
A Symbolic Model Checker for tccp Programs�

M. Alpuente1, M. Falaschi2, and A. Villanueva1

1 DSIC, Technical University of Valencia,
Camino de Vera s/n, E-46022 Valencia, Spain

2 DIMI, University of Udine,
Via delle Scienze 206, I-33100 Udine, Italy

Abstract. In this paper, we develop a symbolic representation for timed
concurrent constraint (tccp) programs, which can be used for defining
a lightweight model–checking algorithm for reactive systems. Our ap-
proach is based on using streams to extend Difference Decision Dia-
grams (DDDs) which generalize the classical Binary Decision Diagrams
(BDDs) with constraints. We use streams to model the values of system
variables along the time, as occurs in many other (declarative) languages.
Then, we define a symbolic (finite states) model checking algorithm for
tccp which mitigates the state explosion problem that is common to more
conventional model checking approaches. We show how the symbolic ap-
proach to model checking for tccp improves previous approaches based
on the classical Linear Time Logic (LTL) model checking algorithm.

Keywords: Lightweight formal methods, Model Checking, Timed Con-
current Constraint Programs, DDDs.

1 Introduction

In the last decades, formal verification of industrial applications has become a
hot topic of research. As the complexity of software systems increases, lightweight
automatic verification tools which are able to guarantee, at little cost, the correct
behavior of such systems are dramatically lacking. Model checking is a fully
automatic formal verification technique which is able to demonstrate certain
properties formalized as logical formulas which are automatically checked on a
model of the system; otherwise, it provides a counterexample which helps the
programmer to debug the wrong code. However, its potential for push–button
verification is not easily realizable due to the well-known state-space explosion
problem. Recent advances in model checking deal with huge state-spaces by using
symbolic manipulation algorithms inside model checkers [7].

� This work has been partially supported by MCYT under grants TIC2001-2705-C03-
01, HU2003-0003, by Generalitat Valenciana under grants GR03/025, GV04/389
and by ICT for EU-India Cross Cultural Dissemination Project under grant
ALA/95/23/2003/077-054.

N. Guelfi (Ed.): RISE 2004, LNCS 3475, pp. 45–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 M. Alpuente, M. Falaschi, and A. Villanueva

The concurrent constraint paradigm (cc) was presented in [11] to model con-
current systems. A global store consisting of a set of constraints contains the in-
formation gathered during the computation. Constraints are dynamically added
to the store which can also be consulted. The programming model was extended
in [3] over a discrete notion of time in order to deal with reactive systems, that is,
systems which continuously interact with their environment without producing
a final result and execute infinitely along the time. The use of constraints, the
inherent concurrency and the notion of time which lay in tccp permit to program
reactive systems in a very natural way. Reactive systems are usually modeled as
concurrent systems which are more difficult to be manually debugged, simulated
or verified than sequential systems. In previous works ([8, 9]) we have defined an
explicit model checking algorithm for tccp programs. Such method automatically
constructs a model of the system which is similar to a Kripke Structure.

The main purpose of this work is to improve the exhaustive model checking
algorithm defined in the last years to verify tccp programs. Starting from the
graph representation of [9], in this paper we formalize a symbolic representation
of reactive systems written in tccp. Such representation allows us to formulate
a symbolic model checking algorithm which allows us to verify more complex
reactive systems. To the best of our knowledge, this work defines the first sym-
bolic model checking algorithm for tccp. In order to ensure the termination of
our approach, we refer to finite state systems in this work. It would be possible
to remove this assumption and consider infinite state systems by adapting to our
context standard abstract interpretation techniques [2], or by requiring the user
to indicate a finite time interval for limiting the duration of tccp computations.

The paper is organized as follows. In Section 2 we recall the tccp program-
ming language and the tccp Structure which can be derived from the program
specification and which is the reference point of this work. In Section 3 we in-
troduce the verification method that we propose, and in Section 3.2 we define
the algorithms that allow us to automatize the model construction process. In
Section 5 we develop an example of property verification. Finally, Section 6 con-
cludes. More details and missing definitions can be found in [1].

2 The tccp Framework

The cc paradigm has some nice features which can be exploited to improve the
difficult process of verifying software: the declarative nature of the language ease
the programming task of the user, and the use of constraints naturally reduces
the state space of the specified system.

The Timed Concurrent Constraint Language (tccp) was developed in [3] by F.
de Boer et al. as a framework for modeling reactive and real-time systems. It was
defined by extending the concurrent computational model of the cc paradigm
[11] with a notion of discrete time.

Basically, a cc program describes a system of agents that can add (tell)
information into a store as well as check (ask) whether a constraint is entailed
by such global store. The basic agents defined in tccp are those inherited from cc

A Symbolic Model Checker for tccp Programs 47

plus a new conditional agent described below. Moreover, a discrete global clock
is provided. Computation evolves in steps of one time unit by adding or asking
(entailment test) some information to the store. It is assumed that ask and tell
actions take one time unit, and the parallel operator is interpreted in terms of
maximal parallelism. Moreover, it is assumed that constraint entailment tests
take a constant time independently of the size of the store1.

Let us first recall the notion of constraint system which underlies the tccp
programming language2. A simple constraint system can be defined as a set D of
tokens (or primitive constraints) together with an entailment relation �⊆ 2D×D.
Concurrent constraint languages, actually use a notion of cylindric constraint
system, which consists of a simple constraint system plus an existential quan-
tification operator which is monotonic, conservative and supports renaming.
This additional operator allows one to model local variables in a given agent.
The formal definition of the notion of cylindric constraint system can be found
in [3].

In this work, we consider a specific constraint system which allows us to verify
a class of software systems. In particular, we consider a constraint system with
two kind of tokens: the first one allows us to handle arithmetical constraints
whereas the other constraints are used for representing streams. In tccp, streams
are modeled as lists of terms. These lists represent the value of a given system
variable along the time. Intuitively, in the current time instant, the head of the
list represents the value of a variable and the tail of the list models the future.
The entailment relation for lists is specified by Clark’s Equality Theory. For
example, following Prolog notation for lists, [X|Z]=[a|Y] entails X=a and Z=Y .

We use V to denote the set of variables ranging over R (or Z), and LV is
the set of lists of such variables. From now, we will use D ∈ {R, Z} to denote
arbitrarily one of the two domains. Roughly speaking, we define the set of tokens
of our constraint system as containing the set of difference constraints of the form
X − Y ≤ c and X − Y < c, as well as the set of stream constraints of the form
V = [], V = [X|W] and V = [c|W], where X and Y belong to V, V and W are
in LV, and the constant c belongs to D.

We define the set AP of atomic propositions as the set of tokens of the
(cylindric) constraint system above. In the rest of the paper, we identify the
notion of (finite) constraint with atomic propositions.

Let us now recall the syntax of tccp, defined in [3] as follows3:

Definition 1 (tccp Language). Let C be a (cylindric) constraint system. The
syntax of agents of the language is given by the following grammar:

A ::= stop | tell(c) |
∑n

i=1 ask(ci) → Ai | now c then A else A | A || A | ∃xA | p(x)

1 In practice, some syntactic restrictions are imposed in order to ensure that these
hypotheses are reasonable (see [3] for details).

2 A formal definition of the constraint system can be found in [1].
3 The operational and denotational semantics of the language can be found in [3].

48 M. Alpuente, M. Falaschi, and A. Villanueva

where c, ci are finite constraints of C. A tccp process P is an object of the form
D.A, where D is a set of procedure declarations of the form p(x) :−A, and A is
an agent.

The stop agent terminates the execution whereas the tell(c) agent adds the con-
straint c to the store. Nondeterminism is modeled by the choice agent (written∑n

i=1 ask(ci) → Ai) that executes nondeterministically one of the choices whose
guard is satisfied by the store. The agent A || A represents the concurrent com-
ponent of the language, and ∃x A is the existential quantification, that makes
the variable x local to the agent A. The agent for the procedure call is p(x).

Finally, the now c then A else B agent (called conditional agent) is the new
agent (w.r.t. cc) which allows us to describe notions such as timeout or preemp-
tion. This agent executes A if the store entails c, otherwise it executes B.

2.1 The tccp Structure

In [9], we provided a model for tccp programs which essentially consists of a
graph structure. The main difference w.r.t. a Kripke structure is in the defini-
tion of the states. A state in a Kripke Structure consists of a valuation of the
system variables, whereas in a tccp Structure, states are represented by (con-
junctions of) constraints which represent a set of possible valuations of systems
variables. In other works, a state of a tccp Structure represents a set of states
of a Kripke Structure. In [9], the interested reader can find a formal definition
of tccp Structures and a method to automatically build it from a given tccp
program.

2.2 The Scheduler Example

In Figure 1 we show an example of tccp program which consists of a predicate
with three output variables. We use streams to simulate the values of the system
variables along the time. Intuitively, the program gets the value of variables D1,
T1 and E1 by calling the process get constraints. These variables represent the
duration of three different tasks of the process of building a house. In parallel,
an ask agent simply checks if the values of the variables are isntanciated to
integer numbers and, in that case, some constraints are added to the global
store. Finally, a recursive call to the building process is made which allows us to
recalculate the planning schedule.

The tccp Structure associated with this code is shown in Figure 2. The black
circle indicates the initial state of the graph. We have simplified the structure by

build([PD|PD],[PT|PT],[PE|PE]) ::=
∃ D1,T1,E1 (get constraints(D1,T1,E1) ||
ask(atom(D1),atom(T1),atom(E1)) → (tell(PD+D1 =< PT) ||

tell(PT+T1 =< PE) ||tell(PE+E1 =< PA)) || build(PD ,PT ,PE)).

Fig. 1. Example of a tccp program

A Symbolic Model Checker for tccp Programs 49

lbuild

lget

lask

E1
T1 D1

lt3

lbuild

lt1 lt2
lask

lget

E2D2 T2

lask

PD+D1=<PT

PT+T1=<PE

PE+E1=<PA

a1

Fig. 2. tccp Structure of build

showing, in each state, only the new information added to the store. Informally,
labels are used to identify the point of execution of the program. Each occurrence
of every agent of a program is labelled, thus the set of labels in a given state
represents the set of agents that must run in such execution point (see [9]).

The most important point of this example is the fact that we have added to
the store only constraints of the form V1+C=<V2 which can also be written as
V1-V2≤C being C an integer or real constant. This kind of constraints appears in
applications where, for example, we compare two clocks of a system to control
the timing between tasks, or in scheduling applications such as this example. In
the following sections, we show how we can symbolically represent this kind of
constraints in a similar way as Binary Decision Diagrams (BDDs, [5]) do in the
basic symbolic model checking approach.

3 Symbolic Model Checking

The idea of symbolic model checking is to represent the graph structure (the
model) as a boolean formula, and then transform it into the efficient structure of
BDD [5]. In our approach, we aim to represent the tccp Structure as a formula
with difference constraints and logical streams, and then transform it into a
suitable extension of BDDs.

In [9], we already developed a preliminary model checker for tccp which uses
constraints to achieve a compact representation of the system. Unfortunately,
the expected state-explosion problem shows up when we combine the model
with the property that we want to verify.

50 M. Alpuente, M. Falaschi, and A. Villanueva

By considering the constraint system described in Section 2 for the tccp
language, the tccp Structure which can be automatically obtained by following
[9] only contains difference and stream constraints. Thus, in this work, our main
idea is to represent that tccp Structure by means of a new symbolic structure
(called DDD+LSs). Then, we extend to the new structure the existing efficient
algorithms for manipulating DDDs [10] in order to verify tccp programs.

3.1 tccp Structures as Logic Formulas

A tccp structure can be translated into a formula of the logic underlying our
constraint system similarly as it is done in the classical symbolic approach. The
key idea is both to encode states by means of a logic formulae, and to represent
the transition relation of the graph (i.e., the arcs of the graph) also with a logic
formula which is defined from the labels of the nodes. Once we have the formula,
we can construct a symbolic BDD-like structure corresponding to that formula,
which represents an encoding of the system.

Let us explain how to obtain the formula by using the graph example shown
in Figure 2. First, we can encode each arc as a conjunction of constraints. For
example, the formula

lget ∧ lask ∧ T1 ∧ D1 ∧ E1 ∧ lt1′ ∧ lt2′ ∧ lbuild′ ∧ lt′ (1)

represents the arc labelled with a1. In the following, we call arc-formula the logic
formula representing an arc of the tccp structure. Note that we have used primed
versions of agent labels to express their value in the following time instant.

Each arc of the graph corresponds to an element in the transition relation R.
Then it is easy to see that the R relation can be represented by a disjunction
of arc-formulas. The resulting formula is the input for the next task, where we
symbolically represent it by means of the new structure (similar to BDDs). We
define the algorithms that automatically construct such model from the formula.

3.2 The Symbolic Structure

In order to correctly represent tccp structures, we cannot directly use simple
boolean structures such as BDDs, but the more sophisticated Difference Decision
Diagrams (DDDs, [10]). The main reason for this is that nodes in DDDs may
contain constraints (as states of the tccp structure) which can encode some
implicit information whereas nodes in BDDs can contain only boolean variables.

DDDs are an extension of the BDDs to symbolically represent difference
constraint expressions. Difference constraint expressions are formulas of a logic
extended with difference constraints. Difference constraints are inequalities of
the form x − y ≤ c where x and y are integer or real-valued variables, and c is
a constant. A difference constraint expression consists of difference constraints
combined with boolean connectives.

DDDs and BDDs share some common features. Both BDDs and DDDs can
be ordered and reduced, and the algorithms to handle them are quite similar.
A drawback of DDDs is that maintaining them as a canonical data structure is

A Symbolic Model Checker for tccp Programs 51

more expensive than for BDDs. Actually, if we reduce a DDD following the ideas
of BDDs, then we do not obtain a canonical representation for the considered
difference constraint expression, as opposed to the case of BDDs. However, it is
still possible to obtain a semi-canonical4 structure which can be used to decide
satisfiability, validity, falsifiability and unsatisfiability of expressions.

Even though we can use DDDs to represent difference constraints, we need to
model also constraints over streams (modeled as logical lists in tccp). Therefore,
we need to extend the expressivity of DDDs and consistently redefine the algo-
rithms which automatically construct the DDD Structure from a given formula.

Extending Difference Decision Diagrams with Logical Streams. Sim-
ilarly to BDDs, Difference Decision Diagrams + Logical Streams (DDD+LSs)
are directed acyclic graphs designed to handle the following logic:

φ ::= x − y ≤ c | ¬φ | φ1 ∧ φ2 | ∃x.φ | X = [x|Y] | X = [c|Y] | X = []

where the constant c belongs to D, and X,Y ∈ V denote variables. The grammar
is extended as usually with the derived operators x − y < c, φ1 ∨ φ2 and ∀x.φ.
Note that this logic is similar to the constraint system considered in this work.
For the interested reader, a formal description of DDD+LSs is given in [1].

The key idea of this construction is that a node of a DDD+LS structure
represents an expression which can be either a difference constraint or a stream
constraint. Moreover, two arcs go out from each non-terminal node modeling
the cases when the constraint represented by the node is satisfied or not. In
Figure 3 (a), we show a DDD+LS structure representing the following formula.

PD − PT =< 4 ∧ PT − PE =< 7 ∧ P = [PT | PT] (2)

In order to obtain an ordered graph structure which considers the new at-
tributes of DDD+LS, we extend in the natural way the standard total order
on the vertices of the graph defined in [10]. Intuitively, nodes containing dif-
ference expressions will appear in the graph structure before nodes containing
stream expressions. The resulting formal definition of Ordered DDD+LS (called
ODDD+LS in short) can be found in [1].

Following [10], we can consider semi-canonical structures to verify some prop-
erties. To get them, we apply some local and path reductions for ODDD+LSs,
which are convenient extensions of the reductions defined for Ordered DDDs.

Roughly speaking, we first apply the local reduction which replaces con-
straints of the form x < y by x ≤ y − 1. Then, nodes which can be consid-
ered identical are eliminated, thus each node of the resulting Locally Reduced
DDD+LS (LRDDD+LS) is different from the others.

The next step towards a suitable semi-canonical representation of DDD+LSs
is the formulation of path reduction. The LRDDD+LS structure which results

4 A DDD is semi-canonical if (i) an expression φ is represented by 1 iff φ is valid, and
(ii) an expression φ is represented by 0 iff φ is unsatisfiable.

52 M. Alpuente, M. Falaschi, and A. Villanueva

1 0

P=[PT|PT_]

PD−PT=<4

PT−PE=<7

(a)

PT−PE=<7

P=[PT|PT_]

PD−PT=<4

PT−PE=<9

01

(b)

Fig. 3. Example: DDD+LS from the formula in (2)

from a path reduction step is called PRDDD+LS. Essentially, we can identify
redundant arcs regarding difference constraint expressions by checking how ex-
pressions divide the domain. Each arc splits the domain into two disjoint subsets.
If one of these subsets is empty, then we know that the arc is redundant.

In Figure 3 (b) we show a DDD+LS structure representing the formula in (2),
which has a redundant node (the second one from the top). It is redundant since
the part of the domain for which the constraint is not satisfied is empty. Thus
we could eliminate it obtaining the DDD+LS shown in Figure 3 (a).

Theorem 1 below allows us to check properties in the PRDDD+LS in a safe
way. We know that the expression represented by the node u is valid if and only
if u = 1. If u = 0, then the expression is unsatisfiable. If u is a non terminal
vertex, then we know that the expression is both satisfiable and falsifiable. The
proof of this result can be found in [1].

Theorem 1 (semi-canonicity). In a PRDDD+LS, the terminal vertex 1 is
the only representation of valid expressions, and the terminal vertex 0 is the
only representation of unsatisfiable expressions.

4 Construction of DDD+LSs

In the present section, we provide the algorithms which automatically construct
a LRDDD+LS structure from a given formula. From now, we assume that we are
always considering LRDDD+LS. Vertices and arcs of the DDD+LS are stored
in a graph data structure simply called Graph. Let G be a Graph. Initially, G

A Symbolic Model Checker for tccp Programs 53

vertex MkD(G: graph, x ∈ V, y ∈ V, o: operator, c ∈ D, h: vertex, l: vertex)
if D = Z ∧ o =′<′ then c := c − 1; o :=′≤′

if member(G, (x, y, o, c, ⊥, ⊥, ⊥, h, l)) then
return lookup(G, (x, y, o, c, ⊥, ⊥, ⊥, h, l))

else if l = h then return l
else if (x, y) = var(l) ∧ h = high(l) then return l

else return insert(G, (x, y, o, c, ⊥, ⊥, ⊥, h, l))

vertex MkL(G: graph, x ∈ LV, y ∈ V, z ∈ LV, o: operator, h: vertex, l: vertex)
if member(G, (⊥, ⊥, list, ⊥, x, y, z, h, l)) then

return lookup(G, (⊥, ⊥, list, ⊥, x, y, z, h, l))
else if l = h then return l

else if (x, z) = var(l) ∧ h = high(l) then return l
else return insert(G, (⊥, ⊥, list, ⊥, x, y, z, h, l))

Fig. 4. Algorithms MkD and MkL that create vertices

contains only the two terminal vertices 0 and 1. The set of arcs of G are implicitly
stored via the attributes of its vertices.

Let us introduce some functions which allow us to access the information or
modify the structure. First, the function insert(G, a) creates a new vertex v in
G with attribute a, and returns v. The function member(G, a) returns true if
there exists a vertex in graph G with attribute a. Finally, lookup(G, a) returns
the vertex in G with attribute a.

In the following, we extend the algorithms defined in [10] for DDDs, to con-
struct and handle the DDD+LS structures. We introduce some notation: var(n)
represents the variables of the constraint, and high(n) (low(n)) represents the
left-successor (right-successor) of node n.

In Figure 4, the algorithm MkD for difference constraints is given as a suit-
able extension of the algorithm presented in [10]. Also the algorithm MkL is pre-
sented which builds the vertex representing the stream expression x=[y|z] → h, l.

The next step for the construction of the DDD+LS structure is to define
the algorithms which combine difference and stream expressions with boolean
operators. The idea is to recursively apply a specific operator to all the vertices
in the DDD+LS Structure. In [5], this procedure is called Apply. The same idea
can be used for our DDD+LS structure.

We have called AppLS the corresponding algorithm for DDD+LSs. We show
in Figure 5 this algorithm which follows closely the design of Apply with some
suitable adjustment to include the handling of the list expressions. In the pseu-
docode, ’Connective’ denotes a boolean connective of the logic, whereas eval is
a function which takes the two terminal vertices and a boolean connective as
input and returns the truth value depending on the boolean connective. Addi-
tional notation is used in this algorithm: op(n) tells us which kind of constraint
the node represents, whereas bound(n) states which kind of relation there exists
between variables of the constraint. Moreover, head, tail, and left represent the
different components of a list constraint.

54 M. Alpuente, M. Falaschi, and A. Villanueva

Vertex AppLS(G: graph c: Connective, u: Vertex, v: Vertex)
r: Vertex
if u, v ∈{0,1} then return eval(c, u, v)
else if member(G, (c, u, v)) then return lookup(G, (c, u, v))

else if var(u) < var(v) then
if op(u)=list then r←MkL(left(u), head(u), tail(u),AppLS(c, high(u), v),

AppLS(c, low(u), v))
else r←MkD(var(u), bnd(u),AppLS(c, high(u), v), AppLS(c, low(u), v))
return r

else if var(u)=var(v) then
if bnd(u)<bnd(v) ∧ op(u)=list then r←MkL(left(u), head(u), tail(u),

AppLS(c, high(u), high(v)),AppLS(c, low(u), v))
else if bnd(u)<bnd(v) ∧ op(u) �= list then

r←MkD(var(u), bnd(u),AppLS(c, high(u), high(v)),AppLS(c, low(u), v))
else if bnd(u)=bnd(v) ∧op(u)=list then r←MkL(left(u), head(u), tail(u),

AppLS(c, high(u), high(v)), AppLS(c, low(u), low(v)))
else if bnd(u)=bnd(v) ∧op(u) �= list then r←MkD(var(u), bnd(u),

AppLS(c, high(u), high(v)), AppLS(c, low(u), low(v)))
else if bnd(u)>bnd(v) ∧op(v)=list then r←MkL(left(v), head(v), tail(v),

AppLS(c, high(u), high(v)), AppLS(c, u, low(v)))
else if bnd(u)>bnd(v) ∧ op(v) �= list then

r←MkD(var(u), bnd(u),AppLS(c, high(u), high(v)),AppLS(c, u, low(v)))
else if var(u) > var(v) then

if op(u)=list then r←MkL(left(v), head(v), tail(v),
AppLS(c, u, high(v)),AppLS(c, u, high(v)))

else r←MkD(var(v), bnd(v),AppLS(c, u, high(v)), AppLS(c, u, high(v)))

Fig. 5. Algorithm AppLS

5 Verification

In this section, we show how the symbolic structure can be used to formalize
a symbolic model checking method for tccp programs. Assume that we express
the property that we want to verify by using a CTL logic [6], where the atomic
propositions of the logic are the same set of atomic propositions of the constraint
system considered above. Note that we can use the corresponding entailment
relation to obtain the truth value of formulas (see [4]).

We illustrate the method by an example. Assume that we want to verify that
whatever state we check where the variables have been initialized, there exists a
successor state where the same test succeeds. This property is expressed by the
formula (3). We use the standard notation for temporal operators, thus AG(f)
is the logic operator meaning that the formula f holds at each state in the future
and EX(g) means that there exists a successor state where g is satisfied.

AG(¬lask ∨ EX(lask)) (3)

A Symbolic Model Checker for tccp Programs 55

The classical symbolic model checking algorithm would take this formula as
input and would return an OBDD representing the set of states of the system
satisfying that formula. Temporal operators of the logic are represented as fix-
points [6] and then, symbolic structures are manipulated. In our approach we
would substitute OBDDs by DDD+LSs and the CTL logic by the temporal logic
of [4] which is interpreted over constraints.

[6] shows that is possible to associate a fix-point operator to each CTL formula
which obtains the set of states starting from which the property holds. Since the
formula AG(f) is equivalent to f ∧ AX(f), where AX means that the formula
holds at each successive state, then it suffices to consider the operator associated
to f ∧ AX(f). This operator allows us to compute a (greatest) fix-point which
corresponds to the set of states starting from which the property to be proven
holds. Finally if all initial states of the model (the tccp Structure) are included in
the fix-point, then the formula is proven to hold in the system. In our example,
the resulting algorithm proves that the formula holds.

6 Conclusions

We have generalized DDDs to a new structure which allows us to represent tccp
programs symbolically. We have introduced the corresponding notions and algo-
rithms for automatically construct the symbolic structures and we have shown
how they can be used to formulate a lightweight, symbolic model checking algo-
rithm. This novel symbolic methodology improves the automatic verification of
reactive systems specified by using tccp as it reduces the search space significantly.

As future work, we plan to extend the language to consider constraint ex-
pressions more general than difference constraints. We also plan to complete and
make publicly available a very cheap implementation of our method that we have
already used for a preliminary evaluation of the methodology proposed in the
paper over a small set of examples.

References

1. M. Alpuente, M. Falaschi, and A. Villanueva. Symbolic Representa-
tion Timed Concurrent Constraint Programs. Technical Report DSIC-
II/12/04, DSIC, Technical University of Valencia, 2004. Available at
www.dsic.upv.es/users/elp/villanue/papers/techrep04.ps.

2. M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. Abstract Model
Checking of tccp programs. In Proc. of the 2nd Workshop on Quantitative As-
pects of Programming Languages (QAPL 2004), Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2004.

3. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint
Language. Information and Computation, 161:45–83, 2000.

4. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Temporal Logic for reasoning
about Timed Concurrent Constraint Programs. In G. Smolka, editor, Proc. of
8th International Symposium on Temporal Representation and Reasoning, pages
227–233. IEEE Computer Society Press, 2001.

56 M. Alpuente, M. Falaschi, and A. Villanueva

5. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

6. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
Cambridge, MA, 1999.

7. E. M. Clarke, K. M. McMillan, S. Campos, and V. Hartonas-GarmHausen. Sym-
bolic Model Checking. In Proc. of the 8th International Conference on Computer
Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 419–
422. Springer-Verlag, July/August 1996.

8. M. Falaschi, A. Policriti, and A. Villanueva. Modeling Timed Concurrent systems
in a Temporal Concurrent Constraint language - I. In A. Dovier, M. C. Meo, and
A. Omicini, editors, Selected papers from 2000 Joint Conference on Declarative
Programming, volume 48 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2000.

9. M. Falaschi and A. Villanueva. Automatic verification of timed concurrent con-
straint programs. Theory and Practice of Logic Programming, 2004. To appear.

10. J. Møller, J. Lichtenberg, H.R. Andersen, and H. Hulgaard. Difference Decision
Diagrams. In Proc. of the 13th International Workshop on Computer Logic Science,
volume 1683 of Lecture Notes in Computer Science, pages 111–125, 1999.

11. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundations of Concur-
rent Constraint Programming. In Proc. of 18th Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 333–352, New York, 1991. ACM Press.

	Introduction
	The tccp Framework
	The tccp Structure
	The Scheduler Example

	Symbolic Model Checking
	tccp Structures as Logic Formulas
	The Symbolic Structure

	Construction of DDD+LSs
	Verification
	Conclusions

