

N. Guelfi (Ed.): RISE 2004, LNCS 3475, pp. 132 – 143, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Combining System Development and System Test
in a Model-Centric Approach

M. Born1, I. Schieferdecker1, O. Kath2, and C. Hirai3

1 Fraunhofer FOKUS,
Kaiserin-Augusta-Alle 31, 10589 Berlin, Germany

{born, schieferdecker}@fokus.fraunhofer.de
2 Technical University-Berlin,

Franklinstr. 28/29, 10623 Berlin, Germany
kath@cs-tu-berlin.de
3 Hitachi SDL,Yokohama , Japan

c-hirai@sdl.hitachi.co.jp

Abstract. In this paper we will present, how a model centric approach cannot
only be used to rapidly develop the system but also at the same time to support
the provision of the system tests which is an integral part of the overall system
development. The key technology used to achieve this is a set of meta-tools
which contains model repository generators and model transformer generators.

1 Introduction

Model centric development of software system has recently become an important
software engineering strategy for handling the complexity and the increasing
requirements to larger and highly distributed software systems. This phenomena can
be observed in different domains, from telecom over public sector to automotive and
defense. The fundamental idea of model centric development is to replace the
programming language code as the main artefact in the development process by
models. These models exist on different levels of abstraction throughout the
development process. They are not independent from each other and have various
relations like trace or transformation relations. These relations allow to establish and
maintain consistent views on the system, spanning over different abstraction levels
from requirements through specifications and test cases. Furthermore, the degree of
development automation is substantially increasing through the consequent
application of model transformations wherever possible.

Another important observation is that the overall resources which are spent for a
development project are distributed to a large percentage (up to 70%) to the
requirements/analysis phase and testing phase. Therefore, the model centric approach
will only be a success if it is possible to reduce the development effort in exactly
these phases without a lack of quality. The approach which we want to discuss in this
contribution integrates the system design tightly with the development of system tests,
starting at higher levels of abstraction.

Our architecture for system development follows the idea of the Model Driven
Architecture (MDA) as introduced by the Object Management Group [17]. Within the

 Combining System Development and System Test 133

MDA, models are classified into platform independent models (PIM) and platform
specific models (PSM). The term platform in the MDA sense refers to wide spread
integration platforms like J2EE [12], CORBA Components [18] or Web services as
well as to domain specific platforms like Autosar [16] for the automotive domain. The
idea of MDA is that PIMs can be automatically transformed into PSMs and
programming language code can be generated from PSMs.

The test software can be modelled and developed in exactly the same way as the
functional system software. Abstract testing artefacts are derived and modelled from
the existing information in PIMs. These platform independent test models (PITs) can
be transformed to platform specific test models (PSTs), potentially taking additional
information from PSMs. Then, the programming language test code, i.e. the code of
the test components of the test system, can be generated from the PSTs. This situation
is depicted in Fig. 1, still completely independent from any particular modelling
language, test language or programming language.

MOF Model Bus

Platform
Independent

System
Models

Platform
Specific
System
Models

Platform
Independent

Test
Models

System
Code

Platform
Specific

Test
Models

Test
Code

Fig. 1. The overall approach for combining system development and system test

In order to set up such an environment with concrete modeling, testing and
programming languages, we apply a pattern which is used for each individual
technique to be integrated. The pattern is applied for PIM, PSM, system code and for
PIT, PST and test code. The pattern (Fig. 2) has the following steps:

• The modeling principles and relations of the modeling technique have to be
defined.

• The modeling principles and relations have to be formalized in a metamodel.
• A notation for the modeling technique has to be defined.
• A process and guidelines of how to use the modeling technique have to be defined.
• Possible connections to other modeling techniques in the overall process have to

be defined.

134 M. Born et al.

Fig. 2. Pattern for integrating modelling techniques into a modeling environment

• A tool has to be provided for the modeling technique.
• The tool has to be connected to the modeling environment.

In order to achieve practically an integrated modelling environment with the
described process, at least the following technical facilities are required: A facility to
store and access the models independently from the modelling tools used to present
and manipulate them and a facility to transform models into each other. The first one
is usually a repository, the second one a transformer or code generator facility.

In our approach we have used the Meta Object Facility (MOF [3]) as a formalism
to describe the potential elements of models and to derive on one hand the
repositories and on the other hand the transformers and code generators. The concrete
techniques and tools we used for our integrated system and test development
environment are:

• an open modelling tool-suite medini (a MOF implementation [10]) for
repositories and transformers,

• the Unified Modelling Language (UML) profile for Enterprise distributed object
computing (EDOC [2]) with Rational Rose [7] for PIM modelling,

• the J2EE platform and Eclipse [8] for PSM modelling,
• the TTCN-3 technology [6] and Eclipse for the PIT and PST modelling and
• Java with Eclipse for coding.

These concrete technologies are used for an experiment to show the feasibility of our
approach. The most challenging part of this experiment is the transformation of the
PIM and PSM to the PIT and PST with the constraint, that the resulting test code must
fit with the system code which comes from the PSM to code transformation. In this
contribution, we will present our initial ideas on this subject.

The paper is structured as follows: We first introduce our medini toolset which
provides the technology for tool integration via MOF repositories as well as a generic
approach to model transformations. Then, we will show how the MDA based system
development is done using EDOC and J2EE. After we have introduced the test
development based on TTCN-3 we will discuss the transformations between the
system models and the test models.

 Combining System Development and System Test 135

2 The Open Modelling Environment

The modelling environment that is used for the integration of development and test
tools manages a set of model repositories based on MOF [3] and OCL (Object
Constraint Language [4]) and provides means to access, store, read, and write models.
The modelling environment is automatically produced by medini [10]. In Fig. 3, an
overview of the modelling environment is depicted. The infrastructure forms an
extendable bus containing a number of logically distinct repositories. System
modelling and development tools are connected via their input and output pins to this
model bus. The integration is achieved via model transformers.

Model transformers are based on the semantic definition of the modelling
techniques. They operate on the model repositories. The skeletons for the transformer
are themselves automatically generated with medini.

Fig. 3. Overview of the Open Modelling Infrastructure (medini)

2.1 Repositories to Store Models and Other Artefacts

In order to integrate a modelling technique into this modelling infrastructure at first,
its modelling concepts need to be defined. That is, the semantics of each concept and
the relations between concepts are defined in terms of a metamodel. This metamodel
is the basis for the notation definition and for processes using artefacts of this
modelling technique such as code generation from models. The processes are defined
by use of model transformers. The notation, i.e. a human readable representation of a
model, is used to present models to a user, e.g. a architects, modellers or developers.

Beside the conceptual advantages of separating between concept definition,
notation definition and transformation rules, this approach has also a technical

136 M. Born et al.

advantage: the modelling infrastructure can be directly generated from the
metamodels independently of the particular notation or syntax for models.

2.2 Transformations Between Models in Repositories

Secondly, the relations of the newly integrated modelling technique to existing
modelling techniques of the modelling infrastructure need to be defined in terms of
model transformers. The medini model transformer generator is an engine to produce
such transformers. A model transformation is defined as the transition of source
model objects to target model objects, both representing (parts of) models in a
concrete domain (e.g. UML [5], C++, Java, etc.). In a repository centric approach like
the one presented in this paper, these models are maintained within externally
accessible repositories. Since objects are connected by links, the source and target
models are rather graphs than loose entities.

transformer „walks“ over source tree, calls transformation methods in
right order and creates elements in target repository

transformation_procedure_1 ()

…

transformation_procedure_2 ()

transformation_procedure_3 ()

Source Model
M1-level Instance

(in repository)
e.g. Detailed Design

Target Model
M1-level Instance

(in repository)
e.g. Java Code

MofTag

MofModelElement

1..n

0..n

+modelElement

1..n

+tag
0..n

AttachesTo

MofConstraint

expression : String
language : String
evaluationPolicy : Model::MofEvaluationKind
<<reference>> constrainedElements : Model::MofModelElement

1..n

0..n

+constrainedElement1..n

+constraint

0..n

Constraints

MofConstant

value : String

MofTypedElement

MofParameter

direction : Model::MofDirectionKind
multiplicity : Model::MofMultiplicityType

MofDirectionKind

in_dir
out_dir
inout_dir
return_dir

<<enumeration>>

MofEvaluationKind

immediate
deferred

<<enumeration>>

MofFeature

scope : Model::MofScopeKind
visibility : Model::MofVisibilityKind

MofModelElement

MofNamespace MofTypedElement

MofScopeKind

instanceLevel
classifierLevel

<<enumeration>>

MofBehavioralFeature
MofStructuralFeature

multiplicity : Model::MofMultiplicityTy...
isChangeable : Boolean

MofException

MofOperation

isQuery : Boolean
<<reference>> exceptions : Model::MofException

0..n

0..n

+except
0..n

+operation
0..n

CanRaise

MofAttribute

isDerived : Boolean

MofReference

<<reference>> referencedEnd : Model::MofAssociationEnd
<<reference>> exposedEnd : Model::MofAssociationEnd

Fig. 4. Visualization of the Transformer Skeleton

To comprehend how a transformer works, it is essential to realize some
requirements upon the process of transformation (see Fig 4). For each element in the
source repository that is involved in a transformation, according rules must exist that
accomplish the transformation task for this element. The rules may be combined in a
fictive operation “do_transform” that contains the logic for the construction or
modification of (a part of) the target model as result of a (set of) rule(s). Since model
elements depend on each other, the call order of these transform operations is
essential. This leads to a separation of the transformer into two parts: one part that
iterates over a source model graph, i.e. the MOF level where system models are
handled, and resolves dependencies between elements (the transformer skeleton, or
“walker”) and a second part that performs the transformation task corresponding to
the rules defined on top of the metamodels.

 Combining System Development and System Test 137

3 System Development with EDOC and J2EE

In order to establish a concrete tool chain for system development (and later for
system test) we apply the integration pattern described in Section 1 to provide an
abstract PIM modelling technique, a platform (and by that a PSM) on top of which the
software components of the system will be integrated, and a programming language,
which is used to finally implement the system components. For the prototype, we
have chosen EDOC [2] as PIM modelling technique, J2EE [12] as target platform and
by nature Java [9] as the programming language. The tools to support the modelling
are Rational Rose [7] and Eclipse [8].

The integration of EDOC with the modelling infrastructure is done as follows. At
first, the modelling concepts for the EDOC modelling technique have been defined in
a MOF metamodel. All EDOC modelling concepts, there various relations and the
constraints which have to be fulfilled by each concrete EDOC model are formalized
within that MOF metamodel. The metamodel for EDOC is already part of the EDOC
specification, although some work was needed to make it MOF-compliant.

By applying medini to that metamodel, we obtain a MOF repository for the EDOC
language with open interfaces to store, access and manipulate models in the repository
by different clients. One client we connected to the repository is Rational Rose, where a
plug-in realizes the EDOC UML profile. Hence, EDOC models can be defined by
using Rose with the EDOC profile. They are stored in the repository and are ready for
further processing. The generation of the EDOC repository from the EDOC metamodel
and the connection of Rose with the EDOC UML profile are depicted in Fig. 5.

EDOC modeling with Rose

EDOC repository

OperationPortDefMu ltiPort Def

InterfaceDef

ProtocolPortDef

ProtocolDef

0..n

1

+used_by
0..n

+the_protocol
1

ProtocolType

PortOwnerDef

PortDef

+ name : String
+ isSy nchronous : Boolean
+ isTransactional : Boolean
+ direction : EDOC::ECA::CCA::D irectionType...
+ postCondit ion : EDOC::ECA::CCA::StatusDef

1

0..n

+the_owner

1

+the_por t

0..n

Ports

Granularit y Ki ndDef

+ program
+ owned
+ shared

DirectionTypeDef

+ init iates
+ responds

ProcessComponentDef

+ granularity : EDOC::ECA::CCA::GranularityKindDef = Program

+ isPersistent : Boolean
+ primit iv eKind : String
+ primit iv eSpec : String

FlowPortDef

PropertyDef init ionDef

+ name : String
+ init ial : String
+ isLocked : Boolean

0..n
0..1

+constraints

0..n

+the_property

0..1

TypeProperty

1

0..n

+the_component1

+the_property
0..n

Properties

Dat aElement Def
(from DocumentModel)

0..n

0..1

+the_port
0..n

+the_ty pe
0..1

FlowType
0..n

1

+the_property
0..n

+the_ty pe

1

PropertyType

Composit ionDef

IsComposit ion

UsageCo ntextDef

ChoreographyDef

0..n

0..1

+subtypes

0..n
Ge ner ali zat io n

+superty pe
0..1

IsChoreography

EDOC metamodel

(1) Generate with medini

(2) Connect client
To repository

EDOC modeling with Rose

EDOC repository

OperationPortDefMu ltiPort Def

InterfaceDef

ProtocolPortDef

ProtocolDef

0..n

1

+used_by
0..n

+the_protocol
1

ProtocolType

PortOwnerDef

PortDef

+ name : String
+ isSy nchronous : Boolean
+ isTransactional : Boolean
+ direction : EDOC::ECA::CCA::D irectionType...
+ postCondit ion : EDOC::ECA::CCA::StatusDef

1

0..n

+the_owner

1

+the_por t

0..n

Ports

Granularit y Ki ndDef

+ program
+ owned
+ shared

DirectionTypeDef

+ init iates
+ responds

ProcessComponentDef

+ granularity : EDOC::ECA::CCA::GranularityKindDef = Program

+ isPersistent : Boolean
+ primit iv eKind : String
+ primit iv eSpec : String

FlowPortDef

PropertyDef init ionDef

+ name : String
+ init ial : String
+ isLocked : Boolean

0..n
0..1

+constraints

0..n

+the_property

0..1

TypeProperty

1

0..n

+the_component1

+the_property
0..n

Properties

Dat aElement Def
(from DocumentModel)

0..n

0..1

+the_port
0..n

+the_ty pe
0..1

FlowType
0..n

1

+the_property
0..n

+the_ty pe

1

PropertyType

Composit ionDef

IsComposit ion

UsageCo ntextDef

ChoreographyDef

0..n

0..1

+subtypes

0..n
Ge ner ali zat io n

+superty pe
0..1

IsChoreography

EDOC metamodel

(1) Generate with medini

(2) Connect client
To repository

Fig. 5. Modelling with EDOC

The next step is to transform EDOC models – which are stored in the EDOC
repository – to platform specific models (J2EE). For that, we have to define the target
for the transformation and the transformation rules. Along our general approach, a
metamodel for J2EE is needed to generate a J2EE repository. The transformation
target is then this repository, filled by the EDOC2J2EE transformer. For the J2EE
metamodel, we took the Java metamodel from Netbeans and extended it with the
concepts of J2EE. Fig. 6 shows a sub model of the J2EE metamodel. The Java Class

138 M. Born et al.

concept from the standard Java metamodel has been extended by the concept of
Enterprise Beans and their interfaces.

EntityBean
+ primary_key : ClassDescriptor

StatefullSess
ionBeanStatelessSes

sionBean

SessionBean
RemoteInt

erface

MessageDriv
enBean

JavaClass
(from Standard)

EJBInterface

DeploymentDe
scriptor

+ body : String

BMPEntityBean
LocalInter

face
LocalHomeI

nterface

HomeInter
face

EnterpriseBean

CMPEntityBean

Fig. 6. Sub model of the J2EE metamodel

Once the repository is available, we can define the EDOC to J2EE transformation
rules between repositories of the source and target models. The mapping rules
concentrate in the initial version on the static parts of an EDOC model. Static EDOC
models are comparable with UML 2.0 static structures: the basic concept of EDOC is
that of a process component which communicates via ports to its environment. Process
components can have a structure; they may be composed out of other components. At
the ports of a process component, the communication is described either with flows
(messages), operations, interfaces or structured into protocols which are used to group
other communication elements together. There are special process components which
are used to model entities and their relations in EDOC. The initial transformation rules
of the mentioned EDOC concepts to J2EE are summarized in Table 1.

After the transformation has been performed by applying the transformation rules
to an EDOC model in the EDOC repository, the generated J2EE model can be
transformed to Java code which then can be deployed to a Java application server. We
use Eclipse as Java development environment. Eclipse has an internal Java syntax tree
which is automatically synchronized with the Java text files in the actual Eclipse
project. Medini offers an Eclipse plug-in, which provides access for external clients to
the Java syntax tree inside the Eclipse. To the outside, this plug-in behaves like a
repository for Java. In fact, it offers exactly the API of a Java repository generated
from the metamodel for Java without the J2EE extensions, i.e. it offers plain Java
language constructs only. The only extension to the Java metamodel is the ability to
attach Java doc tag information to Java language elements. This is because we use
standard J2EE tools like Xdoclet and Lomboz [19] to generate all necessary artefacts
for a J2EE application like deployment descriptors, configuration files etc. These
tools expect Java sources with tags to generate the mentioned artefacts. Our tool chain
contains another transformer which generates the Java sources with the proper tagging
from the J2EE model in the J2EE repository. It uses the medini Eclipse plug-in as a

 Combining System Development and System Test 139

target and the J2EE repository as a source. After being processed by Xdoclet/Lomboz,
the application is ready for use.

Table 1. Initial transformation rules from EDOC to J2EE

EDOC Concept J2EE concept
Process Component Stateless session bean with remote interface and home

interface,
Entity Component with primary
key

Entity beans with fields and home interface

Contained process components As process component but with local interfaces
Flows, Operations Java messages as part of generated Java interfaces for

their owning process components
Protocols Java messages as part of generated Java interfaces,

messages are recursively obtained from protocol
structure (either operations, flows or sub-protocols)

Package Java Package
Composite Data Java class

4 System Test with TTCN-3

TTCN-3, the Testing and Test Control Notation [6][143], is the test specification and
implementation language defined by the European Telecommunications Standards
Institute (ETSI) for the precise definition of test procedures for black-box and grey-box
testing. It is an extendible and powerful language, applicable to the specification of all
types of reactive system tests over a variety of communication interfaces. TTCN-3
allows an easy and efficient description of complex distributed test behaviour in terms
of sequences, alternatives, loops and parallel stimuli and responses. The test system can
use any number of test components to perform test procedures in parallel. One essential
benefit of TTCN-3 is that it enables the specification of tests in a platform independent
manner. TTCN-3 provides the concepts of test components, their creation,
communication links between them and to the system under test (SUT), their execution
and termination on an abstract level, yet together with TTCN-3 execution interfaces to
provide the realisation of concrete executable tests on different target test platforms.
Features and capabilities being beyond TTCN-3 can be integrated into TTCN-3 by the
use of external types, data and functions.

TTCN-3 offers various presentation formats to serve the needs of different
TTCN-3 application domains and users. The programming-like textual core notation
(see Fig. 7 left hand side) suits best programmers and test developers. The core
notation can be developed within a text editor of the users' choice and enables an easy
integration into an overall test environment. The graphical format of TTCN-3 is based
on Message Sequence Charts (MSC) and aids the visualization of test behaviour. It
eases the reading, documentation and discussion of test procedures and is also well
suited to the representation of test execution and analyzing of test results. The tabular
presentation format highlights the structural aspects of a TTCN-3 module and in
particular of structures of types and templates.

140 M. Born et al.

Since TTCN-3 is an abstract test specification language it can be used both for the
definition of PIT and PST models. However, TTCN-3 does not well integrate into the
approach described in Section 1 as it has been classically defined in form of a formal
syntax and a semiformal semantics. Therefore, a TTCN-3 metamodel has been
developed beforehand [15].

The TTCN-3 test metamodel (see Fig. 7 right hand side) defines the TTCN-3
concept space with additional support for the different presentation formats. It does
not directly reflect the structure of a TTCN-3 modules but rather the structure of the
TTCN-3 language definition. It is defined as a single package with concept structures
for types and expressions, for modules and scopes, for declarations and for statements
and operations. ´

Fig. 7. The change to a metamodel centric TTCN-3 language architecture

This metamodel is the basis for the generation of test repositories and model
transformers that take a system model and generate test models in TTCN-3. The
meta-model for TTCN-3 language was technically realized by using the Eclipse
Modelling Framework provided by Eclipse [1]. This allowed us to integrate not only
test development and execution tools but also to integrate the development of system
artefacts with the development of test artefacts as described in the following.

5 The Combined Approach

For the integration of the test development into system development, three
transformations are of primary concern:

• The PIM (platform-independent system model) to PIT (platform-independent
system tests) – in our case an EDOC to TTCN-3 transformation.

• The PSM (platform-specific system model) to PST (platform-specific system
tests) – in our case a J2EE to TTCN-3 transformation.

• The PIT to PST – in our case a TTCN-3 to TTCN-3 – transformation taking into
account the specifics of the EDOC to J2EE transformation.

 Combining System Development and System Test 141

In a first step, we concentrated on a structural PIM to PIT transformation. The
transformation differentiates between process components/entities that need to be
tested as part of the system under test (SUT) or that need to be emulated as part of the
test system. Hence, the transformation is guided by the user which identifies the PIM
parts being relevant for the test model. The default mapping for the main Component
Metaclasses is given in the table below.

Table 2. Initial transformation rules from EDOC ECA to TTCN-3

EDOC ECA Concept TTCN-3 Concept
PackageDef TTCN-3 module
DataTypeDef Data type definition to be used within the test system and

to be exchanged via TSI
CompositeDataDef Data type definition to be used within the test system and

to be exchanged via TSI, which are basically record
structures with flattened inheritance

ProcessComponentDef Component type definition (with ports per interface)
DataManager Component type definition (with local composite data

variable)
Entity Component type definition (with local composite data

variable)
Port Classes Port type definition

The transformation considers network sharable components only as those can be
selected as a target for testing. Basically, the transformation does not consider
containment hierarchies in the SUT as these are not visible from outside when using a
black-box test approach. If however contained process components or entities are
CUTs (components under test), then they need to be addressed within the SUT via the
TTCN-3 address type. On the other side, if contained components are part of the test
system and their behaviour is emulated, then they are mapped to separate test
components interacting with test components representing process components or
entities on higher level. Details of the port mapping are given in Table 3. Ports of
CUTs or the test system are basically handled the same.

The approach of generating test models from system models follows the basic
principles outlined in [13] and [1]. Initially, the structural aspects of test generation,
i.e. types, test components and their test configurations, have been considered only. In
a second step, behavioural aspects of the tests will be addressed. For that, we will
analyse how the EDOC protocol can be used as a basis for the behaviour of PITs.
Basically, established test generation techniques used for the derivation of tests from
finite state machines (represented by UML state charts) or message sequence charts
(represented by UML interaction diagrams) will be used. The first uses mainly state
or transition coverage methods, while the second uses branch or path coverage
methods to derive the various test sequences.

Still, the model transformers will generate basically test skeletons which need to be
completed manually before they can be transformed into executable tests in Java and
executed by use of the Testing Technologies’ TTCN-3 tool set [11].

142 M. Born et al.

Table 3. Initial transformation rules from EDOC ECA Ports to TTCN-3

EDOC ECA Port Concept TTCN-3 Concept
Synchronous port attribute Procedure-based port
Asynchronous port attribute Message-based port
Protocol port In test system: message-based port plus

test component representing the protocol
behaviour
In SUT: message-based port only

Port direction Data types to be assigned to in, out our
inout direction of a port

Flow port Procedure- or message-based port
Flow port: process component properties Additional signature for setting and getting

of properties
Operation port Signatures
Multi-ports In test system: a test component with ports

for all coordinated interfaces
In SUT: all coordinated interfaces are part
of TSI (or are addressed via TTCN-3
address)

Interfaces Port types (possibly also test component)

6 Conclusion

This paper presents a general approach of integrating modelling and development
techniques for systems and tests into a modelling infrastructure. The integration is
done via metamodels representing the concept space of the techniques. The
metamodels are the basis to generate repositories and to manage, access and
manipulate models. In addition, they are used as source and target for model
transformers, which define the relations between techniques integrated into the
modelling infrastructure.

In a first step, we applied the modelling infrastructure to setup a development for
EDOC. J2EE and Java on the system side and TTCN-3 and Java on the testing side.
In a next step, the UML 2.0 testing profile (U2TP [1]) will be used for PITs instead
of TTCN-3. The current restriction to focus on TTCN-3 only, is due to the
unavailability of U2TP tooling. U2TP is an extension of UML 2.0 5 being based
upon the UML metamodel. It follows the same fundamental principles of UML in
that it provides concepts for the structural aspects of testing such as the definition of
test components, test contexts and test system interfaces, and behavioural aspects of
testing such as the definition of test procedures, test setup, execution and
evaluation. The core UML is the basis for modelling and describing test artefacts.
However, as software testing is based on a number of special test-related concepts
these are provided by the testing profile as extensions to UML. U2TP is closer to
the system modelling with the EDOC Profile for UML and will therefore be
considered in our future work.

 Combining System Development and System Test 143

Acknowledgment

Part of the work described in this paper has been done within the context of the
FP6/2003/IST/2 project Modelware which is partially funded by the European
Commission.

References

1. Object Management Group: OMG ptc/04-04-02: UML 2.0 Testing Profile, Finalized
Specification.

2. Object Management Group: OMG ptc/02-02-05: UML Profile for EDOC Final Adopted
Specification.

3. Object Management Group: OMG ptc/03-10-04: MOF 2.0 Core Final Adopted
Specification.

4. Object Management Group: OMG ptc/03-10-14: UML 2.0 OCL Final Adopted
Specification.

5. Object Management Group: OMG ptc/03-08-02: UML 2.0 Superstructure Final Adopted
Specification.

6. ETSI European Standard (ES) 201 873-1 version 2.2.1 (2003-02): The Testing and Test
Control Notation version 3 (TTCN-3); Part 1: TTCN-3 Core Language. Also published as
ITU-T Recommendation Z.140.

7. IBM/Rational: http://www-306.ibm.com/software/awdtools/developer/rose/
8. Eclipse: Open Source Integrated Development Environment, www.eclipse.org.
9. Java: www.java.org

10. IKV++ Technologies AG: http://www.ikv.de/medini/.
11. Testing Technologies: TTCN-3 tool set, www.testingtech.de.
12. Sun Microsystems: Java 2 Platform, Enterprise Edition , http://java.sun.com/j2ee/.
13. I. Schieferdecker, Z.R. Dai, J. Grabowski, A. Rennoch. The UML 2.0 Testing Profile and

its Relation to TTCN-3. Testing of Communicating Systems (Editors: D. Hogrefe, A.
Wiles). Proc. of the 15th IFIP Intern. Conf. on Testing of Communicating Systems
(TestCom2003), LNCS 2644, Springer, May 2003, pp. 79-94.

14. J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, C. Willcock. An
Introduction into the Testing and Test Control Notation (TTCN-3). Computer Networks,
Volume 42, Issue 3, Elsevier, June 2003.

15. I. Schieferdecker,. G. Din: A Metamodel for TTCN-3. 1st Intern. Workshop on Integrated
Test Methodologies. Colocated with 24th Intern. Conference on Formal Description
Techniques (FORTE 2004), Toledo, Spain, Sept. 2004.

16. Autosar: http://www.autosar.org/.
17. Object Management Group: Model Driven Architecture, http://www.omg.org/mda/.
18. Object Management Group: CORBA Component Model, OMG document formal/2002-

06-65.
19. Lomboz: http://forge.objectweb.org/projects/lomboz.

	Introduction
	The Open Modelling Environment
	Repositories to Store Models and Other Artefacts
	Transformations Between Models in Repositories

	System Development with EDOC and J2EE
	System Test with TTCN-3
	The Combined Approach
	Conclusion
	Acknowledgment
	References

