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Abstract. In this paper we will present, how a model centric approach cannot 
only be used to rapidly develop the system but also at the same time to support 
the provision of the system tests which is an integral part of the overall system 
development. The key technology used to achieve this is a set of meta-tools 
which contains model repository generators and model transformer generators.  

1   Introduction 

Model centric development of software system has recently become an important 
software engineering strategy for handling the complexity and the increasing 
requirements to larger and highly distributed software systems. This phenomena can 
be observed in different domains, from telecom over public sector to automotive and 
defense. The fundamental idea of model centric development is to replace the 
programming language code as the main artefact in the development process by 
models. These models exist on different levels of abstraction throughout the 
development process. They are not independent from each other and have various 
relations like trace or transformation relations. These relations allow to establish and 
maintain consistent views on the system, spanning over different abstraction levels 
from requirements through specifications and test cases. Furthermore, the degree of 
development automation is substantially increasing through the consequent 
application of model transformations wherever possible.  

Another important observation is that the overall resources which are spent for a 
development project are distributed to a large percentage (up to 70%) to the 
requirements/analysis phase and testing phase. Therefore, the model centric approach 
will only be a success if it is possible to reduce the development effort in exactly 
these phases without a lack of quality. The approach which we want to discuss in this 
contribution integrates the system design tightly with the development of system tests, 
starting at higher levels of abstraction.   

Our architecture for system development follows the idea of the Model Driven 
Architecture (MDA) as introduced by the Object Management Group [ 17]. Within the 
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MDA, models are classified into platform independent models (PIM) and platform 
specific models (PSM). The term platform in the MDA sense refers to wide spread 
integration platforms like J2EE [ 12], CORBA Components [ 18] or Web services as 
well as to domain specific platforms like Autosar [ 16] for the automotive domain. The 
idea of MDA is that PIMs can be automatically transformed into PSMs and 
programming language code can be generated from PSMs.  

The test software can be modelled and developed in exactly the same way as the 
functional system software. Abstract testing artefacts are derived and modelled from 
the existing information in PIMs. These platform independent test models (PITs) can 
be transformed to platform specific test models (PSTs), potentially taking additional 
information from PSMs.  Then, the programming language test code, i.e. the code of 
the test components of the test system, can be generated from the PSTs. This situation 
is depicted in Fig. 1, still completely independent from any particular modelling 
language, test language or programming language.   
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Fig. 1. The overall approach for combining system development and system test 

In order to set up such an environment with concrete modeling, testing and 
programming languages, we apply a pattern which is used for each individual 
technique to be integrated. The pattern is applied for PIM, PSM, system code and for 
PIT, PST and test code. The pattern (Fig. 2) has the following steps: 

• The modeling principles and relations of the modeling technique have to be 
defined. 

• The modeling principles and relations have to be formalized in a metamodel. 
• A notation for the modeling technique has to be defined. 
• A process and guidelines of how to use the modeling technique have to be defined.  
• Possible connections to other modeling techniques in the overall process have to 

be defined. 
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Fig. 2. Pattern for integrating modelling techniques into a modeling environment 

• A tool has to be provided for the modeling technique. 
• The tool has to be connected to the modeling environment. 

In order to achieve practically an integrated modelling environment with the 
described process, at least the following technical facilities are required: A facility to 
store and access the models independently from the modelling tools used to present 
and manipulate them and a facility to transform models into each other. The first one 
is usually a repository, the second one a transformer or code generator facility.  

In our approach we have used the Meta Object Facility (MOF [ 3]) as a formalism 
to describe the potential elements of models and to derive on one hand the 
repositories and on the other hand the transformers and code generators. The concrete 
techniques and tools we used for our integrated system and test development 
environment are: 

• an open modelling tool-suite medini  (a MOF implementation [ 10]) for 
repositories and transformers,  

• the Unified Modelling Language (UML) profile for Enterprise distributed object 
computing (EDOC [ 2]) with Rational Rose [ 7] for PIM modelling, 

• the J2EE platform and Eclipse [ 8] for PSM modelling, 
• the TTCN-3 technology [ 6] and Eclipse for the PIT and PST modelling and  
• Java with Eclipse for coding.  

These concrete technologies are used for an experiment to show the feasibility of our 
approach. The most challenging part of this experiment is the transformation of the 
PIM and PSM to the PIT and PST with the constraint, that the resulting test code must 
fit with the system code which comes from the PSM to code transformation. In this 
contribution, we will present our initial ideas on this subject. 

The paper is structured as follows: We first introduce our medini toolset which 
provides the technology for tool integration via MOF repositories as well as a generic 
approach to model transformations. Then, we will show how the MDA based system 
development is done using EDOC and J2EE. After we have introduced the test 
development based on TTCN-3 we will discuss the transformations between the 
system models and the test models. 



 Combining System Development and System Test 135 

 

2   The Open Modelling Environment  

The modelling environment that is used for the integration of development and test 
tools manages a set of model repositories based on MOF [ 3] and OCL (Object 
Constraint Language [ 4]) and provides means to access, store, read, and write models. 
The modelling environment is automatically produced by medini [ 10]. In Fig. 3, an 
overview of the modelling environment is depicted. The infrastructure forms an 
extendable bus containing a number of logically distinct repositories. System 
modelling and development tools are connected via their input and output pins to this 
model bus. The integration is achieved via model transformers. 

Model transformers are based on the semantic definition of the modelling 
techniques. They operate on the model repositories. The skeletons for the transformer 
are themselves automatically generated with medini. 

 

Fig. 3. Overview of the Open Modelling Infrastructure (medini)  

2.1   Repositories to Store Models and Other Artefacts 

In order to integrate a modelling technique into this modelling infrastructure at first, 
its modelling concepts need to be defined. That is, the semantics of each concept and 
the relations between concepts are defined in terms of a metamodel. This metamodel 
is the basis for the notation definition and for processes using artefacts of this 
modelling technique such as code generation from models. The processes are defined 
by use of model transformers. The notation, i.e. a human readable representation of a 
model, is used to present models to a user, e.g. a architects, modellers or developers.  

Beside the conceptual advantages of separating between concept definition, 
notation definition and transformation rules, this approach has also a technical 



136 M. Born et al. 

 

advantage: the modelling infrastructure can be directly generated from the 
metamodels independently of the particular notation or syntax for models. 

2.2   Transformations Between Models in Repositories 

Secondly, the relations of the newly integrated modelling technique to existing 
modelling techniques of the modelling infrastructure need to be defined in terms of 
model transformers. The medini model transformer generator is an engine to produce 
such transformers. A model transformation is defined as the transition of source 
model objects to target model objects, both representing (parts of) models in a 
concrete domain (e.g. UML [ 5], C++, Java, etc.). In a repository centric approach like 
the one presented in this paper, these models are maintained within externally 
accessible repositories. Since objects are connected by links, the source and target 
models are rather graphs than loose entities.  
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Fig. 4. Visualization of the Transformer Skeleton 

To comprehend how a transformer works, it is essential to realize some 
requirements upon the process of transformation (see Fig 4). For each element in the 
source repository that is involved in a transformation, according rules must exist that 
accomplish the transformation task for this element. The rules may be combined in a 
fictive operation “do_transform” that contains the logic for the construction or 
modification of (a part of) the target model as result of a (set of) rule(s). Since model 
elements depend on each other, the call order of these transform operations is 
essential. This leads to a separation of the transformer into two parts: one part that 
iterates over a source model graph, i.e. the MOF level where system models are 
handled, and resolves dependencies between elements (the transformer skeleton, or 
“walker”) and a second part that performs the transformation task corresponding to 
the rules defined on top of the metamodels. 
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3   System Development with EDOC and J2EE 

In order to establish a concrete tool chain for system development (and later for 
system test) we apply the integration pattern described in Section 1 to provide an 
abstract PIM modelling technique, a platform (and by that a PSM) on top of which the 
software components of the system will be integrated, and a programming language, 
which is used to finally implement the system components. For the prototype, we 
have chosen EDOC [ 2] as PIM modelling technique, J2EE [ 12] as target platform and 
by nature Java [ 9] as the programming language. The tools to support the modelling 
are Rational Rose [ 7] and Eclipse [ 8]. 

The integration of EDOC with the modelling infrastructure is done as follows. At 
first, the modelling concepts for the EDOC modelling technique have been defined in 
a MOF metamodel. All EDOC modelling concepts, there various relations and the 
constraints which have to be fulfilled by each concrete EDOC model are formalized 
within that MOF metamodel. The metamodel for EDOC is already part of the EDOC 
specification, although some work was needed to make it MOF-compliant.  

By applying medini to that metamodel, we obtain a MOF repository for the EDOC 
language with open interfaces to store, access and manipulate models in the repository 
by different clients. One client we connected to the repository is Rational Rose, where a 
plug-in realizes the EDOC UML profile.  Hence, EDOC models can be defined by 
using Rose with the EDOC profile. They are stored in the repository and are ready for 
further processing. The generation of the EDOC repository from the EDOC metamodel 
and the connection of Rose with the EDOC UML profile are depicted in Fig. 5.  
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Fig. 5. Modelling with EDOC 

The next step is to transform EDOC models – which are stored in the EDOC 
repository – to platform specific models (J2EE). For that, we have to define the target 
for the transformation and the transformation rules. Along our general approach, a 
metamodel for J2EE is needed to generate a J2EE repository. The transformation 
target is then this repository, filled by the EDOC2J2EE transformer. For the J2EE 
metamodel, we took the Java metamodel from Netbeans and extended it with the 
concepts of J2EE. Fig. 6 shows a sub model of the J2EE metamodel. The Java Class 
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concept from the standard Java metamodel has been extended by the concept of 
Enterprise Beans and their interfaces.  
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Fig. 6. Sub model of the J2EE metamodel 

Once the repository is available, we can define the EDOC to J2EE transformation 
rules between repositories of the source and target models. The mapping rules 
concentrate in the initial version on the static parts of an EDOC model. Static EDOC 
models are comparable with UML 2.0 static structures: the basic concept of EDOC is 
that of a process component which communicates via ports to its environment. Process 
components can have a structure; they may be composed out of other components. At 
the ports of a process component, the communication is described either with flows 
(messages), operations, interfaces or structured into protocols which are used to group 
other communication elements together. There are special process components which 
are used to model entities and their relations in EDOC. The initial transformation rules 
of the mentioned EDOC concepts to J2EE are summarized in Table 1. 

After the transformation has been performed by applying the transformation rules 
to an EDOC model in the EDOC repository, the generated J2EE model can be 
transformed to Java code which then can be deployed to a Java application server. We 
use Eclipse as Java development environment. Eclipse has an internal Java syntax tree 
which is automatically synchronized with the Java text files in the actual Eclipse 
project. Medini offers an Eclipse plug-in, which provides access for external clients to 
the Java syntax tree inside the Eclipse. To the outside, this plug-in behaves like a 
repository for Java. In fact, it offers exactly the API of a Java repository generated 
from the metamodel for Java without the J2EE extensions, i.e. it offers plain Java 
language constructs only. The only extension to the Java metamodel is the ability to 
attach Java doc tag information to Java language elements. This is because we use 
standard J2EE tools like Xdoclet and Lomboz [ 19] to generate all necessary artefacts 
for a J2EE application like deployment descriptors, configuration files etc. These 
tools expect Java sources with tags to generate the mentioned artefacts. Our tool chain 
contains another transformer which generates the Java sources with the proper tagging 
from the J2EE model in the J2EE repository. It uses the medini Eclipse plug-in as a 
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target and the J2EE repository as a source. After being processed by Xdoclet/Lomboz, 
the application is ready for use.  

Table 1. Initial transformation rules from EDOC to J2EE 

EDOC Concept J2EE concept 
Process Component Stateless session bean with remote interface and home 

interface,  
Entity Component with primary 
key 

Entity beans with fields and home interface 

Contained process components As process component but with local interfaces 
Flows, Operations Java messages as part of generated Java interfaces for 

their owning process components 
Protocols Java messages as part of generated Java interfaces, 

messages are recursively obtained from protocol 
structure (either operations, flows or sub-protocols) 

Package Java Package 
Composite Data Java class 

4   System Test with TTCN-3 

TTCN-3, the Testing and Test Control Notation [ 6][143], is the test specification and 
implementation language defined by the European Telecommunications Standards 
Institute (ETSI) for the precise definition of test procedures for black-box and grey-box 
testing. It is an extendible and powerful language, applicable to the specification of all 
types of reactive system tests over a variety of communication interfaces. TTCN-3 
allows an easy and efficient description of complex distributed test behaviour in terms 
of sequences, alternatives, loops and parallel stimuli and responses. The test system can 
use any number of test components to perform test procedures in parallel. One essential 
benefit of TTCN-3 is that it enables the specification of tests in a platform independent 
manner. TTCN-3 provides the concepts of test components, their creation, 
communication links between them and to the system under test (SUT), their execution 
and termination on an abstract level, yet together with TTCN-3 execution interfaces to 
provide the realisation of concrete executable tests on different target test platforms. 
Features and capabilities being beyond TTCN-3 can be integrated into TTCN-3 by the 
use of external types, data and functions.  

TTCN-3 offers various presentation formats to serve the needs of different 
TTCN-3 application domains and users. The programming-like textual core notation 
(see Fig. 7 left hand side) suits best programmers and test developers. The core 
notation can be developed within a text editor of the users' choice and enables an easy 
integration into an overall test environment. The graphical format of TTCN-3 is based 
on Message Sequence Charts (MSC) and aids the visualization of test behaviour. It 
eases the reading, documentation and discussion of test procedures and is also well 
suited to the representation of test execution and analyzing of test results. The tabular 
presentation format highlights the structural aspects of a TTCN-3 module and in 
particular of structures of types and templates.  
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Since TTCN-3 is an abstract test specification language it can be used both for the 
definition of PIT and PST models. However, TTCN-3 does not well integrate into the 
approach described in Section 1 as it has been classically defined in form of a formal 
syntax and a semiformal semantics. Therefore, a TTCN-3 metamodel has been 
developed beforehand [ 15].  

The TTCN-3 test metamodel (see Fig. 7 right hand side) defines the TTCN-3 
concept space with additional support for the different presentation formats. It does 
not directly reflect the structure of a TTCN-3 modules but rather the structure of the 
TTCN-3 language definition. It is defined as a single package with concept structures 
for types and expressions, for modules and scopes, for declarations and for statements 
and operations. ´ 

 

Fig. 7. The change to a metamodel centric TTCN-3 language architecture 

This metamodel is the basis for the generation of test repositories and model 
transformers that take a system model and generate test models in TTCN-3. The 
meta-model for TTCN-3 language was technically realized by using the Eclipse 
Modelling Framework provided by Eclipse [ 1]. This allowed us to integrate not only 
test development and execution tools but also to integrate the development of system 
artefacts with the development of test artefacts as described in the following.  

5   The Combined Approach 

For the integration of the test development into system development, three 
transformations are of primary concern: 

• The PIM (platform-independent system model) to PIT (platform-independent 
system tests) – in our case an EDOC to TTCN-3 transformation. 

• The PSM (platform-specific system model) to PST (platform-specific system 
tests) – in our case a J2EE to TTCN-3 transformation. 

• The PIT to PST – in our case a TTCN-3 to TTCN-3 – transformation taking into 
account the specifics of the EDOC to J2EE transformation.  
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In a first step, we concentrated on a structural PIM to PIT transformation. The 
transformation differentiates between process components/entities that need to be 
tested as part of the system under test (SUT) or that need to be emulated as part of the 
test system. Hence, the transformation is guided by the user which identifies the PIM 
parts being relevant for the test model. The default mapping for the main Component 
Metaclasses is given in the table below. 

Table 2. Initial transformation rules from EDOC ECA to TTCN-3 

EDOC ECA Concept TTCN-3 Concept 
PackageDef TTCN-3 module 
DataTypeDef Data type definition to be used within the test system and 

to be exchanged via TSI 
CompositeDataDef Data type definition to be used within the test system and 

to be exchanged via TSI, which are basically record 
structures with flattened inheritance  

ProcessComponentDef Component type definition (with ports per interface)  
DataManager Component type definition (with local composite data 

variable) 
Entity Component type definition (with local composite data 

variable) 
Port Classes Port type definition 

The transformation considers network sharable components only as those can be 
selected as a target for testing. Basically, the transformation does not consider 
containment hierarchies in the SUT as these are not visible from outside when using a 
black-box test approach. If however contained process components or entities are 
CUTs (components under test), then they need to be addressed within the SUT via the 
TTCN-3 address type. On the other side, if contained components are part of the test 
system and their behaviour is emulated, then they are mapped to separate test 
components interacting with test components representing process components or 
entities on higher level. Details of the port mapping are given in Table 3. Ports of 
CUTs or the test system are basically handled the same.  

The approach of generating test models from system models follows the basic 
principles outlined in [ 13] and [ 1]. Initially, the structural aspects of test generation, 
i.e. types, test components and their test configurations, have been considered only. In 
a second step, behavioural aspects of the tests will be addressed. For that, we will 
analyse how the EDOC protocol can be used as a basis for the behaviour of PITs. 
Basically, established test generation techniques used for the derivation of tests from 
finite state machines (represented by UML state charts) or message sequence charts 
(represented by UML interaction diagrams) will be used. The first uses mainly state 
or transition coverage methods, while the second uses branch or path coverage 
methods to derive the various test sequences. 

Still, the model transformers will generate basically test skeletons which need to be 
completed manually before they can be transformed into executable tests in Java and 
executed by use of the Testing Technologies’ TTCN-3 tool set [ 11].  
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Table 3. Initial transformation rules from EDOC ECA Ports to TTCN-3 

EDOC ECA Port Concept TTCN-3 Concept 
Synchronous port attribute Procedure-based port 
Asynchronous port attribute Message-based port 
Protocol port In test system: message-based port plus 

test component representing the protocol 
behaviour 
In SUT: message-based port only 

Port direction Data types to be assigned to in, out our 
inout direction of a port 

Flow port Procedure- or message-based port 
Flow port: process component properties Additional signature for setting and getting 

of properties 
Operation port Signatures 
Multi-ports In test system: a test component with ports 

for all coordinated interfaces 
In SUT: all coordinated interfaces are part 
of TSI (or are addressed via TTCN-3 
address) 

Interfaces Port types (possibly also test component) 

6   Conclusion 

This paper presents a general approach of integrating modelling and development 
techniques for systems and tests into a modelling infrastructure. The integration is 
done via metamodels representing the concept space of the techniques. The 
metamodels are the basis to generate repositories and to manage, access and 
manipulate models. In addition, they are used as source and target for model 
transformers, which define the relations between techniques integrated into the 
modelling infrastructure.  

In a first step, we applied the modelling infrastructure to setup a development for 
EDOC. J2EE and Java on the system side and TTCN-3 and Java on the testing side. 
In a next step, the UML 2.0 testing profile (U2TP [ 1]) will be used for PITs instead 
of TTCN-3. The current restriction to focus on TTCN-3 only, is due to the 
unavailability of U2TP tooling. U2TP is an extension of UML 2.0  5 being based 
upon the UML metamodel. It follows the same fundamental principles of UML in 
that it provides concepts for the structural aspects of testing such as the definition of 
test components, test contexts and test system interfaces, and behavioural aspects of 
testing such as the definition of test procedures, test setup, execution and 
evaluation. The core UML is the basis for modelling and describing test artefacts. 
However, as software testing is based on a number of special test-related concepts 
these are provided by the testing profile as extensions to UML. U2TP is closer to 
the system modelling with the EDOC Profile for UML and will therefore be 
considered in our future work.  
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