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Abstract. We connect probabilistic Action Systems and probabilistic
CSP, inducing healthiness conditions for the probabilistic traces, fail-
ures and divergences of the latter.

A probabilistic sequential semantics for pGCL [31] is “inserted un-
derneath” an existing but non-probabilistic link between action systems
and CSP. Thus the link, which earlier yielded the classic CSP healthi-
ness conditions [34], is induced to produce probabilistic versions of them
“for free”.

Although probabilistic concurrency has enjoyed the attentions of
a very large number of researchers over many years—including our-
selves [37]—we nevertheless hope to gain new insights by combining the
two approaches CSP and pGCL. In the meantime, however, we prob-
ably raise more questions than we answer: in particular, the issue of
compositionality—for the moment—remains as delicate as ever.

1 Introduction

A typical state-based approach to concurrency is the Action System formalism
of Back and Kurki-Suonio [3], in which the effects of transitions are described in
some simple programming language such as Dijkstra’s Guarded-Command Lan-
guage GCL [10]; the transitions’ enabling conditions are given by the commands’
guards, which are predicates over the variables of some state space. By labelling
the transitions we determine a labelled transition system.

That is, a state space is shared between a number of actions, each of which
is enabled or not depending on the current state. The execution of an (enabled)
action changes the state, which consequentially changes the set of enabled actions
available for the very next step. UNITY [7] and Event-B [1] have essentially the
same structure (although the former makes assumptions of scheduling fairness).

In contrast, a typical event-based formalisation of concurrency is the Com-
municating Sequential Processes approach due to C.A.R. Hoare [17]. There the
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actions are called events, have no internal structure, and affect no explicit state.
The behaviour of a process is understood in terms of the sequences of events in
which it might engage, called traces and, for finer distinctions, in terms of its
failures (modelling deadlock) and its divergences (for livelock and other chaotic
misbehaviour).

Linking state- and event-based approaches is attractive because there are so
many real systems whose behaviour is partly controlled by state changes and
partly by sequencing, and for that reason a great number of researchers have
brought them together before.1 For example, the contents of a buffer is probably
best described by a state, i.e. the value(s) it contains; but the exchange of
request- and confirm messages necessary to set up the communication channel,
which the buffer serves, could well be best described by explicit sequencing.

In our earlier work [34] we linked standard, that is non-probabilistic, GCL-
style action systems and CSP by giving three simple formulae for the traces,
failures, and divergences of any action system; our approach differed from e.g.
He’s [12] and Josephs’ [22] in its use of predicate transformers [10] rather than
relations; we felt that the benefit of the predicate transformers was firstly a
simpler formulation that included divergence naturally and automatically, and
secondly the access to source-level reasoning afforded by predicate-transformer
based (i.e. wp-style) programming logic. That wp-approach has led to further
research [45, 4, 6].

In our work here we replace standard predicate transformers by the proba-
bilistic predicate transformers [24, 36] that have been developed and extended
since our earlier visit to this topic [37]: we (re-)construct and then explore a
link between “probabilistic action systems” and what will be, in effect, part of
a synthesised “probabilistic CSP”.2

We present probabilistic Action Systems first—they will be action systems
written in the probabilistic version pGCL of Dijkstra’s guarded-command lan-
guage [35, 31, 10]; the “p” in the name indicates that we have extended GCL
with an explicit operator “p⊕” for the probabilistic choice between two com-
mands.

Then we recall the details of CSP very briefly.
Finally, we use pGCL’s probabilistic relational model [23, 13] to make a link

between probabilistic Action Systems and probabilistic CSP, resulting in a syn-
thesis of probabilistic traces, failures and divergences. In the appendix we go
on to show how the probabilistic program logic [36, 35, 31], accompanying that
model, facilitates algebraic reasoning.

We conclude by discussing compositionality, which we regard as the key issue
in any exercise of this kind.

1 They have used both CSP and other styles of concurrency.
2 It differs significantly from the probabilistic CSP we constructed via the probabilis-

tic powerdomains of Jones and Plotkin [37, 19, 20, 32], and from other probabilistic
CSP ’s as well [25, 44, 32].
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System H:

initially n: = 0 1/2⊕ ± 1
hic =̂ n �= 0 → n: = 0

haec =̂ n = 0 → n: = −1 1/3⊕ 0
hoc =̂ n < 0 → n: = ±1

The program variable is just n of type integer (i.e. Z).

The initial state is chosen by flipping an unbiased coin: if it comes up heads, then n is
set to 0; if it is tails, then a demonic choice is made between setting n to +1 or to −1.

When n is +1, only hic is enabled; if it is 0, only haec is enabled; if it is −1, both hic
and hoc are enabled and an external choice is offered between them.

Action hic is neither probabilistic nor demonic; the haec action is purely probabilistic,
without demonic choice; and hoc is purely demonic, without probabilistic choice.

Note we are using the given names (e.g. hic) both to refer to actions, which can
have internal structure (e.g. can be demonic or probabilistic, and can include a guard),
and to refer to events which are simply the labels of actions and have no structure in
themselves.

Fig. 1. A probabilistic action system H

2 Probabilistic Action Systems: pAS

A probabilistic action system—or pAS—is a set of labelled actions and an ini-
tialisation; an action is a guard and a command; a guard is a predicate; and a
command is a program fragment in the probabilistic extension pGCL of Dijk-
stra’s language of guarded commands [35, 31]. An initialisation is a command
with no guard. We assume all of the above are given in the context of a collection
of program variables over which the meanings of the commands and predicates
are defined. Figure 1 is an example of a probabilistic action system in which the
actions have been labelled hic, haec and hoc.

Execution of a probabilistic action system proceeds as follows:

1. First, the initialisation is executed; then
2. Repeatedly an enabled action is selected then executed.

An action is enabled if its guard is true; it is executed by carrying out its com-
mand as determined by the semantics of pGCL; at the same time, its associated
event is deemed to have occurred.

If the repetition in Step 2 fails—because no action is enabled—then the sys-
tem is deadlocked.

One of the possible behaviours of the probabilistic action system in Fig. 1
is to execute hic,haec,hoc repeatedly and forever. But—thankfully—there are
many other possibilities: which one actually occurs depends on the outcomes of
probabilistic and demonic choices made as the pAS evolves.
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H =̂ H0 1/2⊕ (H−1 �H1)

H1 =̂ hic → H0

H0 =̂ haec → (H−1 1/3⊕H0)
H−1 =̂ hic → H0 � hoc → (H−1 �H1)

Process H is the entire system of Fig. 1 initially. Process H1 is then the system as
it would behave when n is +1; and the processes H0,H−1 correspond to values 0,−1
respectively.

Fig. 2. A “plausible” pCSP-style encoding of the system H from Fig. 1

3 Probabilistic Communicating Sequential Processes:
pCSP

Probabilistic CSP is standard CSP extended with a p⊕ operator between pro-
cesses: there are many versions, distinguished usually by the way in which in-
ternal choice, probabilistic choice and external choice interact, and by whether
other features (e.g. priorities [25]) are included. When we say “pCSP” we mean
“as defined here”.3

Written in pCSP, the pAS in Fig. 1 would probably be as in Fig. 2: a set of
mutually recursive process equations in which we have “coded up” the pAS by
inventing one process term for each possible state.

The semantics of CSP–in its simplest form—includes a set of traces in which
processes can engage, where a trace is a finite sequence of events and an event
(as for a pAS ) is the name of some action; we will see, however, that for pCSP
we must also consider the probability that those traces can occur. Some of the
possible traces for the pAS of Fig. 1, or equivalently (but informally) the pCSP
process of Fig. 2, are set out in Fig. 3.

After the next section we will give a formula for the traces of a pAS, and
for their associated probabilities. Subsequent sections introduce probabilistic
failures and divergences.

4 Relational Semantics of pGCL

The pGCL we use for probabilistic action systems has both a relational seman-
tics [23, 13] and a transformer semantics [24, 36]; they are consistent with each
other [36, 31] in the same way that conventional relational semantics is con-
sistent with Dijkstra’s original predicate-transformer semantics [14, 10]. In this
section we concentrate on relational semantics, because it is more intuitive (than
transformer semantics, at least at first); we develop the associated probabilistic
predicate transformers in the appendix.

3 We do not mean “the” probabilistic CSP, since there are many.
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{ 〈〉,

〈hic〉, 〈haec〉, 〈hoc〉,

〈hic, haec〉,
〈haec, hic〉,
〈haec, haec〉,
〈haec, hoc〉,
〈hoc, hic〉,
〈hoc, hoc〉,
〈hic, haec, hic〉,
〈hic, haec, haec〉,
〈hic, haec, hoc〉,

...
}

If the left alternative n: = 0 is taken in the pAS initialisation of H–with probability
1/2—then only haec is offered initially in the associated pCSP process. If the right
alternative n: = ±1 is taken—also probability 1/2—then the choice between setting n
to −1 or to +1 is made demonically. If n is set to −1, then an external choice between
hic and hoc is offered initially. In this case we thus have probabilistic, then internal
(demonic), then finally external (angelic) choice in succession. If n is set to +1, then
only hic is offered.

After hic, only haec can be offered.

After haec, with probability 1/3 an external choice hic/hoc is offered; with probability
2/3, only haec is offered (again).

After hoc, the choice between the offers hic and hic/hoc is demonic.

Fig. 3. A partial pCSP view of H from Figs. 1 and 2: its set of traces

Let the state space be S; we assume it is countable. A sub-distribution over S
is a function ∆ from S into the unit interval [0, 1] such that (

∑

s:S ∆.s) ≤ 1, that
is such that the total probability over all states s of the individual probabilities
∆.s is no more than one.4 A sub-distribution that sums to one may be called a
distribution (i.e. dropping the “sub-”).

The set of all sub-distributions over S is written S, and as a special case we
write s for the element of S that is one at s and zero elsewhere, i.e. is the point
distribution on s. We say that a distribution is standard if it is s for some s.

Non-demonic—but possibly probabilistic—programs are functions from S
to S, so that program f takes initial state s to the final sub-distribution f.s.

4 In general for function f and argument x we write f.x for the application of f to x,
and the operator associates to the left: thus f.g.x is (f(g))(x).
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Equivalently, the probability that f takes s to s′ is just f.s.s′. If some program
f is such that f.s.s′ is either zero or one for all s, s′, then we say that f itself
is standard ; clearly such f ’s are the representatives of traditional deterministic
programs.

Demonic probabilistic programs are functions from S to subsets rather than
to simple elements of S, that is they are of type S → PS, so that program r can
take initial state s to final sub-distribution ∆′ just when ∆′ ∈ r.s. (In this multi-
valued case we are writing “r”—instead of “f ”—as a mnemonic for “relation”.)
Thus for example the possible probabilities that program r can take initial s to
some final s′ ranges (demonically) between the minimum and the maximum of
∆′.s′ over all ∆′ in r.s.

4.1 Examples of Simple Programs

Let the state space again be Z, and for pGCL program prog (i.e., given syntac-
tically), let [[prog ]] be its relational interpretation as described above. We use n
for the program variable and n for the whole state.

We begin with atomic programs, and then introduce simple compounds.

identity — [[skip]].n = {n}
The “do-nothing” program skip takes any state to itself. Because of
our demonic/probabilistic type for programs, however, the result is
not just n again, nor even the set {n}, but rather is the singleton set
containing just the point distribution on n.

assignment — [[n: = n + 1]].n = {n + 1}
Non-demonic and non-probabilistic assignments deliver singleton sets
of point distributions: singleton sets because there is no demonic
choice; point distributions because there is no (non-trivial) proba-
bilistic choice.

probabilistic choice — [[n: = n + 1 1/3⊕ n: = n + 2]].n
= {∆′}

where ∆′.(n + 1) = 1/3
∆′.(n + 2) = 2/3
∆′.n′ = 0 for other values n′

Non-demonic but probabilistic assignments deliver singleton sets of
non-trivial sub-distributions: again the sets are singleton because
there is no demonic choice; but the single element of the set is a
proper sub-distribution.

demonic choice — [[n: = n + 1 � n: = n + 2]].n
= {n + 1, n + 2}

A purely demonic (and non-probabilistic) binary choice delivers the
sub-distributions contributed by each of its operands.
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demonic probabilistic choice — [[n: = n + 1 1/3⊕1/3 n: = n + 2]].n

= {∆′
1/3, ∆′

2/3}
where ∆′

p.(n + 1) = p
∆′

p.(n + 2) = 1 − p
∆′

p.n
′ = 0 for other values n′

The notation p⊕q, for p + q ≤ 1, abbreviates the demonic choice
between the two probabilistic choices p⊕ and 1−q⊕: it executes the
left branch with probability at least p, the right with probability at
least q and—in any case—it is certain to execute one or the other.

4.2 “Naked” Guarded Commands and Miracles

The pGCL commands in probabilistic action systems are equipped with a guard
that controls whether or not they are enabled in the current state. We build
that in to the relational semantics of pGCL by “erasing” the parts of transitions
that the guard does not enable: if a state does not make the guard true, then its
result set is empty from that state. That is, for predicate gd we define

∆′ ∈ [[gd → prog ]].s =̂ s ∈ [[gd ]] ∧ ∆′ ∈ [[prog ]].s ,

where by [[gd ]] we mean the subset of S denoted by the guard gd.
This is of course the “normal” way of dealing with miracles when considered

relationally: because a miraculous command has no final states at all, every
final state it produces satisfies false–and therefore we imagine that its execution
cannot even be started [41, 33, 40, 18].

The enabling/disabling property of a guard is very convenient when moving
between action systems and CSP [34, 45, 22] —whether probabilistic or not—
since it automatically excludes the traces which the action system cannot pro-
duce.

4.3 Sequential Composition in pGCL

As an action system executes, it carries out one (guarded) command after an-
other; the overall effect is the sequential composition of all the (finitely many)
commands concerned. Given two commands prog1 and prog2, we therefore want
to construct the relational semantics of their composition.

We begin with non-demonic programs f (i.e. with their meanings). If we are
given some sub-distribution ∆ of initial states from which f will repeatedly be
run, the overall effect can be obtained by averaging f ’s output sub-distributions
for each initial state over the known “incoming” sub-distribution ∆ for them:
thus we define

f∗.∆.s′ =̂

(

∑

s:S

∆.s ∗ f.s.s′
)

, (1)
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where we distinguish the f -over-sub-distributions from the original f by writing
f∗ for the former. Note that the original can be recovered, since f.s = f∗.s.

Now to determine the effect of a possibly demonic r on an initial sub-
distribution ∆, we construct the collection of its non-demonic “refinements”
f and then refer to (1) above: that is, we say that “r is refined by f ” just when
f satisfies (∀s:S · r.s 	 f.s), and we write it r 
 f . Then we define

r∗.∆ =̂ {f :S → S | r+ 
 f · f∗.∆} , 5

where again we use (·)∗ to indicate “lifting” a function to act over sub-distributions
rather than individual states, and where the relation r+ is the “down closure” of
r obtained by adding the everywhere-zero sub-distribution to r.s whenever r.s
is empty.

Finally, we describe sequential composition simply by applying the “lifted”
semantics of the second component to every final sub-distribution the first com-
ponent could produce: that is, for initial state s we define

[[prog1; prog2]].s =̂ {∆: [[prog1]].s · [[prog2]]
∗.∆} . 6

5 Traces of a pAS

We now use the sequential composition of Sec. 4.3 to determine the traces of a
pAS. Let its initialisation be command ini and let its events be e1, e2, · · ·. The
alphabet of the action system pAS is the set of all its events (whether or not
they actually can be executed).

We write subsets of the state space in three different ways, as convenient:
as sets of states directly (whether enumerated or given as a comprehension); as
predicates over program variables, denoting sets whose variables’ values satisfy
the predicate; and as sets of events, in which case we will mean the set of states
corresponding to the disjunction of the events’ guards. Note that the empty set
∅, whether of states or of events, corresponds to the predicate false.

When we write events or sequences of events between semantic brackets [[·]],
we mean the relational semantics of the corresponding actions, with their guards,
sequentially composed if appropriate.

In standard CSP, a trace is a finite sequence of events drawn from the alphabet;
and the traces model of a process is the set of all the traces it could carry out [17].
Because a particular trace is included in the trace-semantics of a processes if it can
occur, ourprobabilistic viewwill be thatweare interested in themaximumprobabil-
ity of that occurrence. For example, the sets of traces for the two standard processes

5 This set comprehension is read “vary bound variable f over its type S → S; select
those values satisfying the condition r+ � f ; form set elements from them according
to the expression f∗.∆.”

6 In this comprehension the omitted condition defaults to true; refer Footnote 5 im-
mediately above.
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System A: initially n: = 0 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

System D: initially n: = ±1 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

System P: initially n: = −1 1/2⊕ +1 hic =̂ n ≥ 0 → n: = +1
hoc =̂ n ≤ 0 → n: = −1

All three systems exhibit the same potential traces, i.e. any trace comprising either
all hic’s or all hoc’s; but in System P the associated probabilities can be included by
giving a set of trace-probability pairs

{ (〈〉, 1), (〈hic〉, 1/2), (〈hic, hic〉, 1/2), (〈hic, hic, hic〉, 1/2), · · ·
(〈hoc〉, 1/2), (〈hoc, hoc〉, 1/2), (〈hoc, hoc, hoc〉, 1/2), · · · } ,

where the second element of each pair is the (maximum) probability with which the
first element can occur.

In Systems A and D the “trace-probability” would be just one when a trace can occur,
and zero when it cannot. The standard trace semantics in those cases is obtained by
removing the probability-zero pairs, and then “projecting away” the probability-one
information from those that remain.

Fig. 4. Three action systems: angelic, demonic, probabilistic

hic → STOP � hoc → STOP —external choice
and hic → STOP � hoc → STOP —internal choice

are the same, being just {〈〉, 〈hic〉, 〈hoc〉} in each case and not taking account of
the fact that the second process—with its “demon” � representing the internal
choice—cannot be forced to produce either of the non-empty traces separately.

Accordingly, in our probabilistic view, we will associate probability one with
all three traces, for both processes, with the same caveat about ignoring the
demon (for now).

Action systems for two similar processes A (for angelic) and D (for demonic)
are given in Fig. 4, together with a third system P which chooses probabilistically
between the two events. As we are about to see, it exhibits proper probabilities.

We begin by considering System P. By (informal) inspection, the probability
that hic will occur is just the probability that the initialisation ini establishes
the guard n ≥ 0 of that event. From our relational semantics of Sec. 4 we know
that the initialisation produces the single distribution

∆ini =̂ {−1 �→ 1/2, +1 �→ 1/2} (2)
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which assigns probability 1/2 to the subset {0, 1, · · ·} of Z in which hic is en-
abled.7 We could also write that as the singleton set of guards “{hic}”.

That probability is in fact the expected value of the characteristic function of
the set concerned, taken over the distribution (2) above that the initialisation
produces. However that set is written, whether explicitly or as a predicate or
as a set of events (i.e. as the disjunction of their guards, in the last case), we
use the notation [·] to form the associated characteristic function: thus we would
write [0, 1, · · ·] or [n ≥ 0] or [hic] here, meaning in each case the function over
the integers that takes non-negative arguments to one and negative arguments
to zero.

In general, for the expected value over a sub-distribution ∆ of some random
variable B (itself a function from the state space into the reals), we write

∫

∆

B =̂

(

∑

s:S

∆.s ∗ B.s

)

, (3)

so that the probability 1/2 we calculated above is just
∫

∆ini
[hic] .

We now form a combined notation for all the above operations, that is of
determining the relational semantics of a non-demonic command, applying it to
an initial state, and then taking the expected value of some function: we define

Exp.[[prog ]].B.s =̂
∫

∆′
B given that [[prog ]].s = {∆′} .

As a result, we know that when B is some standard [Q] for predicate Q, the
expression Exp.[[prog ]].[Q].s is the probability that the non-demonic prog will
reach Q from s.8

If we now look at the action associated with hic, we see that its relational
semantics is given by

[[n ≥ 0 → n: = +1]] = {n: Z | n ≥ 0 · {n �→ {+1 }} } ,

the partial function defined only on non-negative arguments which produces the
singleton result set of sub-distributions {+1 } for each one of them. If we ask
“what is the maximum possible expected value of random variable [true] after
executing hic? ” from initial state n—for which we could invent the notation

Exp.[[n ≥ 0 → n: = +1]].[true].n 9 (4)

by incorporating the “maximum” as an overbar— we find it is just the random
variable [hic] itself, since whenever n does not satisfy hic’s guard n ≥ 0 we

7 In the usual terminology of probability theory we would speak of the probabilistic
event {0, 1, · · ·} rather than subset; but we must avoid confusion with the “events”
of CSP.

8 We will deal with the demonic-prog case shortly.
9 We are defining Exp.[[prog ]].B.s =̂ (
∆′: [[prog ]].s · ∫

∆′ B) .
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are taking the maximum over an empty set of non-negative reals, yielding zero.
When n does satisfy hic’s guard, the expression (4) gives one, the probability
assigned by the distribution +1 to the whole state space (of which [true] is the
characteristic function). That is, we find that

[hic] = Exp.[[hic]].[true] , (5)

where we recall that “hic” between semantic brackets refers to the corresponding
action, including its guard.

We can now put our two experiments with hic together: since the initiali-
sation is unguarded, terminating and purely probabilistic, it produces a single
distribution from every initial state and so is unaffected if we use Exp.[[·]] rather
than Exp.[[·]]. Thus we have that the (maximum) probability of the occurrence
of the trace 〈hic〉 in System P can be written

Exp.[[ini ]].[hic].n , that is Exp.[[ini ]].(Exp.[[hic ]].[true]).n , (6)

where on the right we have appealed to (5). But, as we prove later in Fig. 7 of
App. A, the “cascaded” use of expectations at (6) on the right can be simplified
to just

Exp.[[ini ; hic ]].[true].n (7)
because Exp.[[·]] distributes over sequential composition, becoming functional
composition.

From our operational intuition, we believe that the expression (7) will equal
1/2 for any initial n, as will the further extended Exp.[[ini ; hic; hic ]].[true].n,
and so on.

Now to give the “trace semantics” of a probabilistic action system we can
use the above to map every potential trace (finite sequence of events) to the
maximum probability of its occurrence.

Let the pAS be S over a state space S. As before, for a given finite trace
say es = 〈e1, e2, · · · , en〉 of events from S we mean the sequential composition
e1; e2; · · · ; en of the events’ corresponding actions whenever es appears within
semantic brackets [[·]]. Also, we continue to use [·] to form characteristic functions,
and we let ini be the initialisation of S. Then for any predicate Q over the state
space S we define

S.〈〈es〉〉.Q =̂ (�s:S · Exp.[[ini; es]].[Q].s) , (8)

where on the right the terms S, ini, es, Q are to be interpreted within the system
S mentioned on the left. When S is clear from context, however, we omit it and
write just 〈〈es〉〉.Q on the left.

Thus Eqns. (6) and (7)—the maximum probability that trace 〈hic〉 can occur
in P—would be written simply P.〈〈hic〉〉.true. What the notation of (8) has done is
simply to bundle up the choice of action system, the inclusion of the initialisation,
and the maximising over all initial states.10

10 Maximising over initial states is usually unnecessary: since the initialisation rarely
depends on its initial state, the effect of the quantification is merely to replace some
constant function (of the initial s) by the constant itself.
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We can now give the probabilistic trace-semantics of S: it is a function from
finite sequences of the events of S into the real interval [0, 1], giving for each
sequence es the maximum probability of its occurrence. We call the function
pTrS , and define

pTrS .es =̂ S.〈〈es〉〉.true . (9)

Again, we omit the S when it is obvious, so that pTr.es = 〈〈es〉〉.true.

6 Failures

The traces of CSP are sufficient only for describing deterministic behaviour:
when describing (internal) nondeterminism as well, CSP makes more detailed
observations. A failure is a pair comprising a trace and a refusal; a refusal is a
set of events in which the system can “refuse” to engage.

Let es be a trace and E a refusal. The behaviour (es,E) is observed whenever
the process first engages in all the events in es and then refuses to extend the
trace with any event in E.

Systems A, D and P from Fig. 4 have the same standard traces, as we
have already seen; and the first two agree even for probabilistic traces, mapping
each possible trace to probability one and all others to zero. But A and D are
distinguished by their failures, since for example (〈〉, {hic}) is a failure of D but
not of A. Operationally we see this by noting that after initialisation of A the
event hic cannot fail to be enabled; but if the initialisation of D sets n to −1,
then hic will be disabled, and so can be refused.

In the previous section we considered expressions Exp.[[prog ]].[true].s, for trace
semantics; but we know more generally that for standard [Q] (i.e. for predicate Q
not necessarily true), the expression Exp.[[prog ]].[Q].s is the maximum probability
that prog will reach Q from s; and again that maximum is zero whenever the
guard of prog is false, since in that case prog cannot reach anything.

Now the “failure semantics” of an action system should give for each potential
failure (es,E) the maximum probability that it will be observed. Since this is the
maximum probability that the system can engage in es and reach a state not
enabling any event in E, we define

pFail.(es,E) =̂ 〈〈es〉〉.(¬E) , (10)

where ¬E is the complement of E, that is the subset of S in which no event of E
is enabled. Thus, as in standard CSP, we have

pTr.es = pFail.(es, ∅) .

7 Divergences

A divergence of a CSP process is a trace after which the process behaves chaot-
ically. In a pAS that behaviour is deemed to result from a potentially “abort-
ing” command, one which we will model by adding a special element ⊥ to our
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state space, to represent non-termination. Sub-distributions are now taken over
S⊥ = S ∪ {⊥}, with the value they assign to ⊥ itself being the probability that
the command fails to terminate normally.

Sequential composition is handled (in the usual way) by insisting that every
command preserves “having failed to terminate”; that is, in extending our rela-
tional semantics we insist that for all programs prog we have [[prog ]].⊥ = {⊥}.
And we add to our earlier list of relational semantics examples (Sec. 4.1) the
item

abort — [[abort]].n = {⊥}
The diverging program abort takes every state to the special “bot-
tom” state ⊥.

We need not extend our random variables, however, which remain functions
of S alone; instead, we adjust the definition of Exp.[[·]] (from (4) and its Footnote
9), which becomes

Exp.[[prog ]].B.s =̂ (�∆′: [[prog ]].s · ∆′.⊥ +
∫

∆′
B) , (11)

where the
∫

notation continues to denote a summation over proper (i.e. non-⊥)
values of S only, as at (3). This reflects our interest in the traces and failures a
process might do (as opposed to “can be forced to do”): the maximum probability
of any behaviour, after divergence, is one; and that is why we introduce the extra
additive term ∆′.⊥, which assigns a value of one to a command’s reaching ⊥.
(Recall that B itself is not defined for ⊥.)

With this new apparatus, we now define

pDiv.es =̂ 〈〈es〉〉.false ,

giving for any sequence of events es the maximum probability that executing the
corresponding actions can achieve the predicate false–because the only way an
action can “achieve” false is to diverge, and that is precisely the behaviour we
are trying to quantify.

In Fig. 5 we give several examples of potentially diverging probabilistic action
systems, all with alphabet {hic, hoc}. System X1 aborts immediately, and is
equivalent to the CSP process CHAOS ; for example (writing the X1 explicitly)
we have pDivX1

.es = 1 for all traces es, including the empty trace.11

System X2 literally (but informally) translated into CSP appears to be the
process that can execute (and indeed can be forced to execute) any number
of hic’s; but as soon as it does a hoc, it diverges. As in System X1, all traces
have probability one; but we have pDivX2

.〈〉 = 0 whereas we have seen that
pDivX1

.〈〉 = 1. The shortest nonzero-probability divergence for X2 is 〈hoc〉; it
and all its extensions have (maximum) probability one of divergence.

11 Divergence has implications for the failures of a system as well, as we see in Sec. 7
below: any trace or failure extending a divergence has probability at least as great
as the divergence.
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System X1 initially abort hic =̂ false → skip 12

hoc =̂ false → skip

System X2 initially n: = 0 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

System X3 initially n: = ±1 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

System X4 initially n: = −1 1/2⊕ +1 hic =̂ n ≥ 0 → skip
hoc =̂ n ≤ 0 → abort

Fig. 5. Action systems that can diverge

System X3 contains demonic choice in its initialisation, and so the process
decides internally whether to begin with hic or with hoc. If the former, it must
continue with hic’s forever (and cannot diverge); if the latter, it can execute hoc
and then diverge, continuing after that with hic’s, hoc’s or deadlock ad lib.

System X4 is like X3 except that the initial choice —still not accessible
externally—is at least predictable to the extent that it is made with the proba-
bility shown; after that, it behaves like X3. We give the complete traces, failures
and divergences of X4 in App. B.

8 Healthiness Conditions for Probabilistic Action
Systems

The failures and divergences of standard CSP satisfy the conditions listed in
Fig. 6. We discuss the probabilistic version for each one in turn; they all have
straightforward proofs in the program logic of pGCL, and as an example of that
the proof of pC3 below is given in App. A.1. Throughout, by “probability” we
mean “maximum probability”.

pC0 — pFail.(〈〉, ∅) = 1
It is always possible for a system to start, since its initialisation is
unguarded.

pC1 — pFail.(es ++ es′,E) ≤ pFail.(es, ∅)
The probability of continuing a trace is no more than the probability
of achieving the trace itself.

12 Events with guard false are in the alphabet of the system but can never be explicitly
enabled.
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C0 (〈〉, ∅) ∈ F
C1 (es ++ es′, E) ∈ F ⇒ (es, ∅) ∈ F 13

C2 (es, E) ∈ F ∧ E′ ⊆ E ⇒ (es, E′) ∈ F
C3 (es, E) ∈ F ⇒ (es ++ 〈e〉, ∅) ∈ F ∨ (es, E ∪ {e}) ∈ F
C4 es ∈ D ⇒ es ++ es′ ∈ D
C5 es ∈ D ⇒ (es, E) ∈ F

For any set of failures F and divergences D of a standard CSP process, the above
conditions hold for any event e, traces es, es′ and sets of events E, E′ over the alphabet
of the process.

Fig. 6. Healthiness conditions for standard CSP over a finite alphabet

pC2 — pFail.(es,E) ≥ pFail.(es,E ∪ E′)
The probability of refusing a set of events is no less than the proba-
bility of refusing a superset of it.

pC3 — pFail.(es,E) ≤ pFail.(es ++ 〈e〉, ∅)
+ pFail.(es,E ∪ {e})

If an event cannot be refused, then it must be accepted.

pC4 — pDiv.es ≤ pDiv.(es ++ es′)
Any event is possible after divergence.

pC5 — pDiv.es ≤ pFail.(es,E)
Any refusal is possible after divergence.

Recall that pC3 is proved in App. A.1.

9 What Now?

In fact almost everything still remains to be done.

– The refinement order for pCSP–when one process can be said to be imple-
mented by another—is suggested by the refinement order for pGCL that we
describe briefly in App. A, provided care is taken with the guards of the gen-
erating pAS. This has been shown already by a number of authors for the
standard case [22, 11, 12, 45, 4], and it should be checked for the probabilistic
case.

13 We use ++ for concatenation of traces.
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– Because there is a pGCL construction [36, 31] taking transformer semantics
(as in App. A) back to relational semantics (as in Sec. 4), we should expect
that there is a canonical mapping from pCSP back to a pAS in what we
would consider a “normal form”, using the technique earlier employed in the
standard case [22, 11] where the normal-form state space is the set of CSP -
style refusals over the alphabet of the process. This induces an equivalence
relation on the pAS ’s directly, and it should be verified that it is intuitively
reasonable.

– The combining operations between pAS, especially their parallel composition
but also prefixing, internal and external choice, probabilistic choice, hiding. . .
are suggested by the corresponding operations defined for standard action
systems [4, 5]: it must be checked that they respect the normal-form equiva-
lence. But parallel composition raises interesting problems, since it must in
turn be based on the parallel composition of commands (e.g. [2]), which op-
eration requires great care when those commands include both probabilistic
and demonic choice. (In fact parallel composition of initialisation commands
is necessary for external choice also.)

– Most important of all—and subsuming much of the above—is that once
the pAS operations have been defined, there should be pCSP operations
corresponding to them that are expressed only in terms of our semantic
observations pFail and pDiv. This would be compositionality.

9.1 Compositionality

Unfortunately, it has been known for some time that compositionality is not pos-
sible in terms of observations like pFail and pDiv alone [26]; indeed, we know that
“probability-of-attaining-a-postcondition” -style semantics is not compositional
even for sequential demonic/probabilistic programs [29].

The expectation-transformer semantics of pGCL however uses a generalised
form of postcondition in which states are associated with non-negative reals (the
states’ “value”) rather than simply with a Boolean (whether the state is “ac-
ceptable” or not); and pGCL semantics is compositional for sequential programs,
even when demonic- and probabilistic choice appear together [36, 35, 31].

The corresponding extension which that suggests for pCSP is that a refusal
should be a function from event to R

≥ (the “cost” of refusing the event?) rather
than simply a function from event to Boolean (whether it can or cannot be
refused). A failure pFail.(es,E) would then be the (maximum possible) expected
value of the real-valued function E after observations of the trace es.

Unfortunately (again), it has already been shown that this does not offer an
easy road to compositionality [21, 15]: and so there probably will be even further
extensions required, for example a form of “may/must” testing but with respect to
testing trees (rather than the simpler “broom-like” shapes offered by failures [42]),
together with delivering quantitive rewards rather than only “yes” or “no” [9, 21].

Compositionality of course is the key to a successful abstraction. We take our
favourite example—and it is probabilistic—from genetics.
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Knowing parents’ eye colour, on its own, cannot be used to predict distribu-
tion of eye colour among their children: some brown-eyed parents are virtually
certain to produce brown-eyed children, i.e. with probability one; other brown-
eyed parents may produce blue-eyed children with a predictable probability of
one in four. Since the distribution of children’s eye colour cannot be predicted
from their parents’ eye colour alone, the eye-colour abstraction (of a person) is
not compositional for the binary operation “having children” between people: it
is too severe. This is in effect where we find ourselves with pFail and pDiv.

At the other extreme, we have the full genetic profile of both parents; though
still an abstraction, since it ignores phenotype, it may be sufficient in principle
to predict the distribution of genotype in their children: as such it would be
compositional. But it is far too costly a method if eye colour is all that interests
us. This is where we might be if we worked with pAS directly, or (equivalently)
probabilistic labelled transition systems or even probabilistic nondeterministic
automata.

Thus “eye colour” alone is economical but not reliable; and “full genetic
profile” is reliable but not economical. The right level of abstraction—the crucial
breakthrough of Mendel—came from understanding the role of dominant and
recessive characteristics (alleles), and led to a method of analysis which is both
accurate and cheap to perform. Although very difficult to find, once discovered
the abstraction “eye colour together with its dominant/recessive characteristic”
turned out to be economical, reliable and easy to understand. Most importantly,
it is compositional.

This is what we seek: the “alleles” for probabilistic, nondeterministic concur-
rent systems.

10 Conclusion

We are aware that many CSP -researchers—not to mention the even more numer-
ous membership of the CCS -based community—have “thought long and hard”
about how to introduce probability and nondeterminism together into a concur-
rent setting.

Clearly that has not stopped us from trying again, even using a very sim-
ple approach. In the ten years since our earlier encounter with “ pCSP ” [37],
we have learned a great deal about the subtleties of probabilistic vs. demonic
choice from having worked extensively on probabilistic semantics [36, 31]—both
for sequential programs (and abstraction/nondeterminism), and for two-player
games with probabilistic, demonic and angelic choice treated together [27, 28].

Treating concurrency in the “behavioural” style seems to be an inescapable
point of view for anyone who has ever seriously been exposed to “the CSP
effect” [43]. Its astonishing conceptual power and beauty—that it can express
such subtle concepts with such simple means—is undiminished, even twenty-five
years later. Nothing less elegant can ever suffice.
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A Probabilistic Program Logic for pAS

The sequential probabilistic/demonic relational semantics for pAS that we gave
in Sec. 4 is based on the work of Jifeng He and his colleagues [13]—however
we have simplified the presentation here by omitting the closure conditions they
defined for their relations and, for reasons we explained in Sec. 5, we have taken
an angelic (maximum) rather than their demonic (minimum) view.

Noting that our explicitly given random variables are all standard (i.e. they
are characteristic functions of some enabling predicate of an action), we restrict
all the random variables we use to the real interval [0, 1] throughout. This is
possible due to the probabilistic feasibility [31–Def. 1.6.2] that is the quantitative
version of Dijkstra’s Law of the Excluded Miracle [10–Property 1 p. 18]. In our
case, it says that the random variables we generate via Exp.[[·]] are pointwise
dominated by the characteristic functions we started with.

Then we define the dual

Exp.[[prog ]].B.s = 1 − Exp.[[prog ]].(1 − B).s , (12)

made possible by the fact that, by the remarks above, we can assume B ≤ 1. The
1-bounded demonic behaviour defined by Exp.[[·]], including miracle-producing
guards, is isomorphic to our Lamington model [38], obtained by extending our
original demonic/probabilistic but miracle-free model [36] with a miraculous
command magic satisfying Exp.[[magic]].B.s = 1 for all B and s.

From the Lamington semantics for pGCL we can induce a sequential Exp.[[·]]-
style semantics for the commands of our pAS, as in Fig. 7, and we note crucially
that it includes the sequential-composition property appealed to at (6) in Sec. 5
above. That is, it need not be proved from the relational semantics directly—
duality has given it to us for free.
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Exp.[[abort]].B =̂ 1

Exp.[[skip]].B =̂ B

Exp.[[n: = expr]].B =̂ B
expr
n

14

Exp.[[G → prog ]].B =̂ [G] ∗ Exp.[[prog ]].B

Exp.[[prog ; prog ′]].B =̂ Exp.[[prog ]].(Exp.[[prog ′]].B)

Exp.[[prog � prog ′]].B =̂ Exp.[[prog]].B max Exp.[[prog ′]].B

Exp.[[prog p⊕ prog ′]].B =̂ p ∗ Exp.[[prog ]].B + (1 − p) ∗ Exp.[[prog ′]].B .

Fig. 7. Structurally inductive definition of Exp.[[·]] for pAS

A.1 Super-Disjunctivity for Exp.[[·]]
A second spinoff of duality relates to the algebra of Exp.[[·]].

The Lamington transformers, with their magic, do not satisfy the sublin-
earity property of our original demonic/probabilistic transformers—for example,
magic itself is clearly not scaling. Nevertheless they do satisfy sub-conjunctivity,
that is that for all programs prog and [0, 1]-valued random variables B,B′ we
have

Exp.[[prog ]].B & Exp.[[prog ]].B′ ≤ Exp.[[prog ]].(B & B′) , (13)

where for 0 ≤ x, y ≤ 1 we define x & y =̂ (x + y − 1) max 0. From the duality
(12) we then have immediately that

Exp.[[prog ]].B [] Exp.[[prog ]].B′ ≥ Exp.[[prog ]].(B [] B′) , (14)

where the duality has induced a definition x[]y =̂ (x+y)min1 of a “probabilistic
disjunction”. We call this super-disjunctivity.

This important inequality—which is fully general, applying even when prog
is both probabilistic and angelic15—can be used for example to prove the health-
iness condition pC3 for probabilistic action systems that we gave in Sec. 8. Thus
we have for trace es, event e and set of events E the calculation

pFail.(es ++ 〈e〉, ∅) + pFail.(es,E ∪ {e})
≥ pFail.(es ++ 〈e〉, ∅) [] pFail.(es,E ∪ {e}) arithmetic

= 〈〈es ++ 〈e〉〉〉.(¬∅) [] 〈〈es〉〉.(¬(E ∪ {e})) definition pFail at (10)

= 〈〈es〉〉.{e} [] 〈〈es〉〉.(¬(E ∪ {e})) sequential composition

≥ 〈〈es〉〉.( {e} [] (¬E ∪ {e}) ) definition 〈〈es〉〉. at (8); Property (14)

= 〈〈es〉〉.(¬(E − {e})) set algebra

14 By B
expr
n we mean syntactic replacement of n by expr in B, respecting bound vari-

ables.
15 Neither sub-conjunctivity nor super-disjunctivity applies however if the probabilistic

programs are both demonic and angelic.

= pFail.(es, E − {e}) definition pFail

≥ pFail.(es, E) . Condition pC2
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B Complete Traces etc. for System X4 of Fig. 5

Trace Associated maximum probability

〈〉 1 Empty trace always gives 1.

〈hic〉 1/2 Initialisation sets n to +1.
〈hoc〉 1/2 Initialisation sets n to −1.

〈hic, hic〉 1/2 Variable n remains +1 . . .
〈hic, hoc〉 0 . . . so that hoc is never enabled;
〈hoc, hic〉 1/2 but divergence after hoc . . .
〈hoc, hoc〉 1/2 . . . allows anything.

Any non-empty trace comprising only hic’s : Probability 1/2.

Any trace beginning hic but containing a hoc : Probability 0.

Any trace beginning hoc : Probability 1/2.

Fig. 8. Complete traces for System X4 of Fig. 5

Failure Associated maximum probability

(〈〉, {}) 1 Empty offer is always refused.
(〈〉, {hoc}) 1/2 Initialisation sets n to +1.
(〈〉, {hic}) 1/2 Initialisation sets n to −1.
(〈〉, {hic, hoc}) 0 Initialisation does not diverge or deadlock.

(〈hic〉, {}) 1/2 Empty offer refused. . . if we get this far.
(〈hic〉, {hic}) 0 Event hic must follow hic . . .
(〈hic〉, {hoc}) 1/2 . . . but hoc cannot.
(〈hic〉, {hic, hoc}) 0 Action hic does not diverge or deadlock.

(〈hoc〉, E) 1/2 Anything can be refused after divergence,
including the entire alphabet.

Any failure whose non-empty trace comprises only hic’s : As for trace 〈hic 〉.
Any failure whose trace begins hic but contains a hoc : Probability 0.

Any failure whose trace begins hoc, no matter what refusal : Probability 1/2.

Fig. 9. Complete failures for System X4 of Fig. 5

Divergence Associated maximum probability

Any trace beginning hoc Probability 1/2.

Any other trace Probability 0.

Fig. 10. Complete divergences for System X4 of Fig. 5
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