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Abstract. Most published material on CSP and the FDR tool is theoretical and 
mathematically rigorous, which can be daunting to the less mathematical 
software engineer.  It is also often difficult to relate the elegant but abstract 
examples in the literature to the problems of the software engineer who must 
eventually produce an executable program expressed in a procedural 
programming language This paper outlines a number of techniques which may 
be used to model procedural designs in CSP and to structure the refinements so 
as to render them tractable to verification by the FDR model-checking tool.  A 
simple example, taken from a recent IBM Software Services engagement, is 
used to illustrate some of the ideas presented in the paper.  

1   Introduction 

This paper describes some of the author’s experiences applying CSP in conjunction 
with the FDR model-checking tool to a range of small design problems which have 
arisen in the course of recent IBM Software Services consultancy projects. 

1.1   Indebtedness to CSP 

 The author has been using the CSP notation and FDR tool intermittently for about ten 
years; initially for the formalization of a concurrent design for the logging component 
of a transaction processing system, and subsequently for a few other minor pieces of 
design work and an MSc project. 

More recently, and perhaps surprisingly, considerable scope for the application of 
CSP and FDR has been found in a number of services engagements involving the 
delivery of bespoke software components or system designs.  In all such cases to date, 
the client has not required and has not been aware that CSP has been used for some 
aspect of the project; so use of the notation and tools could not be permitted to 
adversely affect other factors such as performance, function and cost. 

That the application of CSP is viable in a commercial environment where cost and 
delivery schedules are of almost equal importance to quality and reliability, and where 
neither safety nor security are critical concerns, is a good indication that the combined 
CSP and FDR approach is sufficiently mature for wider use in software engineering. 
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Even in cases where CSP has not been formally used for a design, the conceptual 
principles behind the notation, and a slightly extended form of CSP communication 
diagram, have been found helpful in formulating and recording designs. 

1.2   Suitability 

The CSP approach is most suitable for tackling problems where communication or 
concurrency is a key concern.  In this context, communication includes not only the 
domain of transport protocols, but also for example a pattern of communication 
between tightly-coupled components of a software system; while concurrency would 
include interactions with independent entities such as users and external devices as 
well as the obvious application to multi-threaded operating environments.  It is less 
well suited to dealing with systems with large and complex state, for which state-
based notations such as Z, B or VDM are more appropriate. 

An important factor in the successful application of CSP and FDR has been a high 
degree of selectivity in the choice of problem to tackle.  The scope must be 
sufficiently well-defined to be able to isolate a portion of the system to treat, while 
being sufficiently complex that there is benefit to be gained from the investment of 
effort involved.  For this reason, the approach has not been applied to every project, 
and then, typically, only to one aspect of the design. 

The remainder of this paper is devoted to an example exemplifying the type of 
problem to which the approach has been applied, concluding with a summary of the 
benefits which have been achieved through the use of CSP in software design. 

2   Example: A Multi-threaded Connection Pool 

The example presented in this paper was developed as part of a recent IBM Software 
Services engagement.  It illustrates some techniques for the use of CSP and FDR to 
model and verify software designs; in this case, applied to a multi-threaded 
connection pooling mechanism forming part of a communications adapter between a 
Web Server and a transaction processing system. 

2.1   Overview 

A transport layer to be used for communication provides the notion of a connection 
which may be thought of as an established link between the two systems.  Once 
created, a connection may be used to transmit requests and receive responses on 
behalf of any client thread; however only one thread at a time may use a connection 
(this restriction is not policed, but if violated leads to unpredictable results).  The 
creation and destruction of connections is expensive, and the overhead of creating a 
fresh connection for each client request would be prohibitive.  It is therefore 
necessary to maintain a pool of persistent connections and allocate them to client 
threads as required, while ensuring that no two threads are ever allocated the same 
connection concurrently. 

Connections are also a limited resource and costly to maintain, so the number of 
open connections must be carefully controlled, and will usually be less than the 
number of potential client threads which wish to use them.  The design envisaged 
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allows for a fixed maximum number, poolsize, of connections to be permanently 
allocated; but in order to cater for short-term peaks in demand the system may 
allocate further connections up to an additional maximum, extpoolsize.  These 
extra connections are closed when no longer required.  In the event that more 
concurrent requests are received than can be accommodated within the total, 
(maxconn=poolsize+extpoolsize), the system may suspend up to queuesize 
threads to wait for a connection to become free; but requests exceeding this limit are 
rejected.  This queueing scheme allows some requests to succeed rather than be 
rejected, at the cost of some delay, but prevents the system from becoming clogged 
with suspended threads. 

poolsize extpoolsize queuesize reject

Number of concurrent requests 0
 

2.2   Specification 

Although there is some value in modelling just the design of a software component 
and then perhaps using a model-checking tool to verify certain desirable properties 
such as deadlock-freedom; much greater benefit is derived if a specification of the 
required behaviour is constructed, and the design verified against it.  Typically such a 
specification will be much simpler than the design, such that it can be shown to meet 
the requirements by inspection or informal arguments, possibly supplemented by 
additional formal checks using a tool.  The level of abstraction to be used in a design 
is also usually established at the specification stage. 

Definitions 
Before the specification can be constructed it is necessary to define some datatypes 
and constants used to label entities and determine system parameters.  The datatype 
ConnId introduces a set of tokens used to identify connection instances. 

datatype ConnId = nil | c1 | c2 | c3 

nil is a special ‘null’ connection ID which does not refer to a real connection, and is 
excluded from the set of actual connection IDs. 

ConnSet = diff(ConnId,{nil}) 

The maximum number of connections which may exist at any time is equal to the 
number of valid connection IDs, and there must be at least one connection available 
otherwise all requests will deadlock or be rejected. 

maxconn = card(ConnSet) 
assert maxconn > 0 

In a multi-threaded design such as this, it is almost always necessary to be able to 
identify the thread taking part in a particular action, and so the datatype ThreadId is 
defined to provide labels for threads. 

datatype ThreadId = t1 | t2 | t3 | t4 



154 J. Lawrence 

 

Some constants determining system parameters: 

poolsize = 2  -- no. of connections to keep open 
extpoolsize = maxconn – poolsize  -- extras  
queuesize = 2  -- no. of threads allowed to queue 

All the above size parameters must be non-negative. 

assert poolsize    >= 0 
assert extpoolsize >= 0 
assert queuesize   >= 0 

Possible responses from a call to the pool are defined by the datatype Response. 

datatype Response = ok | error | full 

ok and error both indicate that a link request to the target system was made, and it 
succeeded or failed respectively. full indicates that the request was rejected because 
all available connections were in use, and the queue was full at the time of the 
request.  The level of abstraction to be used in the design is thus already beginning to 
become apparent from the definition of the possible responses. 

Threads 
The structure we will use for the specification is a set of independent threads, 
represented by interleaved processes, handling requests to the system. call is the 
channel on which requests are received at the external interface. enter and exit are 
internal channels representing a thread being accepted into, and later leaving the 
connection pool.  All of these carry a label identifying the thread taking part in the 
event, in order to keep track of which threads are in which state and to tie target links 
back to the originating thread. 

channel call,enter,exit:ThreadId 

Note that no actual request data is represented here, even on the call channel.  This 
is a deliberate abstraction from the real system, simply because we do not care about 
the data for the purposes of this specification – we are solely concerned with the 
management of the connections, and believe that the transmission of data is a detail 
which can safely be added at the implementation stage. 

The event reject is used when a request cannot be processed because the system 
is full. There is no need to identify a thread on this channel. 

channel reject 

The channel link represents an invocation of the target system.  The thread must be 
identified on this channel since otherwise an implementation would be free to return a 
response (and probably any associated data) to any thread, rather than the one which 
made the request. 

channel link:ThreadId.{ok,error} -- no ‘full’ on link 

channel return:ThreadId.Response -- any poss. Response 
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The process Thread(t) models the behaviour of the single thread with label t, at the 
specification level.  What we are actually modelling is the behaviour of a thread 
within the connection pool, which initially only accepts a call for that thread, then 
offers an external choice of reject or enter.  This choice is later resolved by a 
supervisor process which is monitoring the state of the connection pool. 

Thread(t) = call.t -> (reject -> return.t.full -> SKIP 

                   []  enter.t -> link.t?r ->  

                       exit.t -> return.t!r -> SKIP); 

                       Thread(t) 

Depending on the branch chosen, the thread either returns immediately with a full 
response, or issues a link to the target system before registering its completion via 
the exit channel and returning control to the caller via return.  Since the channels 
enter, exit and reject will be hidden when the specification is assembled, the 
external view of a thread may be represented by the following diagram: 

Connection
Pool

[ link?{ok,error} ]

call

return?{ok,error,full}

 

The diagram represents the connection pool as a black box which accepts call 
requests, may optionally issue a link, and then returns to the caller. The response on 
return depends on whether the link is issued and if so, what the result was.  
Threads do not communicate directly with each other, only indirectly through their 
interactions with shared data or synchronization components; so the combined 
behaviour of all threads is simply the interleaving of the individual threads. 

Threads = ||| t : ThreadId @ Thread(t) 

If the internal events were to be hidden at this stage, the external choice on each 
iteration of a Thread would become nondeterministic, and the system would be 
anarchic, choosing arbitrarily whether to process or reject each request. 

Supervisor 
To impose order on the system corresponding to our informal requirements for the 
connection pool, we introduce a supervisor process which maintains a global view of 
the state of the system, monitoring and controlling the possible actions of the threads 
according to that view. 

The following diagram represents the Supervisor process for the connection pool.  
Its state comprises two variables: active, the set of threads which have been 
allocated a connection and are in the process of linking to the target system; and 
queue, a sequence of threads which have been accepted but are awaiting the 
allocation of a connection.  Potential example values are given for each variable. 
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Supervisor
active : Set(ThreadId) : {t3,t2}
queue  : Seq(ThreadId) : <t1,t4>

empty(inter(active,set(queue)))
card(active) <= maxconn
#queue <= queuesize
card(active) == maxconn or

null(queue)

reject

enter

link

exit

 

The lower portion of the diagram gives an invariant for the state, which is not 
necessarily complete, i.e. a partial invariant. 

 No thread may be simultaneously active and in the queue. 
 The number of active threads is limited to the number of available 

connections. 
 The size of the queue is limited to queuesize. 
 All available connections must be in use for a thread to be queued. 

The full CSP definition of the Supervisor process is given below.  Note that if the 
stated invariant becomes false after any event, the process deadlocks immediately,  

Supervisor(active,queue)= 
empty(inter(active,set(queue))) and 
card(active) <= maxconn and 
#queue <= queuesize and 
(card(active) == maxconn or null(queue)) & 

The choice between enter and reject is based on the state, which is then updated 
to reflect that choice. 

(if card(active) < maxconn 
 then enter?t -> Supervisor(union(active,{t}),queue) 
 else if #queue == queuesize  -- full  
      then reject -> Supervisor(active,queue) 
      else enter?t -> Supervisor(active,queue^<t>))  
[] 

Threads which are active (i.e. have an allocated connection) are permitted to engage 
in link or exit. In the latter case the state is updated as the connection is no longer 
required by that thread. 

([]t : active @  -- active threads only 
     link.t?_ -> Supervisor(active,queue) 
  [] exit.t -> 
     let left = diff(active,{t}) within 
     if null(queue) 
     then Supervisor(left,queue) 
     else Supervisor(union(left,{head(queue)}), 
                     tail(queue))) 
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The style of expressing a CSP process in the form: 

P(s) = Inv(s) & [] e : E(s) -> P(s’) 

is useful as it allows us to formalize an invariant in a way which will be flagged by 
FDR if ever violated since it will quickly result in a total deadlock of the whole 
system.  Alternatively divergence could be used in a similar pattern. 

Assembly 
The complete specification for the connection pool is given by the parallel 
combination of the threads with the supervisor process in its initial state, 
synchronizing on the channels shared by the threads and the supervisor, and hiding 
the internal events. 

PoolSpec =  
    (Threads                         -- all threads 
     [|{|enter,exit,reject,link|}|]  -- shared channels 
     Supervisor({},<>))              -- initial state 
     \ {|enter,exit,reject|}         -- hide internals 

The structure of the specification is illustrated in the following diagram. 

Threads
Supervisor

link
return

call

PoolSpec

enter

exit

link

reject

 

Validation 
At this point, it is appropriate to ask whether what we have specified is actually what 
we intended, since clearly if it is not, then even a perfect implementation of it will not 
meet the requirements.  There are several techniques which can help to validate the 
specification: 

1. Careful inspection or peer review, paying attention to synchronization and hiding, 
which are common sources of error. 

2. Use of a tool such as ProBe to explore possible behaviour of the specification. 
3. Formulation of expected properties of the specification as CSP processes, and then 

using FDR to check those properties. 

A couple of quick checks which require little effort to formulate and are sometimes 
valid are deadlock and divergence freedom, which both happen to apply in this case.  
The deadlock freedom check also implicitly checks that the stated invariant for the 
Supervisor state is not violated. 
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assert PoolSpec :[ deadlock free[FD] ] 

assert PoolSpec :[ divergence free ] 

An example of a stronger check of the validity of the specification can be formulated 
if we consider how we would expect the specification to behave if its link channel is 
hidden.  In this case, and abstracting the internal state of the supervisor so that the 
choice between reject and enter becomes nondeterministic, each thread may 
perform an infinite sequence of call-return pairs with a nondeterministic choice of 
response on each return event. 

ThreadInterface(t) = |~| r : Response @ 

    call.t -> return.t!r -> ThreadInterface(t) 

The multi-threaded version of the interface should be the interleaving of each thread 
separately, with no interference between threads.  This independence of the threads 
only holds with link hidden since otherwise the refusal of the environment to engage 
in link for one thread may block another waiting in the queue for a connection. 

PoolInterface = ||| t : ThreadId @ ThreadInterface(t) 

The FDR refinement check can now be expressed, that our abstract nondeterministic 
interface specification is refined by PoolSpec with the link channel hidden.  The 
validity of this assertion in fact includes the deadlock and divergence freedom 
properties by inspection. 

assert PoolInterface [FD= PoolSpec \ {|link|} 

Frequently, the failure of an eventual refinement check of the design will indicate 
errors or inaccuracies in the specification which need to be corrected.  In other words, 
a ‘correct’ design can be found not to meet the specification originally formulated 
because the latter is too prescriptive, or some unforeseen subtlety of the operational 
semantics renders the refinement invalid.  In such cases it is the specification rather 
than the design which needs to be revised and revalidated. 

2.3   Design 

Design remains the responsibility of the software engineer.  CSP and FDR can only 
help to model, record and verify a design; they cannot help to conceive it.  Often, the 
engineer will have an outline design in mind at the specification stage and this will 
inform the construction of the specification. 

The design for the connection pooling mechanism has four components: 

1. The connections provided by the transport layer. 
2. A control component which maintains a record of the state of the pool and 

queue.  This is a single shared data component which is used by all threads 
and which does not provide any synchronization except to protect itself. 

3. A dispatcher component which has two functions: synchronization (suspend/ 
resume) of threads in the queue, and connection passing. 
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4. The threads. Each client thread is a separate process, identical apart from the 
label used to identify it. These represent independent copies of the same 
algorithm executing on separate threads, while accessing the same shared 
components, and as such are similar to the Thread processes of the 
specification. 

It would probably be possible to conceive a design (especially in Java) in which the 
control and dispatcher functions are combined, but separation of these concerns 
results in a cleaner, more understandable, maintainable and portable structure. 

Connections 
Although we will not need to implement connections, as they are provided by the 
transport layer, we need to model them in order to include them in the design.  The 
technique used here is one way to model resources which can be obtained and 
released, such as memory, objects or in this case, connections.  The channels create 
and close respectively represent the actions of obtaining and releasing a particular 
connection, and hence are labelled with a valid connection ID. 

channel create,close : ConnSet 

The channel start_link is used to represent the use of a particular connection, 
by a specified thread, to access the target system.  The thread ID is necessary for 
the same reason that it appears on the link channel used in the specification; 
indeed, end_link will later be renamed to link when the design is fully 
assembled. 

channel start_link   : ConnSet.ThreadId 
channel end_link     : ConnSet.ThreadId.{ok,error} 

The link channel of the specification has been split into two separate channels for the 
design.  This allows the model to include the possibility of interleaving of link 
requests which we wish to guard against, so that its occurrence can be detected by 
FDR.  The complete interface of the transport layer is given by the following set 
definition and will be useful later. 

ConnInterface = {|create,close,start_link,end_link|} 

It is useful to define a divergent process which can be used to represent a broken 
component – often one which has been used in some invalid way.  If this state is 
reached in an FDR check of the design it will cause the check to fail.  A simple 
divergent process is: 

DIV = STOP |~| DIV 

Before a connection has  been created, or while a link request is being processed by 
a connection on behalf of a thread, it should be invalid for any close or start_link 
event to occur for  a  connection.  ConnError  is a process which  may always accept 
any such event and then immediately diverge, causing FDR to flag its occurrence 
during a refinement check. 
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ConnError(c) = [] e : {|close.c,start_link.c|} @  

                  e -> DIV 

Initially, a connection may be considered to be in a latent, unobtained state in which it 
can only validly engage in the action of being created. 

Connection(c) = create.c -> Active(c)  

             [] ConnError(c) 

Any attempt to close or use a connection before it has been created will result in 
divergence, so if our design does this it will be detected by FDR.  After creation, a 
connection may be closed, or used by any thread to initiate a link to the target 
system.  In the latter case it moves to a distinct Linking state. 

Active(c) = close.c -> Connection(c) 

         [] start_link.c?t -> Linking(c,t) 

In the Linking state a connection may complete the link request and return to the 
Active state ready for other requests, but we also allow the possibility of an invalid 
event (close or start_link), leading to divergence.  If this scenario can arise in the 
assembled design it will be detected by FDR, allowing us to police the requirement 
that link requests are not interleaved on a connection.  This could not be done if a 
link remained as a single atomic event in the design. 

Linking(c,t) = end_link.c.t?_ -> Active(c) 

            [] ConnError(c) 

In fact, although a connection is modelled as remaining active after end_link we 
will regard an error response as indicating a possible problem with that connection, 
and close it without further reuse.  Connections are independent of each other, so the 
complete transport layer is represented by the interleaving of all possible valid 
connections. 

Connections = ||| c : ConnSet @ Connection(c) 

The following diagram illustrates the structure of Connections, showing how it 
is composed of the interleaving of several independent Connection processes 
labelled by unique connection IDs.  The meaning of the arrows, dashed and dotted 
lines for the channels is as explained earlier for the high-level description of the 
Connection Pool. 

The diagram also anticipates the eventual renaming of end_link to link in the 
final system, to conform to the external interface of the specification.  This is 
explained further when the complete system is assembled later. 

This simple model of the transport layer relies for its validity on the way it is used 
by the threads: when creating a connection a thread must use an external choice over 
all valid connection IDs (… -> create?c -> …) – it may not attempt to create a 
particular connection although this is not prohibited by the model. 
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Connection(c1)
link?r

start_link.c1

close.c1

end_link.c1?r

create.c1

Connection(c2)
link?r

start_link.c2

close.c2

end_link.c2?r

create.c2

 

Control 
The Control component keeps track of the state of the pool.  It provides two 
functions: 1) obtain a connection from the pool; and 2) return a connection to the pool 
after use.  Often when modelling a shared data component such as this, each function 
will be represented by a single channel, but in this case a more complicated pattern is 
used where each function can result in a choice over several channels, this choice 
being determined by the values of the state variables. 

The following channels (plus reject which has already been defined) are used to 
request a connection from the Control component.  The client thread must offer an 
external choice of these channels when requesting a connection from Control, and 
subsequently act according to the channel actually chosen. 

channel allocate,reject  -- create a new connection 
channel reuse : ConnSet  -- reuse a pooled connection 
channel wait : ThreadId  -- suspend thread 

In a similar way, the following channels are used to return a connection to the pool: 

channel repool:ConnId -- this may be nil indicating 
that the connection is closed 
channel release -- release the connection if not 
already closed 
channel pass:ThreadId -- pass the connection to this 
thread 

It is convenient, and reduces the likelihood of errors when assembling the complete 
system, to define the set of all events in the client interface of Control: 

ControlInterface = {|reject,allocate,reuse,wait, 
                     repool,release,pass|} 

The channel close is not included in this definition as it is a demonic event of the 
component and is not synchronized with the client threads. 
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Control may be represented by the following diagram, following a similar pattern 
to that for the Supervisor process of the specification: 

 
Control
count : Nat : 1
pool  : Seq(ConnSet)  : <c3,c1>
queue : Seq(ThreadId) : <>

count >= 0
#pool <= poolsize
#queue <= queuesize
count + #pool <= maxconn
count==maxconn and null(pool)

or null(queue)

close

reuse

allocate

wait

repool

release

pass

{
{

allocate

release

reject

 

As for Supervisor, potential example values are given for each state variable, and 
an invariant is specified in the lower portion of the diagram, which as before, may be 
only partially complete. 

The complete CSP definition for the Control component follows.  

Control(count,pool,queue) =  
count >= 0                and 
#pool <= poolsize         and 
#queue <= queuesize       and 
count + #pool <= maxconn  and 
((count == maxconn and null(pool)) or null(queue)) &  
((not null(pool) & let front^<last> = pool within  
  STOP |~| close!last -> Control(count,front,queue)) 
[]   -- cases when requesting a connection 
( if count==maxconn  
  then if #queue < queuesize  
       then wait?t -> Control(count,pool,queue^<t>) 
       else reject -> Control(count,pool,queue) 
  else if null(pool)  
       then allocate -> Control(count+1,pool,queue) 
       else reuse!head(pool) ->  
            Control(count+1,tail(pool),queue) ) 
[]  -- cases when returning a connection 
( if null(queue)  
  then if #pool == poolsize  
       then release -> Control(count-1,pool,queue) 
       else repool?c ->  
            if c == nil  
            then Control(count-1,pool,queue)  
            else Control(count-1,<c>^pool,queue)  
  else pass!head(queue) ->  
       Control(count,pool,tail(queue)))) 
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Dispatcher 
The dispatcher component combines two functions: explicit thread synchronization 
(suspend / resume) and connection passing.  The suspend channel identifies the thread 
which is to be suspended: 

channel suspend : ThreadId 

The channels resume and dispatch each identify the thread being resumed, but also 
transmit a connection to be used by that thread.  This is an input on the resume 
channel, and an output on dispatch. 

channel resume,dispatch : ThreadId.ConnId 
Ready(t,c) = dispatch.t.c -> Ready(t,c) 
             [] suspend.t -> Suspended(t) 
             [] resume.t?c -> Resumed(t,c) 
Suspended(t) = resume.t?c -> Ready(t,c) 
            [] suspend.t -> DIV  
Resumed(t,c) = suspend.t -> Ready(t,c)  
            [] resume.t?_ -> DIV 

A state transition diagram illustrating the Ready process for a thread is given below. 

Ready(c)Suspended Resumed(c)

suspend

DIV

suspend

dispatch!c

suspendresume?c

resume

resume?c

 

The complete Dispatcher function for all threads is simply the interleaving of each 
individual thread’s dispatcher, initialized with a null connection. 

Dispatcher = ||| t : ThreadId @ Ready(t,nil) 

As with Control it is convenient to define the set of all events in the interface of 
Dispatcher. 

DispatchInterface = {|suspend,resume,dispatch|} 

Threads 
We now model the actions of a client thread interacting with Control, Dispatcher 
and Connections.  We call this Client(t), labelled by ThreadId.  Essentially this 
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is a CSP model of the algorithm to be followed by a thread invoking the call function 
of the connection pool.  There are 3 stages to the processing: 

1. Obtain a connection from the pool if possible, or wait for one to become 
available (if neither of these is possible then the request is rejected). 

2. Use the connection obtained in stage 1 to link to the target system. 
3. Release the connection to the pool and return to the caller. 

As in the specification, each thread is modelled as a separate copy of identical 
processes with events labelled with a ThreadId. 

Client(t) = call.t ->       -- caller initiates process 

(  reject -> return.t!full -> Client(t) 

[] wait.t -> suspend.t -> dispatch.t?c ->   -- suspend 

            (if c != nil then Execute(t,c)  -- valid 

             else create?d -> Execute(t,d)) -- need new 

[] allocate -> create?d -> Execute(t,d)     –- need new  

[] reuse?c -> Execute(t,c) )    -- connection from pool 

The process Execute(t,c) represents thread t once it has obtained a valid 
connection c.  It initiates a link to the target system via start_link using the 
connection, and then waits to engage in the corresponding end_link event. 

Execute(t,c) =  -- thread has valid connection c to use 

start_link.c.t -> end_link.c.t?r -> -- link to target 

if r == ok then Release(t,c,r)    -- retain connection 

else close.c -> Release(t,nil,r)  -- close due to error 

Finally the thread must release the connection back to Control and return to its 
caller.  As when obtaining a connection, the thread must offer an external choice over 
the Control channels used for release, and take appropriate action depending on the 
channel chosen by Control.  In all cases, the last event is to return the response from 
the link, before reverting to the initial state to await the next call on that thread. 

Release(t,c,r) =  

 ( repool!c -> SKIP -– c is back in pool, no more to do 

[] release -> (if c==nil then SKIP    –- already closed 

               else close.c -> SKIP)  -- must close c 

[] pass?u -> resume.u!c -> SKIP); -- pass c to thread u 

   return.t!r -> Client(t) -– return response to caller 

Threads do not communicate except indirectly through their interactions with the 
shared components, so the combined behaviour of all the client threads is simply the 
interleaving of the individual threads. 

Clients = ||| t : ThreadId @ Client(t) 
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Assembly 
The following diagram illustrates how the complete CSP model of the implementation 
is assembled from its component parts. 

Starting with Clients, we add the other components one at a time, synchronizing on 
the shared interface events and then hiding them at each stage.  DispatchClients is 
the combination of Clients with Dispatcher. 

DispatchClients = ( Clients 

                    [|DispatchInterface|]  

                    Dispatcher ) \ 

                    DispatchInterface 
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Next, we add the Control component.  Note that because close is not in 
ControlInterface, close events from Clients and from Control are 
interleaved rather than synchronized and so may occur independently. 

ControlClients = ( DispatchClients  
                   [|ControlInterface|]  
                   Control(0,<>,<>) ) \  
                   ControlInterface 

Next, the Connections are added in a similar way.  The end_link channel remains 
exposed at this stage as it will become the link channel from the specification. 

ConnClients = ( ControlClients 
                [|ConnInterface|]  
                Connections ) \  
                {|create,close,start_link|} 

Finally, all end_link events are renamed to link for compatibility with the 
specification. This involves removing the ConnId labels from the events as they are 
no longer relevant. 
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PoolSystem = ConnClients [[end_link.c <- link |  
                                    c <- ConnSet]] 

Verification 
The required refinement relationship between the specification and design is 
expressed as an FDR assertion using the most general semantic model. 
assert PoolSpec [FD= PoolSystem 

We are now ready to perform the verification using FDR.  The structure of the system 
means that any check of the above assertion implicitly subsumes the corresponding 
checks for any subset of ThreadId; however it is still useful to start with one thread 
and work up as this will detect errors which become apparent only when a certain 
number of threads access the system concurrently, as well as ensuring that we begin 
well within the capacity of the tool. 

For all combinations of system parameters which have been tried and for which the 
check completed, the assertion holds.  Typical output from the end of a check is given 
below, in this case for four threads, three available connections, a poolsize of 2 and 
a queuesize of 1. 

. . . 
+.41,850,000 * 
+.* 
+.* 
+.... 41,855,808 
Refine checked 41,855,808 states 
With 198584320 transitions 
Took 7166(6791+57) seconds  

The following table gives the corresponding number of states and transitions for a few 
different checks, which are of interest if only to show how the size of the check 
depends on the number of threads and other parameters. 

#t #c 
pool 
size 

queue
size States transitions 

3 1 0 0 1,847 5,916 
3 1 1 1 48,392 146,032 
3 2 0 1 87,708 278,538 
3 2 1 1 110,712 376,926 
4 2 2 1 54,781,182 241,887,276 
4 3 2 1 41,855,808 198,584,320 

2.4   Implementation 

This section illustrates how a CSP design such as our connection pool can be recast 
into an executable procedural program, in this case in the Java language.  The 
translation process is manual, and involves not only a change of language, but also the 
removal of abstractions present in the design and some minor enhancements not 
reflected in the CSP model. 
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The Java code presented here is a simplified version of the actual implementation 
from the project, intended to make the relationship to the CSP design clearer. 

Dispatcher 
The Dispatcher class implements the Ready process for a thread, so there will be a 
separate instance of this class for each thread in the queue.  The methods of this class, 
suspend() and resume(), are both synchronized (in the Java sense), so that their 
actions are effectively atomic as in the CSP model, as well as being necessary in order 
to use the Java wait()/notify() mechanism. 

constants 
Three constants are defined corresponding to the possible states of the dispatcher as 
follows. 
private static final int ready     = 1; -- Ready(c) 
private static final int suspended = 2; -- Suspended 
private static final int resumed   = 3; -- Resumed(c) 

variables 
Each Dispatcher instance has two variables; state, which takes one of the three 
constant values defined above, and conn, which is the Connection passed to the 
thread by resume().  The initial values of the variables correspond to the process 
Ready(t,nil) as in the CSP definition of the Dispatcher component.  

private int        state = ready; 
private Connection conn  = null; 

suspend() 
The action of suspend() depends on the state at the time it is invoked.  If ready, it 
is moved to the suspended state and caused to wait for the corresponding call to 
resume().  If already resumed, there is no need to wait and the thread can proceed 
immediately.  The connection stored on resume() is returned to the caller. 

synchronized Connection suspend() { // suspend.t ->  
  switch (state) { 
    case ready : 
      state = suspended; 
      try { wait(); }  
      catch (InterruptedException e) {} 
      break; 
    case suspended : 
      exception("Already suspended"); 
    case resumed : 
      state = ready; 
      break; 
  } // switch() 
  return conn;  // -> dispatch.t!conn  
} // suspend()  // -> Ready(conn) 
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resume() 
The resume() method stores the connection being passed to the target thread in the 
instance and then modifies the state depending on its initial value in accordance with the 
CSP.  If a thread is already suspended, then it is notified to allow its wait() to complete. 

synchronized void resume(Connection c) { 
  conn = c; 
  switch (state) { 
    case ready : 
      state = resumed; 
      break; 
    case suspended : 
      state = ready; 
      notify(); 
      break; 
    case resumed : 
      exception("Already resumed"); 
  } // switch() 
} // resume() 

Pool 
The Java class Pool combines the implementations of two components of the design: 
Control and Client(t).  Roughly speaking, the instance variables together with 
the synchronized() blocks within the allocate() and release() methods 
correspond to Control; whilst call() and the remaining code from the other 
methods together implement Client(t).  The melding of the two CSP processes is 
an implementation convenience partly due to the fact that Java allows only a single 
return parameter on a method call.  Note that the thread executing this code is never 
identified explicitly as it is in the CSP but is always present by implication. 

constants 
Three constants are defined corresponding to the CSP datatype Response. 
public static final int ok    = 1; 
public static final int error = 2; 
public static final int full  = 3; 

variables 
The instance variables of Pool have an obvious correspondence with the state 
variables of the CSP Control process in the design. count is a simple integer, whilst 
the two sequences pool and queue are each implemented by a Java Vector object.  
The initial values of these variables correspond to the initial state of Control in the 
assembled PoolSystem, i.e. Control(0,<>,<>). 

private int    count = 0;  
private Vector pool  = new Vector(); 
private Vector queue = new Vector(); 
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allocate() 
The synchronized() block in this method implements the CSP choice between the 
possible connection allocation events of Control.  The choice which is made is 
communicated to the subsequent code (part of Client(t)) by different combinations 
of local variables. 

private Connection allocate() { 
  Dispatcher thread = null; 
  Connection conn = null;  // allocate  
  boolean queue = false;  
  synchronized (this) { 
    if (count >= maxconn) {  
      if (queue.size() < queuesize) {  
        thread = new Dispatcher(); 
        queue.add(thread); 
        queue = true; // wait 
      }  
      else return null; // reject 
    }  
    else {  
      if (!pool.isEmpty()) // reuse 
        conn = pool.remove(pool.size()-1); 
      count++; 
    } 
  } // synchronized() 
  if (queue) conn = thread.suspend(); 
  if (conn == null) conn = create(); 
  return conn;  
} // allocate() 

release() 
As with allocate(), the synchronized() block here implements the CSP choice between 
the possible connection release events of Control.  The choice is communicated to the 
subsequent code by different combinations of the local variables waiter and conn, 
which then behaves according to the corresponding path of the Client(t) CSP process. 

private void release(Connection conn) { 
  Dispatcher waiter = null;  
  synchronized (this) {  
    if (queue.isEmpty()) {  
      count--; 
      if (conn != null) pool.add(conn); // repool 
      if (pool.size() > poolsize)  
        conn = pool.remove(0); // release 
      else conn = null;  
    }  
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    else waiter = queue.remove(0); // pass 
  } // synchronized() 
  if (waiter != null) waiter.resume(conn);  
  else if (conn != null) conn.close(); 
} // release() 

call() 
This is the only public method of Pool, and implements those sections of the 
Client(t) process not included within the allocate() or release() methods, 
including the top-level call and return events.  Note the introduction here of data 
to be exchanged with the target system on link().  The omission of this data from 
the CSP model is one of the abstractions employed in the design. 

public int call(byte[] data) { 
  Connection conn = allocate(); 
  if (conn==null) return full; // return.t!full -> … 
  else { // Execute(t,conn) 
    boolean success = conn.link(data);  // ok | error 
    if (!success) { // r != ok 
      conn.close;   // close.conn -> 
      conn = null;  // Release(t,nil,r) 
    } 
    release(conn);  // Release(t,conn,r) 
    if (success) return ok;  // return.t!r -> Client(t) 
    else return error; 
  } // else() 
} // call() 

3   Summary 

The original design and implementation of the connection pooling component 
described in this paper was completed in three days, from the preliminary CSP 
specification to initial testing of the Java code, including verification of the design 
using FDR.  This time was split approximately equally between developing and 
verifying the CSP design, and recasting it as executable Java.  Following delivery of 
the system containing the connection pooling mechanism to the client shortly 
thereafter, no errors have been detected in the implementation in spite of thorough 
testing and heavy usage of the system by the client. 

The implementation was subsequently enhanced with some functions not included 
in the CSP model, notably the ability to cause threads which have been queueing for 
more than a certain interval to time out.  These modifications were not added to the 
CSP model (although it would have been perfectly feasible to do so), because it was 
thought that the effort involved would not be justified by the likely benefit in  
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verifying the enhancements.  Rather it was considered that the clear structure and 
design intent engendered by the original use of CSP meant that the necessary 
modifications could be made without risk to the integrity of the core design; and this 
appears to have been borne out in practice. 

Other Techniques 
The example in this paper has illustrated some techniques for modelling procedural, 
and in particular multi-threaded, designs in CSP such that they may be checked by the 
FDR tool.  For example: 

 Abstraction. 
 Specification; and validation of specification properties. 
 Modelling multiple threads including non-interleaving properties. 
 Design – decomposition into data / synchronization / processing elements. 
 Resource allocation and deallocation. 
 Specifying and checking state invariants of processes. 
 Design verification with FDR refinement assertions. 
 Implementation by translation of CSP to procedural code. 

A single example, however, can only exemplify a small cross-section of the 
techniques which might need to be applied to model and verify a wider range of 
problems.  In particular the example used in the paper is sufficiently simple that one 
stage of refinement is sufficient to reach an (almost) directly implementable level of 
design.  This is by no means always the case and several techniques may need to be 
applied to deal with larger problems.  Some of these are summarized below. 

 Stepwise refinement.  A crucial property of CSP semantics is that all CSP 
operators are monotonic with respect to refinement.  This allows an abstract or 
not directly implementable process to appear at one level of a design, and for it 
to be refined and checked separately.  An unmanageably large design may 
thereby be broken down into several more manageable design steps, each 
independently verifiable by FDR. 

 Interface wrapping.  Often, where stepwise refinement is used, the intermediate 
abstract component may not be directly refineable because its interface refers 
directly to events which will not exist or will not be exposed in the design.  In 
such cases an additional call-return interface layer may be inserted to 
encapsulate the component and the wrapped version then refined.  The validity 
of the introduction of this additional interface layer may itself be checked, often 
at a single thread level. 

 Interface protocols and rely-guarantee contracts.  A ‘correct’ design may not be 
a true CSP refinement of the specification because of some reliance on the way 
the system will be used.  It is usually possible to deal with such cases by 
formalizing the permissible usage scenarios as a CSP process and including this 
in parallel with the specification to be refined. 

 Avoidance of unbounded state.  The FDR tool is not able to check systems with 
unbounded or even very large state spaces and there are several ways of 
reducing or avoiding such problems; for example: 
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o Factor out unbounded state components from the system. 
o Use modulo arithmetic to reduce state space of numeric types. 
o Place bounds on counts by introducing artificial deadlock or divergence 

in a specification. 
 Data independence.  This idea has already been mentioned elsewhere and 

involves replacing a large datatype with a much smaller one for the purpose of 
the model. 

Even for the example in the paper, the step from the CSP Control component of the 
design to the implementation of the allocate() and release() methods of the 
Java Pool class is not entirely obvious, and an additional stage employing interface 
wrapping and stepwise refinement might have been added. 

A couple of other techniques which can be useful for certain special classes of 
problem are: 

 Discrete time modelling.  FDR does not  include support for the semantics of 
Timed CSP, however some timing aspects can be modelled and checked by 
FDR using a technique of ‘untimed time’, in which the ‘tocks’ of a clock are 
represented as CSP events in the untimed language. 

 Fairness modelling.  CSP does not have any built-in notion of fairness, in other 
words there is nothing in the language to prevent infinite overtaking from 
occurring.  However, it is perfectly feasible to construct an explicit 
representation of a concept of fairness for any given system.  The form of this 
representation is typically system dependent but can be similar to the way that 
lossy channels are sometimes represented in communication protocols. 

4   Conclusion 

This paper has presented one example of the application of an approach to software 
development involving the CSP notation for modelling combined with the use of the 
FDR model-checking tool for validation and verification of the specification and 
design respectively. 

Benefits 
Apart from the obvious benefit of the capability for automated verification of designs 
from their specifications, the use of CSP in software engineering has other advantages. 

 Discipline for structuring designs.  The use of CSP naturally encourages the 
decomposition of a design into clearly defined logical units, resulting in a more 
understandable and maintainable implementation structure. 

 Elegance and efficiency.  In the author’s opinion, the use of CSP tends to result 
in designs which are more elegant and economical, both in terms of the amount 
of code required and its runtime efficiency. 

 Design documentation.  In common with other design methodologies, the CSP 
approach inevitably results in the production of design documentation at a 
higher level of abstraction than the eventual code.  Where connection diagrams 
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are used, the diagrams record the overall structure, whereas the details of the 
behaviour of individual components are in the CSP. 

 Hierarchical decomposition.  In larger systems, a natural consequence of 
stepwise refinement is that the design is split up into manageable chunks which 
can be understood and implemented largely independently of each other. 

Limitations 
Probably the main limitation of the approach discussed in the paper is the restriction 
on the size of system which can be checked by the tool.  For example, the example in 
this paper can be checked with up to four threads and any given combination of the 
other parameters in the space of a few hours on a modern workstation.  However, the 
state space which needs to be explored increases approximately exponentially with 
the number of threads and when an additional thread is defined the check can only be 
completed for a small subset of combinations of the other parameters. 

Consequently, verification of such a design by FDR for certain specific cases can 
provide a considerable level of confidence in the correctness of a design, but cannot 
prove it to be correct as the system is scaled up.  An exception is where data-
independence is exploited, as this is known to scale up without affecting the validity 
of checks performed with small datatypes.  For certain very restricted classes of 
problem the scalability limitation can be overcome by an inductive technique but this 
is not applicable to designs such as that presented in this paper. 

Other Examples 
Some other recent examples of the use of the combined CSP and FDR approach from 
the author’s consultancy work include: 

 A design for a concurrent twin-buffering logger. 
 A transport protocol for transmitting ‘unbounded’ data in finite segments. 
 A design for the Web-enablement of a CICS 3270 application. 
 A mechanism to ensure once-only initialization under race conditions. 
 A model of a bimodal locking algorithm for Java objects. 

These have mostly been of a similar size and complexity to the example in this paper 
and the results, in terms of the benefit from the application of the approach have also 
been comparable. A few other examples where adapted connection diagrams only 
have been applied to formulate and document a design are: 

 A CICS TCP/IP socket listener-server. 
 A framework to demonstrate tightly-coupled transactional interoperation 

between independent Java and C applications. 
 Control flow in an XML reformatting tool. 

In these and other cases not mentioned, the diagrams have proved beneficial in 
imposing a discipline of decomposing a system into logically organized components, 
defining the possible interactions between them, and subsequently providing a record 
of the design to aid in the construction of the system. 

It is also worth mentioning that the part-time MSc in software engineering run by 
Oxford University Computing Laboratory has proved extremely popular with Hursley 
employees, several of whom have chosen to undertake projects using CSP and FDR 
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for the dissertation element of their studies.  These projects are normally based on an 
aspect of the student’s work responsibilities. 

Future Outlook 
The software engineering community would undoubtedly benefit from a wider 
knowledge and application of CSP and CSP-based model-checking tools, such as 
FDR, even in areas where safety and reliability are not overriding priorities.  
Developments which might help to facilitate this would be: 

1. Free availability of FDR, preferably as an open-source project.  
2. Availability of a practical manual on the use of CSP and associated tools 

for software modelling, design and verification. 
3. Inclusion of CSP connection diagrams in UML, perhaps with some 

extensions such as those employed in this paper. 

CSP is an extremely powerful language for specification and modelling the design of 
software, especially system components in which communication or concurrency are 
central issues.  Used in conjunction with a model-checking tool such as FDR, the 
notation provides unparalleled capability for the automated checking of designs which 
would otherwise be extremely difficult to verify. 
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