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Abstract. We present a MOF-based metamodel for the SA/RT (StructuredAnaly-
sis for Real-Time Systems) design method.The metamodel provides a well-defined
interpretation of the SA/RT elements, allowing the designer to create unambigu-
ous specifications of systems. The metamodel was designed to be easily combined
with UML and UML tools, in order to provide support for creating, editing and
manipulating SA/RT models in UML environments. The approach allowed us, to
specify and implement automated model transformations both between SA/RT
models and between SA/RT and UML models.

1 Introduction

In light of increasing complexity of today’s embedded systems, model-driven devel-
opment has become one of the necessary solutions to handle high complexity and to
ensure consistency of the specifications at different steps during the development pro-
cess. Usage of models allows designers to raise the level of abstraction and to use various
views to describe the system at different levels of detail, thus shifting the focus from
implementation concerns to solution modeling. To fully take advantage of a model-based
approach, appropriate tool support is required. Not only means to (graphically) create,
edit and manipulate model elements, but also scripting facilities to support automated
manipulation and consistency checking of such models are required, in order to speed
up the design process and to cut down development times.

Recently, OMG started to promote the Model-Driven Architecture (MDA) initiative
[1]. The main idea behind MDA is to define and use well-defined models to represent the
system, and model transformations to go from requirements to specific implementations,
assisted by appropriate tools. The main modeling language of MDA is, unsurprisingly,
represented by the Unified Modeling Language (UML) [2], but other languages can be
addressed too. MDA suggests the Meta-Object Facility (MOF) [3] as the main language
for defining modeling languages. A MOF model can be seen as a meta-model for other
meta-models, or, using the standard metamodeling terminology, a meta-meta-model. The
strength of a MOF-based metamodel resides in the possibility to define and integrate other
graphical notations into UML tools, thus allowing creating, editing and manipulating of
models in a graphical fashion.

One such modeling language is represented by the Structured Analysis for Real-
Time Systems (SA/RT), a graphical design notation focused on analyzing the functional
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behavior and information flow through a system. Although one of the most frequently
used methods in designing embedded applications, in recent years Structured Analysis
has been largely overshadowed by UML and object-oriented methods. In our opinion,
the supremacy of UML is largely due to the tool support it provides. However, we believe
that structural methods provide, in certain situations, important advantages compared to
object-oriented methods and that sometimes a combination of both is not only useful, but
also fundamental for developing complex embedded systems [4]. We presented in [5]
such a model-driven approach along with a discussion of the related work in combining
object oriented and data flow views of the systems.

In this paper, we present a MOF-based metamodel for SA/RT that, by providing
a well-defined interpretation of the SA/RT elements, enables the designer to create
unambiguous representations of systems in a tool supported manner. The goal of this
work was three fold: (1) to explore the flexibility of MOF in creating and using meta-
languages; (2) to specify and implement a MOF metamodel for SA/RT that can be used
either as a stand-alone tool or in combination with other MOF metamodels (e.g., UML)
in a common modelling environment; (3) to investigate the support for implementing
automated model transformations not only between models of the same metamodel, but
also between models of distinct metamodels.

Following, the paper presents in Sect. 2 how the metamodel was defined and built
starting from the SA/RT specification. Section 3 explains the metamodel implementation
in our SMW tool along with the implementation decisions taken during the process.
Short examples of scripts are given in Sect. 4 to illustrate how the MOF-based approach
could be used to provide automation for model interrogation and manipulation, and to
implement model transformations between different models. The paper ends with some
concluding remarks.

2 A Metamodel for SA/RT

This section presents the SA/RT metamodel and the methodology used to develop it. One
of our goals was to be able to incorporate data flow models and data flow information
with UML models. We tried to keep the SA/RT metamodel as compatible with the UML
metamodel as possible, although it also functions perfectly well as a stand-alone model.
In practice, this means that the core framework of the metamodel is quite similar to the
UML metamodel core, but with some unnecessary features removed, making the SA/RT
metamodel directly connectable to the standard UML 1.4 metamodel.

2.1 The SA/RT Notation

One apparent problem when creating models using the SA/RT approach is that different
tools and practitioners interpret the SA/RT notation in different ways [6], a fact which
can give rise to inconsistencies and confusion. A well-defined metamodel for SA/RT
could help to resolve such problems.

Since its introduction, several alternative interpretations of the SA/RT notation have
been presented in the literature. To create a metamodel it is thus necessary to decide upon
one interpretation of the standard. Our approach is to use the original specification by
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Ward and Mellor [7] as the starting point and use it as far as possible. A second variant
of the SA/RT notation was proposed by Hatley and Pirbhai [8], with the difference that
it separates the dataflow and control information into two separate views, making in our
opinion the models more difficult to understand. This is certainly not the only example
of differences between the Hatley/Pirbhai and Ward/Mellor methodologies, for there
are some minor notational differences in the definitions of the data-flow diagrams, but
we think that the better clarity of the Ward/Mellor approach motivates our choice. The
basic building blocks of a SA/RT system do remain the same regardless of the different
notational dialects: systems are described using data-flow diagrams, finite
state machines and data dictionaries. These are briefly described below.

Data Flow Diagram (DFD) is the main diagram used for structured analysis, mod-
eling the data flow through the entire system along with the manipulations done to
this data. A DFD consists of three main kinds of components: transformations,
stores, and flows. A transformation performs some operation on the infor-
mation it receives as input, after which the modified information is produced as output,
while a store only stores the information it receives as input, eventually passing it on
unmodified to another model element. Flows act as the glue of the system, connecting
transformations and stores together and transporting the information between
them. DFDs can (and should) be hierarchical, where the upmost layer is actually a con-
text diagram describing the interfaces between the system and the outside world, and
the external entities interacting with these interfaces. Lower layers then refine
the system until the functionality of all transformations has been described.

An important and distinguishing characteristic of the DFD is the separation of data
and control information, meaning that there are both control and data variants of the three
main components listed above.Controltransformations process control events,
while data transformations process data or special control events (e.g., enabling
and disabling the data transformations). Similarly, data stores and data flows
only handle data, while their control flows counterparts only accept events. How
to describe the functionality of the data transformations is not specified in detail in the
literature, but typically this can be done using pseudocode or flowcharts. The function-
ality of control transformations is described using state machines. There are
other rules regarding how different system components may be connected to each other,
but due to space reasons we omit them here.

State Machines are used to model control transformations. The specifi-
cation in [7] describes a rather simple state machine model, without any of the syntactic
sugar found the statechart definition of UML (e.g., hierarchical and history states).

Data Dictionaries describe the data flowing through the system, where the contents
and structure of each data element is described in detail. Ward and Mellor suggest a
regular-expression like notation to denote this information, as the data may be refined
into several smaller subsets of the original data type.

2.2 The Metamodel

The four main components in a MOF-based metamodel are: packages, classes,
associations and data types. Meta-objects in the target metamodel are mod-
eled using classes, while the associations model binary relationships between
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Fig. 1. The Core package of the SA/RT metamodel

these meta-objects. Data types model data such as primitive and external types.
Packages are used to make the model more manageable by modularizing it. “Stan-
dard” object-oriented features are supported, i.e. classes may have attributes, inheritance
and aggregation associations are included, etc. In practice, a MOF-based metamodel can
be constructed in much the same way as one would construct any class diagram for an
object-oriented design.Additional constraints on the metamodel can be specified through
well-formedness rules which must hold in order for the model to be considered correct.
The well-formedness rules which are defined for the MOF standard are expressed using
the Object Constraint Language (OCL).

Our SA/RT metamodel is divided into six packages. The Core package contains
fundamental metamodel elements needed by the other packages, while the Dataflow,
ActivityGraph and StateMachine packages describe the actual diagrams of an
SA/RT model. Additionally, we use the Auxiliary and Expressions packages to
reduce the size of the Core package.

Since we wanted to retain the possibility to incorporate data flow modeling capabili-
ties with UML, the Core package (Fig. 1) is essentially a subset of the UML core model.
The main differences are the addition of the DataElement class, which represents the
different types of data flowing through the system and which may in turn be subsets
of other data types, and the simplification or omission of some constructs such as the
Event class, which does not need the associated signature it has in the corresponding
UML metamodel, as events do not carry any data values in SA/RT.

The Dataflow package (Fig. 2) defines the elements that may be included in a
DFD. There are essentially three main classes and their subclasses that provide all the
model elements allowed.
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Fig. 2. The Dataflow package of the SA/RT metamodel

• The ExternalEntity class represents entities outside the system boundaries.
Interacting through the system-level interfaces, these entities can provide input to the
system or receive output from the system.

• The Flow class defines the flows between the transformations and stores in the
DFD. The subclasses DataFlow and ControlFlow define flows for transporting
data and events, respectively. The PromptFlow class models the special control
flows enabling and disabling data transformations. TheflowKind attribute specifies
whether the flow is continuous or discrete, while the refinedFlow - childFlow
association represents the connection between a flow in a higher-level DFD and the
corresponding refined flow in the lower-level DFD.

• The InternalEntity class is used to define the Transformation, Store
and FlowModifier elements, from which the elements of the DFDs are defined.

◦ The subclasses of Transformation define DataTransformations and
ControlTransformations. Their internal representation is specified by the
StateMachine and ActivityGraph packages, respectively.

◦ FlowModifier subclasses are used to model the connection points where the
contents of a flow can be modified. Split either splits a flow into a number of
identical copies (CloneSplit) or into a number of subsets (SubsetSplit)
of the original flow. Join either joins the contents of several flows into one flow
(AndJoin) or creates one flow containing one of the original flows (OrJoin).

◦ ControlStore and DataStore model event and data repositories.

The Ward/Mellor book defines a very simplistic state machine structure for model-
ing control transformations, but there is of course nothing that prevents us from using
some other, more complex, state machine model. Because of this, and because of our
metamodel’s compatibility with the UML core metamodel, we instead chose to use the
statechart metamodel of UML as the basis for our StateMachine package, which
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defines the state machine part of the metamodel. Similarly, since the SA/RT specifica-
tion does not impose a certain approach and because we wanted to employ a graphical
approach, we decided to use, beside plain text, activity diagrams to represent the inter-
nals of the data transformations. We defined them in the ActivityGraph package.
As these metamodels are essentially identical to the UML stateChart and UML
activityGraph metamodels, we omit them here. We also omit the presentation of
the Auxiliary and Expressions packages, but they can be found in [9].

In addition to the graphical metamodel, additional constraints have to be enforced
on the model. For example, one such rule states that data sinks are forbidden, i.e. a
data transformation must have both inputs and outputs. Some or even most of these
constraints could also have been specified in the graphical metamodel, at the cost of
more cluttering the metamodel diagram. When developing a metamodel this is of course
a tradeoff which must be evaluated on a case-per-case basis. The implementation of the
well-formedness rules will be discussed in more detail in the next section.

3 Tool Support for the Metamodel

To really benefit of a SA/RT metamodel, tool support is required. We used the Software
Modeling (SMW) toolkit [10] to automatically generate the metamodel, to create a
SA/RT profile and, by using the scripting facilities of the tool, to provide automated
querying and manipulation of SA/RT models.

3.1 The SMW Toolkit

SMW is built upon the OMG’s MOF and UML standards, allowing editing, storage
and manipulation of metamodels. The tool uses the Python language [11] to describe
the elements of a model, each element being represented by a Python class. This fact
provides the basic mechanism for accessing and executing queries over given models,
as well as implementing transformations of the model elements in an OCL-like style.
In addition, SMW allows the creation and usage of user defined profiles, based on the
MOF standard.

3.2 SA/RT Metamodel Generation

When developing the metamodel we employed a graphical approach. The Python im-
plementation of a specific metamodel can be generated simply by giving to the SMW
metamodel generator the metamodel file as input as a UML class diagram saved in XMI
[12] format. Therefore, by drawing the SA/RT metamodel class diagram directly into
SMW we were able to automatically generate the metamodel.

The SMW toolkit enforces some constraints automatically (e.g., the multiplicity of
the model elements) and adds checks for these in the metamodel file, but more specific
constraints still have to be defined by hand in a separate file and supplied as input to
the metamodel generator. The constraints were extracted from the informal specification
of SA/RT and implemented as well-formedness rules coded directly in Python, using
OCL-like constructs. The approach is similar to the way the UML metamodel is defined.
Some examples of constraints, and their implementation in Python, are shown below. In
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total 20 such well-formedness rules were implemented to constrain the dataflow part of
the SA/RT models. A complete list of these rules can be found in [9].

def wfrDataStore1(self):
"A DataStore may only be connected to DataFlows"
return(self.association.forAll(lambda ae:

ae.association.oclIsKindOf(DataFlow)))

def wfrFlow1(self):
"Flows may not have the same source and target elements"
return(self.connection.forAll(lambda ae1,ae2:

not(ae1.participant==ae2.participant)))

3.3 The SA/RT Profile

To be able to create, edit and manipulate models in a graphical environment, a SA/RT
profile has been implemented in SMW. Two possible approaches existed to represent
the graphical elements: to use the existing UML notations or to implement a new ed-
itor in SMW featuring the actual SA/RT notations. We followed the second approach.
While some work was needed to implement the editor functionality for the SA/RT pro-
file, the only change which had to be made to the metamodel was the inclusion, in
the Auxiliary package of the metamodel, of a PresentationElement class
describing the physical views of the ModelElement.

A screen shot of the resulting profile is presented in Fig. 3 (a). The system shown
represents the top-level model (i.e. context diagram) of the Cruise Control system de-
scribed by Ward and Mellor. The property editor for the currently selected element (i.e.
’0-Maintain-AutoSpeed’) can be seen at the bottom of the screen. A refinement
of the top-level diagram is presented in Fig. 3 (b), where the outer flows (from e.g.,
the context- or some other higher-level diagram) have been connected to the inner, re-
fined transformations. The state machine corresponding to the ’1-MonitorEngine’
control transformation is presented in Fig. 3 (c).

One slight problem due to following the graphical construction approach was that
although we used well-defined rules to specify those characteristics of the metamodel
which are not defined graphically (i.e. in the XMI file), we still needed to implement
those rules again in the SMW editor. For instance, although one of our well-formedness
rules specifies that a join or a split must not be connected to both data and event
flows, we still have to specify this rule explicitly in the part of the editor which handles
connections between elements. That is, it is not sufficient to check if the well-formedness
rule holds after the erroneous element already has been added to the diagram, but rather
the user should be prevented to add the incorrect element at all.

Of course, it is also the case that some well-formedness rules cannot be applied
to models which are under development. An example of this situation is the well-
formedness rule stating that a non-abstract DataTransformation, i.e. a data trans-
formation which is not refined by any other transformations, may only be connected to
DataFlows and PromptFlows, not to regular ControlFlows. When designing
a model it would be unpractical to apply this restriction, as we are likely to have some



A MOF-Based Metamodel for SA/RT 109

(a)

(b)

(c)

Fig. 3. Top-level DFD (a), its refined DFD (b) and the state machine of the Monitor Engine control
transformation (c)

unrefined DataTransformations in our unfinished model which later are going to
be refined, and thus become abstract. Figure 3 (a) illustrates this case, as here we have
not yet added any refining transformations for the ’0-MaintainAutoSpeed’ trans-
formation, but we still have control flows connected to it. Applying the well-formednes
rule while designing the model would mean that we need to define all transformations
completely before we can add flows between them. In this case it is thus more reasonable
to only check that the condition holds for the complete model. The SMW editor features
a shell through which the model can be inspected and also modified using Python scripts.
Executing one single command in the shell window, all well-formedness rules on the
metamodel are recursively checked.

4 Model Manipulation

Using the scripting facilities of the SMW tool, Python scripts could be implemented to
navigate, query and manipulate SA/RT models. Next we present couple of examples of
such scripts. For instance, the following script returns the name of all data flows in a
model that are inputs for a data transformation element with a given name. Here, the
function getAllParts() recursively returns all the elements of a given model.

dfdModel.getAllParts().select(lambda df:
df.oclIsKindof(DataFlow) and
dfdModel.getAllParts().select(lambda dt:

dt.oclIsKindOf(DataTransformation) and
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dt.name==someName and
df.connection[1].participant==dt)).name

Similar scripts can be used to modify or transform the SA/RT models created. One
such example can be, for instance, when two output data flows with identical names
originate in the same data transformation and have distinct target data transformations
(sink). In this case a fork (clone) flow is added to replace the two flows.

dfdModel.getAllParts().select(lambda source:
source.oclIsKindOf(DataTransformation) and
dfdModel.getAllParts().select(lambda firstFlow:

firstFlow.oclIsKindOf(DataFlow) and
firstFlow.connection[0].participant==source˜and
dfdModel.getAllParts().select(lambda secondFlow:

secondFlow.oclIsKindOf(DataFlow) and
secondFlow.connection[0].participant==source and
firstFlow.name==secondFlow.name and
addAClone(firstFlow, secondFlow, source))))

In the same way, model transformations could be implemented not only between
models of the same metamodel, but also between models of different metamodels (e.g.,
SA/RT and UML). Following, a partial example of a script that transforms a class diagram
(i.e. umlModel) into a DFD (i.e. dfdModel) is presented. In there, each actor of the
UML model is transformed into anexternal entity and added to the SA/RT model
(lines 1-3). Similarly, the �control� and �interface� classes are transformed
into correspondingdatatransformations and added to the DFD model (lines 5-8).

0. for el in umlModel.ownedElement:
1. if el.oclIsKindOf(UML.Actor):
2. ee=SART.ExternalEntity(name=el.name)
3. dfdModel.ownedElement.append(ee)
4. if el.oclIsKindOf(UML.Class):
5. if el.stereotype[0].name=="interface" or
6. el.stereotype[0].name=="control":
7. dt=SART.DataTransformation(name=el.name)
8. topEl.ownedElement.append(dt)

More details on these model transformations and how we used them to support a
model-driven process were given in [5].

5 Conclusions

We presented a MOF-based meta-model for SA/RT. We described how the metamodel
was constructed starting from the SA/RT specification and how it was implemented
in the SMW tool. Using the metamodel, we were able to provide tool support for our
model-driven approach presented in [5]. It allowed us to create and manipulate system
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models using both the graphical, as well as the scripting facilities of the SMW tool. In
the same time, using OCL to enforce constraints of the SA/RT metamodel, gave us the
possibility to verify and ensure the consistency of the models created.

Having the MOF standard as a common meta-meta-model for both SA/RT and UML
meta-models, enabled us to easily combine and integrate the object-oriented and struc-
tured methods to represent views of the system under design at different steps of the
development process and at different levels of abstraction. Moreover, it made possible
to graphically create and manipulate, simultaneously and inside the same development
framework, UML and SA/RT models of the system under design. In addition, benefiting
of the scripting facilities of the tool and of the OCL-like constructions in Python, scripts
to support model transformations between SA/RT models or between SA/RT and UML
models could be implemented. They provided us the basic means for automation, thus
speeding up considerably the development time and reducing the error-prone sources
during the transition from one step to another.

The implementation of the SA/RT metamodel proved to be an important opportunity
in experiencing the concepts of metamodeling and model-driven development, and in
the same time, it served as a case study for the SMW toolkit, enabling us to evaluate the
features and detect the shortcomings of SMW as a metamodeling tool.

A similar approach can be followed up to design other MOF-based metamodels
in order to provide tool support for already existing notations or to integrate UML
(or SA/RT) with other/new metamodels. This would result in an enriched set of tools
available for the system designer. For instance, to benefit of existing UML profiles
(e.g., UML/RT profile) one can use the approach to provide new descriptive features
into SA/RT, like concurrency and timing information.
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