodology should not conduct a specific agent-oriented analysis.
None of the methodologies account for the use of a generic analysis model that can
be used to evaluate whether or not a multi-agent approach is suitable.

− All of the methodologies identify agents from social roles (Gaia, SODA, Styx,
HLIM, Cassiopeia) or actors (Tropos, Prometheus) following a top-down
identification process and none from their components.

− Three aspects need to be dealt with to develop a MAS: intra-agent structure, inter-
agent structure and social structure. Most of the methodologies cover the intra-
agent and inter-agent aspects (Tropos, Gaia, Prometheus, Styx, HLIM), but only
SODA and Cassiopeia account for social structure.

− The analysis of the environment is a key point. SODA is the only methodology to
analyze the environment, its entities and their interactions.

3.2 Object Orientation-Based Methodologies

Object Orientation-Based Methodologies are characterized by extending object-
oriented techniques [20] to include the notion of agency.

The most representative methodologies are: ODAC [21], MaSE [22], MASSIVE
[23], DESIRE [24], AAII [25], AOMEM[26], AOAD[27] and MASB[28]. Table 2
lists which of the examined methodological features object orientation-based
methodologies have.

Table 2. Object Orientation-Based Methodologies

agent paradigm
selection

specification or analysis phase
(all)

design phase
(none)

agent identification
process

role-driven top-down
(all)

component-driven bottom-up
(none)

MAS aspects intra- & inter-agent
(Tropos, Gaia, Prometheus, Styx, HLIM)

social structure
(SODA, Cassiopeia)

environment
analysis

environment
(SODA)

objects
(Tropos, Prometheus, Styx, SODA)

agent paradigm
selection

specification or analysis phase
(ODAC, AOAD)

design phase
(MaSE, MASSIVE, DESIRE, AAII, AOMEM,

MASB)

agent identification
process

role-driven top-down
(ODAC, MaSE. MASSIVE, AAII, AOMEM,

AOAD, MASB)

component-driven bottom-up
(DESIRE)

MAS aspects intra- & inter-agent
(ODAC, MASB, DESIRE, AAII, AOMEM,

AOAD, MASB)

social structure
(MASSIVE, AOAD)

environment
analysis

environment
(MASSIVE)

objects
(ODAC, MASB)

250 F. Alonso et al.

From the viewpoint of correct agent orientation, this methodological line is beset
by the following problems. It does not account for the use of a generic analysis model.
Some methodologies (ODAC and AOAD) identify agents during analysis. Only the
DESIRE methodology implements a proper component-driven bottom-up agent
identification process. Almost all the methodologies (ODAC, MASB, DESIRE, AAII,
AOMEM, AOAD and MASB) cover the intra-agent and inter-agent aspects, but only
MASSIVE and AOAD cover the social structure. Finally, with the exception of
MASSIVE, none of the methodologies takes into account the environment features.

These methodologies treat agents like complex objects, which is wrong, because
agents have a higher level of abstraction than objects. They also fail to properly
capture the autonomous behavior of agents, interactions between agents, and
organizational structures [17].

3.3 Knowledge Engineering-Based Methodologies

Knowledge Engineering-Based Methodologies are characterized by emphasizing the
identification, acquisition and modeling of knowledge used by the agent components.

The most representative methodologies originate from the CommonKADS
methodology [29] are MASCommonKADS [30] and CoMoMAS [31]. Table 3 lists
the features of these methodologies for our analysis.

Table 3. Knowledge Engineering-Based Methodologies

These methodologies also present some problems. Like the other approaches
described earlier, these methodologies do not account for the use of a generic analysis
model. MAS-CommonKADS identifies agents during analysis, following a role-
driven top-down process (identifying actors). Both of them account for the intra-agent
and inter-agent aspects, but do not cover social issues or analysis of the environment.

3.4 Analysis of Current Agent Development Methodologies

The methodological approach based directly on agent technology is perhaps better
than the other two, because it is based on the intrinsic concept of agent and agent
organization in a MAS. It basically falls down on the point that it confines problem
analysis to the agent paradigm, whereas this paradigm may turn out to be unsuitable if
agent technology is not a good option for dealing with the problem in question.

Briefly, we believe that a good AOSE methodology is one that defines an
architecture-independent generic analysis model and a design model that can

agent paradigm
selection

specification or analysis phase
(MAS-CommonKADS)

design phase
(CoMoMAS)

agent identification
process

role-driven top-down
(MAS-CommonKADS)

component-driven bottom-up
(CoMoMAS)

MAS aspects intra- & inter-agent
(all)

social structure
(none)

environment
analysis

environment
(none)

objects
(none)

 SONIA: A Methodology for Natural Agent Development 251

systematically identify agents following a component-driven bottom-up agent
identification process, can identify the intra-agent, inter-agent and social structure of
the system, can analyze the environment and can identify environment objects.

4 SONIA Methodology

The SONIA (Set of mOdels for a Natural Identification of Agents) methodology [6]
allows the generation of a multi-agent architecture to solve a problem (whose
conceptualization is not conditioned by the agent paradigm) according to a Multi-
Agent Design Model that systemizes and automates the activities of identifying the
MAS components.

The phases and stages of which the SONIA methodology is composed are listed
below, along with the models generated in each stage (Fig. 2):

− Conceptualization: The problem is analyzed on the basis of the problem statement
using an analysis model that does not condition the design paradigm. The result is
an initial Structural Model, which describes the overall structure of the domain and
an initial Task Model, which describes how to solve problems occurring in the
domain.

− Extended Analysis: The above models are refined and expanded to include the
features of the environment and the external system entities, producing the
following models: an Environment Model, which defines the external system
entities and system interactions with these entities; a Structural Model, which
includes domain knowledge structures of the external system entities that interact
with the system; and a Task Model, which adds the functionalities required for
interaction with the external system entities.

The Conceptualization and Extended Analysis stages form the MAS analysis
phase.

− Synthesis: This stage is aimed at improving the identification of agents from their
components. For this purpose, the elements of the Structural and Task Models are
grouped depending on concepts that are characteristic of agents such as knowledge,
behaviors and responsibilities.

This stage provides a smooth transition from analysis to design, outputting: a
Knowledge Model, which identifies the knowledge components inherent to the
problem by grouping concepts and associations from Structural Model; a Behavior
Model, produced by grouping tasks, subtasks and methods from the Task Model;
and a Responsibility Model, output by establishing the relationships between
knowledge components and behaviors.

− Architectural Design: In this stage, we decide whether or not the system will be
designed following a multiagent architecture. If a MAS is designed, the entities of
the architecture are also defined.

The generated models are: an Agent Model, which identifies and defines what
elements should be designed as autonomous agents; an Object Model, which
identifies and defines what passive elements there are in the environment; and an

252 F. Alonso et al.

Interaction Model, which identifies and defines the relationships among agents and
between agents and objects.

The stages of Synthesis and Architectural Design are what make up the design
phase.

Extended
Analysis

Extended
Analysis

Architectural
Design

Architectural
Design

SynthesisSynthesisKnowledge
Model

Responsibility
Model

Behavior
Model

Object Model

Interaction
Model

Agent Model

ConceptualizationConceptualizationInitial
Structural Model

Initial
Task Model

Structural Model

Environment
Model

Task Model

ANALYSIS

DESIGN

Fig. 2. Phases of the SONIA methodology

Although the methodological process is top-down, this methodology follows a
bottom-up process to build the MAS architecture. Instead of identifying the MAS
entities and then the components of these entities, the methodology starts by
identifying the atomic elements (concepts, associations, tasks, etc.) output by system
analysis, which are then grouped into more complex elements (components), from
which the agents and objects of the MAS architecture will be able to be identified.
This makes the generated system highly extensible and facilitates agent and
component extension, modification and reuse.

In the following, the phases and stages of the SONIA methodology and their
application to the development of the ALBOR project (Barrier-Free Computer
Access) are briefly described [32][33].

ALBOR was conceived as an Internet-based intelligent system designed to provide
guidance on the evaluation of disabled people’s computer access skills and on the
choice of the best suited assistive technologies.

Each system session is divided into four stages:

1. User identification: user personal particulars and other information are collected in
order to start the session.

 SONIA: A Methodology for Natural Agent Development 253

2. Session preparation: the user is informed about the goals of the questionnaire, how
the session will be performed and whether any preliminary training is necessary.

3. Survey taking: the user is asked a series of questions, which will be depend on
responses to questions already answered and will be confined to the questions
strictly necessary for the evaluation of the person in question.

4. Result evaluation: an evaluation report with several recommendations for the user
to decide which is best suited for her/him is sent to the user.

4.1 Analysis

The elicited requirements are analyzed using the Set Theory Based Conceptual Model
(SETCM) [33][34], an analysis method that was defined to achieve several goals. First,
the method is design independent: it uses terminology other than design languages to
give a real understanding of the problem under analysis. Second, SETCM is able to
analyze problems of different kinds, ranging from the simpler, algorithmic problems to
more complex and knowledge-based problems. Third, the method has a solid formal
foundation, thanks to which it can unambiguously represent the results of the analysis.
Fourth, SETCM includes a comprehensive and easy-to-understand textual notation,
which is a deterrent to the use of mathematical notations. Finally, the method includes
a graphical notation, which eases the understanding of large models.

SETCM is design independent and capable of analyzing complex problems thanks
to the fact that the SETCM modeling elements were carefully chosen and defined.
These elements were selected from the elements commonly used in other approaches,
eluding design-specific terms and incorporating new elements where necessary. Some
of these elements are concepts, associations, attributes, classifications, tasks and task-
methods. The elements were defined using Set Theory vocabulary, which is the basis
of mathematics. For instance, an association is a subset of the Cartesian product of the
elements involved. The SETCM elements are grouped into two components: the
Structural Model, which represents the structure of a domain (elements and
relationships between them) and the states that can occur within this domain, and the
Task Model, representing domain problem solving.

To achieve the goal of establishing a formal foundation, all the modeling
primitives were formalized using the main elements of Cantor’s naïve set theory,
while defining a rigid modeling structure that eludes the contradictions of this theory.
Thus, SETCM has a formal modeling core (with more than 700 formalized symbols).
This core contains a large set of formal primitives that can be added to in the future by
defining and formalizing new elements based on existing components.

The last two goals (textual and graphical notations) are concerned with resolving
pragmatic issues. The textual notation represents all the SETCM modeling primitives,
is a substitute for the use of mathematics and is highly readable. The graphical
notation is based on UML using stereotypes and eases the understanding of large
quantities of information, reduces the apparent complexity of the analytical models
and is more expressive than the textual notation [34].

SETCM has been applied to develop real systems, which were finally designed
using a variety of paradigms (structured, object-oriented, knowledge-based) and even
a combination of paradigms.

254 F. Alonso et al.

As mentioned earlier, the Initial Structural Model and the Initial Task Model of
SONIA are built using SETCM. These models are refined and expanded to capture
the system Environment and External Entities, successively producing:

− An Environment Model, which defines the system external entities and their
interactions with the system.

− A Structural Model, which includes structures from the knowledge domain of the
external entities that interact with the system.

− A Task Model, which adds the functionalities required to interact with the system
external entities defined in the Environment Model.

4.2 Design of the Multi-agent Architecture

The Analysis phase is followed by the Multi-Agent Architecture Design, which is
divided into two stages: Synthesis and Architectural Design.

The Synthesis stage allows the component-driven identification of agents (bottom-
up process) in the Multi-Agent Architecture Design stage. The elements of the
Structural Model and Task Model are grouped depending on characteristics of agents,
such as knowledge, behaviors and responsibilities, outputting the following models:

− A Knowledge Model, which identifies the knowledge components by grouping
Structural Model concepts and associations. These groupings are identified because
the internal cohesion of their members is high, coupling with other groupings is
low and they are used to perform tasks of the same behaviors. The knowledge
components will be used internally or shared by the agents.

The groupings resulting from the first version of the model only check for high
cohesion and low coupling among their members. The final version will be built
when the responsibilities between knowledge components and behaviors
(Responsibility Model) are established and will also check that the members of the
groupings are used to do the same tasks.

− A Behavior Model, produced by grouping Task Model tasks, subtasks and
methods. The behaviors will be part of the agents. These groupings are identified
because their tasks and subtasks depend on each other through their methods and
they use the same knowledge components in problem solving.

The groupings from the first version of the model only check for the dependence
of some tasks on others through task methods. The final version, which is built
when the responsibilities between knowledge components and behaviors
(Responsibility Model) are established, will also check that they use the same
knowledge in problem solving.

− A Responsibility Model, output by relating knowledge components to behaviors.
The purpose of this model is to be able to identify agents and environment objects.

A key activity during the design of this model is to refine the Knowledge and
Behavior Models to meet all the conditions.

The Architectural Design stage focuses on the definition of the architectural
components by means of the following models: Agent Model, Object Model and
Interaction Model.

 SONIA: A Methodology for Natural Agent Development 255

Not until the Agent Model is built is a decision made as to whether the architecture
can be implemented by means of agents or a different paradigm needs to be used.
This choice is chiefly based on whether or not agents can be identified. For an entity
to be able to considered as an autonomous agent, it should have a behavior and the
right knowledge components to perform the tasks of this behavior, have at least one
defined goal and one utility, and perceive and act in the environment.

If no agents can be identified, another design paradigm will have to be chosen. One
possible alternative would be an object-oriented design, reusing objects and
interactions identified in the multi-agent architecture design stage. Another possibility
would be to design the system as a knowledge-based system, reusing the knowledge
components, behaviors and responsibilities output in the synthesis stage.
The Architectural Design models are:

− An Agent Model, which identifies and defines, from the Responsibility, Knowledge
and Behavior Models, what entities should be designed as autonomous agents. An
agent is identified because it is an environment-sensitive entity (it perceives and
acts in the environment) that has knowledge to bring into play its behaviors in
pursuit of goals and is activated when its utilities are required.

Therefore, knowledge is groupings of concepts and associations that the agent
uses to reason and behaviors are groupings of tasks that allow the agent to develop
the function for which it was conceived. The result of executing a behavior can
affect the environment objects or its internal knowledge.

Goals are objectives pursued by the agent. The agent will execute behaviors to
achieve its goals. Utilities are triggers that activate the agent. The agent will assess
the execution of some of its behaviors if their utilities are met. Goals and utilities
are logical conditions on the state of the environment objects or on the state of their
internal knowledge.

Sensors listen to the environment objects and notify the agent every time a
change takes place in the objects they are listening in on. This notification can
cause some of the agent’s utilities or goals to be met. Actuators modify
environment objects, and the agent will use the respective actuator every time it
needs to modify an environment object during behavior execution.

− An Object Model, which identifies and defines, from the Responsibility, Knowledge
and Behavior Models, what passive elements are part of the environment. These
objects are knowledge components identified during the synthesis phase. The main
feature of an object is that the knowledge of this object is responsible for more than
one behavior or, in other words, is shared by several behaviors. Access to objects
will be divided by levels, and the knowledge components that are accessed by the
same behavior tasks will be grouped at the same level.

− An Interaction Model, which identifies and defines what relationships there are in
the system among agents and between agents and objects.

Agent-agent relations occur when both agents interact to take any particular
action. This interaction takes place according to interaction protocols based on
speech act theory [35]. In the case of a reductionist MAS system (designed by one

256 F. Alonso et al.

and the same person), the interaction protocol is designed at the same time as the
actual agent. In the case of a constructivist MAS system (designed by different
people), the interaction protocols are located in a library and are accessed by the
agents at interaction time. Agent-object relations occur when an agent accesses an
object level, either through a sensor or an actuator.

This architecture accounts for the two communication types: asynchronous
communication, using environment objects to subscribe to events of interest to the
agent; and synchronous communication, through protocols contained in the
Interaction Model.

4.3 Design of the ALBOR System

Fig. 3 shows how the Analysis, Synthesis and Architecture Models are built. For
simplicity’s sake, it shows only the concepts and associations that are the source of
the “Questionnaires” knowledge component, and tasks and methods that are the
source of the “TakeSurvey” behavior.

The concepts and associations gathered in the Analysis phase were synthesized
as knowledge components using a technique based on Kelly’s constructs [36], and
the tasks and methods as behaviors using heuristics applied to task decomposition
and task dependencies. These techniques, used to output the knowledge components
and behaviors, assure highly coherent and low-coupled groupings. Then the
responsibilities between knowledge components and behaviors were established
from the relationships of concept/association used in task/subtask. These
responsibilities lead to changes in the Knowledge and Behavior Models. The
models are modified according to knowledge and behavior grouping/division rules
based on the cardinalities of the relationships of concept/association used in
task/subtask. The Knowledge, Behavior and Responsibility Models are the final
result of the synthesis.

It is not until the Agent Model is built that a decision is made as to whether the
architecture can be implemented by means of agents or a different paradigm needs to
be used. This choice is chiefly based on whether or not agents can be identified. For an
entity to be able to be considered as an autonomous agent, it should have a behavior
and the right knowledge components to perform the tasks of this behavior, have at least
one defined goal and one utility, and perceive and act in the environment.

To complete the multi-agent architecture design phase, the environment agents and
objects were identified. The objects were identified from the Responsibility Model,
and the knowledge shared by several behaviors was chosen as environment objects.
Following this criterion, we identified the “Users”, “External” and “Media” objects.
Agents were also identified from responsibilities. Again, agents should have a
behavior, knowledge components, goals and utilities, and sensors and actors. For
example, the responsibility between “Questionnaires” knowledge and “TakeSurvey”
behavior produces “Survey-Taker”. The Agent, Object and Interaction Models are the
final result of the architecture design stage.

 SONIA: A Methodology for Natural Agent Development 257

Task ModelStructural Model

<<agent>>

Survey-Taker
<<agent>>

DecisionMaker

<<object>>

Users

<<object>>

External
<<agent>>

Advisor

<<object>>

Media

<<concept>>

Questionnaire

<<concept>>

Section

<<association>>

HasSections

<<association>>

HasQuestions

<<concept>>

Question

<<association>>

HasResponses

<<association>>

HasMedium

<<association>>

HasMedium

<<association>>

NextQuestion

<<concept>>

Response

<<task>>

TakeSurvey

<<method>>

TakeSurvey.

<<task>>

ShowQuestion
<<task>>

ShowMedium

<<method>>

ShowQuestion
<<method>>

ShowMedium

<<task>>

Response

<<method>>

Response

<<task>>

GetNext

<<method>>

GetNext

<< knowledge >>

Media

<<knowledge>>

Questionnaires

<< knowledge >>

Recommen.

<< knowledge >>

Rules

<< knowledge >>

External

<< knowledge >>

Users

<< behavior >>

IdentifyUser

<< behavior >>

ShowReport

<<behavior>>

TakeSurvey
<< behavior >>

EvalAptitude

<< behavior >>

InitSession

Architectural
Design Models

Synthesis
Models

Analysis
Models

Fig. 3. ALBOR: From analysis models to architectural design models

5 Conclusions

AOSE is unquestionably a very good technique for solving complex problems,
especially in distributed, open and heterogeneous environments. For this technology
to be routinely used in companies like object-oriented approaches are, there is a need
for mechanisms suited for deciding whether or not the problem should be solved
using agents. Also the identification and design of agents should be a natural and
straightforward process that does not require a lot of expertise so that there is no
obstacle to its application by developers. Although they have made a big contribution
to improving AOSE, current agent development methodologies do not satisfactorily
solve the above-mentioned problems.

In this paper, we have pointed out some features that an agent-oriented
development methodology should have and detailed which of these features are
missing from the most important methodologies used within the agent paradigm.
Also, we have presented an overview of the SONIA methodology, illustrated by the
ALBOR case study, which includes these features and naturally leads from
requirements elicitation to MAS and agent-based development.

258 F. Alonso et al.

References

1. Zambonelli, F., Jennings, N. R., Omicini, A., Wooldridge, M.: Agent-Oriented Software
Engineering for Internet Applications. In: Omicini, A., Zambonelli, F., Klusch, M.,
Tolksdorf, R. (eds.): Coordination of Internet Agents: “Models, Technologies and
Applications”. Springer-Verlag (2001) 326-346

2. Huhns, M., Singh, M. P. (eds.): Readings in Agents. Morgan Kaufmann, San Mateo, CA.
(1998)

3. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, LTD
(2002)

4. Epstein, J. M., Axtell, R. L.: Growing Artificial Societies: Social Science from the Bottom
Up. The Brooking Institution Press & The MIT Press (1996)

5. Lind, J.: Issues in Agent-Oriented Software Engineering. In: Ciancarini, P., Wooldridge,
M. (eds.): Agent-Oriented Software Engineering, LNAI 1957. Springer-Verlag (2001)
45-58

6. Frutos, S.: Modelo de Diseño de una Arquitectura Multi-Agente Basado en un Modelo de
Sociedad de Agentes (Multi-Agent Architecture Design Model based on an Agent Society
Model). PhD Thesis. Universidad Politécnica de Madrid, Spain (2003)

7. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley Longman (1999)

8. Odell, J., Parunak, H. V. D., Bauer, B.: Extending UML for Agents. In: Wagner, G.,
Lesperance, Y., Yu, E. (eds.): Proc. of the Agent-Oriented Information Systems
Workshop at the 17th National Conference on Artificial Intelligence. ICue Publishing
(2000)

9. Weiss, G.: Agent Orientation in Software Engineering. Knowledge Engineering Review,
Vol. 16(4) (2002) 349-373

10. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the
Art. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering,
LNAI 1957. Springer-Verlag, Berlin (2001) 1-28

11. Tveit, A.: A Survey of Agent-Oriented Software Engineering. First NTNU CSGSC (2001)
12. Iglesias, C.A., Garijo, M., González, J.C.: A Survey of Agent-Oriented Methodologies. In:

Müller, J.P., Singh, M. P., Rao, A. (eds.): Intelligent Agents V (ATAL'98), LNAI 1555.
Springer-Verlag, Berlin (1999) 317-330

13. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent Oriented
Software Development Methodology. Int. Journal of Autonomous Agent and MultiAgent
System, Vol. 8(3) (2004) 203-236

14. Zambonelli, F., Jennings, N. R., Wooldridge, M.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, Vol.
12(3) (2003) 317-370

15. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.): Agent-Oriented Software
Engineering III, LNCS 2585. Springer-Verlag. Berlin (2003) 174-185

16. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering, LNAI 1957. Springer-Verlag. Berlin (2001) 185-194

17. Bush, G., Cranefield, S., Purvis, M.; The Styx Agent Methodology. The Information Science
Discussion Paper Series, Number 2001/02. University of Otago. New Zealand (2001)

 SONIA: A Methodology for Natural Agent Development 259

18. Elammari, M., Lalonde, W.: An Agent-Oriented Methodology: High-Level and
Intermediate Models. Proc. of the First Bi-Conference. Workshop on Agent-Oriented
Information Systems (AOIS'99). Heidelberg, Germany (1999)

19. Collinot, A., Carle, P., Zeghal, K.: Cassiopeia: A Method for Designing Computational
Organizations. Proc. of the First Int. Workshop on Decentralized Intelligent Multi-Agent
Systems. Krakow, Poland (1995) 124-131

20. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley Longman. Reading, MA (1999)

21. Gervais, M.: ODAC: An Agent-Oriented Methodology Based on ODP. Journal of
Autonomous Agents and Multi-Agent Systems, Vol. 7(3) (2002) 199-228

22. Wood, M. F., DeLoach, S. A.: An Overview of the Multiagent Systems Engineering
Methodology. In: Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering, LNAI 1957. Springer-Verlag, Berlin (2001) 207-222

23. Lind, J.: Iterative Software Engineering for Multiagent Systems: The MASSIVE method,
LNCS- 1994. Springer-Verlag (2001)

24. Brazier, F. M. T., Dunin-Keplicz, B., Jennings, N., Treur, J.: Desire: Modeling Multi-
Agent Systems in a Compositional Formal Framework. Int. Journal of Cooperative
Information Systems, Vol. 6. Special Issue on Formal Methods in Cooperative Information
Systems: Multiagent Systems (1997)

25. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for Systems
of BDI Agents. In: van de Velde, W., Perram, J. W. (eds.): Agents Breaking Away
(MAAMAW'96), LNAI 1038. Springer-Verlag, Berlin (1996) 56-71

26. Kendall, E. A., Malkoun, M. T., Jiang, C. H.: A Methodology for Developing Agent Based
Systems. In: Zhang, C., Lukose, D. (eds.): Distributed Artificial Intelligence - Architecture
and Modeling, LNAI 1087. Springer-Verlag, Germany (1996) 85-99

27. Burmeister, B.: Models and Methodology for Agent-Oriented Analysis and Design. In:
Fischer, K. (ed.): Working Notes of the KI'96 Workshop on Agent-Oriented Programming
and Distributed Systems, Saarbrücken, Germany (1996)

28. Moulin, B., Cloutier, L.: Collaborative Work Based on Multi-Agent Architectures: A
Methodological Perspective. In: Aminzadeh, F., Jamshidi, M. (eds.): Soft Computing:
Fuzzy Logic, Neural Networks and Distributed Artificial Intelligence. Prentice-Hall, N.J.,
USA (1994) 261-296

29. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde,
W., Wielinga, B.: Knowledge Engineering and Management. The CommonKADS
Methodology. The MIT Press. Cambridge, MA (1999)

30. Iglesias, C.A., Garijo, M., González, J.C., Velasco, J. R.: Analysis and Design of
Multiagent Systems using MAS-CommonKADS. In: Singh, M. P., Rao A. S., Wooldridge,
M. (eds.): Intelligent Agents IV: Agent Theories, Architectures, and Languages
(ATAL97), LNAI 1365. Springer-Verlag, Berlin (1999) 313-326

31. Glaser, N.: The CoMoMAS Methodology and Environment for Multi-Agent System
Development. In: Zhang, C., Lukose, D. (eds.): Multi-Agent Systems - Methodologies and
Applications, LNAI 1286. Springer-Verlag, Berlin (1997) 1-16

32. Alonso, F., Barreiro, J. M., Frutos, S., Montes, C.: Multi-Agent Framework for
Intelligent Questionnaire on the Web. Proc. of the Third World Multiconference on
Systemics, Cybernetics and Informatics (SCI-99) and the Fifth Int. Conference on
Information Systems Analysis and Synthesis (ISAS’99), Vol. III. Orlando, USA (1999)
8-15

260 F. Alonso et al.

33. Alonso, F., Frutos, S., Fuertes, J. L., Martínez, L. A., Montes, C.: ALBOR. An Internet-
Based Advisory KBS with a Multi-Agent Architecture. Int. Conference on Advances in
Infrastructure for Electronic Business, Science, And Education on the Internet (SSGRR
2001), L’Aquila, Italy (2001) 1-6

34. Martínez, L.A.: Método para el Analysis Independiente de Problemas (Method for
Independent Problem Analysis). PhD Thesis. Universidad Politécnica de Madrid. Spain
(2003)

35. Austin, J.L.: How to Do Things with Words. Harvard University Press. Cambridge, MA
(1962)

36. Kelly, G. A.: The Psychology of Personal Constructs. Norton (1995)

	Introduction
	Problems of AOSE
	Analysis of Current Agent Development Methodologies
	Agent Technology-Based Methodologies
	Object Orientation-Based Methodologies
	Knowledge Engineering-Based Methodologies
	Analysis of Current Agent Development Methodologies

	SONIA Methodology
	Analysis
	Design of the Multi-agent Architecture
	Design of the ALBOR System

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

