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Abstract. Within one model, behavioural consistency of its constituents
is often problematic. Within UML such horizontal behavioural consis-
tency between the objects of a concrete model, is particularly needed in
the context of dynamic patterns. Here, we investigate delegation, which is
fundamental to patterns that separate the locality of receiving a request,
and one or more localities actually handling it. We specify delegation by
means of the coordination language Paradigm. In particular, we present
some variants of delegation in the context of a broker pattern and clarify
how the Paradigm notions are the basis for understanding a solution as
well as for adapting it to deal with other dynamic features.

1 Introduction

Software architectures are the major instrument to handle the size and com-
plexity of today’s software systems. Moreover, within the context of a business
architecture, they pinpoint the software system’s embedding in the non-digital
world. Typically, an architecture consists of a number of components related
via specific links. Components express certain aspects that contribute to the
functionality of the system or the organization as a whole. Interaction among
components is directed via their interfaces. To stress this even more, components
are usually considered stateless. In the architectural description one abstracts
away from the internal dynamics of a component in order not to clutter up
the overall view. See, e.g., [19, 8]. Nevertheless, some dynamics survive in ar-
chitectural descriptions, e.g. via protocols and protocol roles and other global
dynamics, as these are relevant for dynamic consistency between components.

The problem of dynamic consistency between components constituting an
architecture is, as yet, far from being solved. Even within the UML [3, 9], where
the underlying, detailed dynamics of objects constituting a model contribute
additional information to base dynamic consistency on, the problem of dynamic
consistency is comparably far from being solved. Clarification of this problem
situation is the more pressing, as increasingly often patterns are being used (both
as means of design [10] and for business processes [5]) for consistently organizing
and reorganizing the dynamics of the model’s constituents.
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Often, when modeling a software system with the UML, the use-cases act as
‘glue logic’ for the information carried by the respective description methods.
Similarly, sequence diagrams restricting the dynamics to interactive steps only,
concentrate on ‘gluing’. This is not only a matter of style: the concrete behaviour,
as captured by the use-case or the sequence diagrams, has its consequences for the
interaction of the components involved. More frequently rule than exception, the
relevant information goes beyond the interface. Some of the internal dynamics
of the component must be revealed in order to assess the correctness of the
cooperation of a component and its software or non-software environment.

In order to judge the global behaviour of the system, the local behaviour of
components is pivotal. For example, the interaction of a component should not be
in conflict with its internal dynamics. This is consistency between different levels
of description, more or less similar to Küster’s vertical consistency (cf. [7, 16]).
Also, the component should act in compatibility with the components from its
surroundings. This is consistency between different model constituents, on the
same level of description, suitably chosen to reflect the relevant collaboration;
here, Küster’s notion of horizontal consistency is more appropriate. Typically,
such questions of consistency arise when components play multiple roles in mul-
tiple protocols that overlap in time. See, e.g., [17, 18].

The modeling technique that we propose for aligning global and local be-
haviour is Paradigm [6, 20, 12]. In Paradigm the coordination among a manager
and its employees is the prime concern. It does so by relating the local behaviour
of the manager to the global behaviour of the employees, the latter being deco-
rated with just that little information that is necessary to maintain consistency
of the system. In this way, via a manager, Paradigm addresses horizontal con-
sistency between the manager’s employees. Furthermore, via its special notions
of subprocess and trap, Paradigm guarantees vertical consistency within an em-
ployee between its detailed and global behaviour. In the present paper we report
on an application of Paradigm in business process modeling for a non-hierarchical
organization. The example deals with delegation. Delegation, i.e. separating the
components for starting behaviour and the component(s) continuing it, is behind
many patterns [10, 5], thus requiring horizontal consistency between them.

Below, Section 2 introduces, informally, the key ingredients of Paradigm. A
first description of the delegation example is covered in Section 3. An alternative
model is presented in Section 4. Some other variants are discussed in Section 5.
Finally, Section 6 wraps up with some concluding remarks.

2 Paradigm

Paradigm is a coordination specification language, concentrating on expressing
behaviour and behaviour influencing. In this section we present Paradigm briefly
and informally. Operational semantics of Paradigm have been presented in [12]
and [11]. It is stressed that in the present paper Paradigm models do not require
that coordination is organized in a strictly hierarchical manner.
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Paradigm uses the notion of a process, together with a state-transition-
diagram-like visualization for it. Usually, a process expresses a constituent’s be-
haviour on the detailed level, corresponding to its inner, hidden behaviour. See,
e.g., Figure 1 for an example visualization as a directed graph: nodes are states
and directed edges are transitions between two states.

For the behavioural description of a constituent on a more global level,
Paradigm uses two additional notions: subprocess and trap. Whereas a process
specifies all possible behaviours of a constituent —in Figure 1 called Client(i)—
a subprocess (of a process) expresses a phase of that behaviour: a (temporary)
restriction of that behaviour, relevant in the context of some collaboration be-
tween constituents. A trap of a subprocess, being a subset of the subprocess
states, reflects a final, irrevocable stage of the subprocess: within a subprocess,
a trap of it cannot be left once entered. So, a trap can serve as a kind of commit
or acknowledge within the collaboration, e.g. declaring the subprocess behaviour
has proceeded far enough to be changed from the (current) behaviour restriction
into a suitable next one.

A partition then divides the full process behaviour into a set of subprocesses
with their traps. Figure 4 gives a visualization of a partition of Client(i) into
3 subprocesses. The relevant traps are drawn as polygons surrounding the states
a trap consists of. We formalize these notions in the next definition.

Definition 2.1

(a) A process or STD S is a pair 〈ST, TS〉. Here ST is called the set of states, or
also the state space; TS ⊆ ST× ST is the set of transitions. We write x → x′

in case (x, x′) ∈ TS.
(b) A subprocess of S is a process 〈st, ts〉 such that st ⊆ ST and ts ⊆ {(x, x′) ∈

TS | x, x′ ∈ st }. A trap t of a subprocess s = 〈st, ts〉 is a nonempty set of
states t ⊆ st such that x ∈ t and x → x′ ∈ ts imply that x′ ∈ t. If t = st,
the trap is called trivial.

(c) Let s = 〈st, ts〉 and s′ = 〈st′, ts′〉 be two subprocesses of the same process.
A trap t of s is called a connecting trap from s to s′ if the states belonging
to the trap t are states in s′ as well, i.e., t ⊆ st′.

(d) A partition {(si, ti) | i ∈ I } of a process S = 〈ST, TS〉 is a set of subprocesses
si = 〈sti, tsi〉 with traps ti such that ST =

⋃
i∈I sti and TS =

⋃
i∈I tsi.

Although not explicitly defined, a global behaviour for a constituent, see, e.g.,
Figure 5, can be formulated in terms of a sequence of subprocesses glued together
by means of a connecting trap. All phases occurring in such a sequence come from
the same partition; we therefore say about such a global behaviour, it occurs on
the level of that partition. Note that for a connecting trap all states in it belong
to both subprocesses involved. For this paper we restrict ourselves to a single
trap of any subprocess connecting it to a next subprocess.

The formal structure on which these semantics are defined (cf. [11]) are tuples
of configurations, one per process. A configuration looks as follows:

[ si, 〈Sij〉m(i)
j=1 ]ni=1
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It consists of the local state si of the process Pi and a sequence of m(i) subpro-
cesses Sij , one for each partition πij of the process. The local state belongs to
the detailed behaviour of the process whereas a subprocess belongs to the global
behaviour of the process on the level of one of its partitions. Thus, for each pro-
cess and its partitions the configuration gives the current state and the current
subprocesses. Transitions in the various coordinates are governed by so-called
consistency rules. The general format of a consistency rule is

ProcP : state a → state b ∗
ProcQ1[PART1] : SubProc1 → SubProc′

1,
. . .

ProcQn[PARTn] : SubProcn → SubProc′
n

(2.1)

Here state a → state b is a ProcP transition, PARTi is a partition of process
ProcQi and SubProci → SubProc′

i is a transition in the global behaviour or
transfer on the level of partition PARTi, requiring the various connecting traps
have been entered. Via a consistency rule, a combined transition occurs consist-
ing of a state transition and zero or more subprocess changes. In the presence of
the consistency rule (2.1) the process ProcP is called manager of the processes
ProcQ1, . . . , ProcQn. The latter processes are called employees of ProcP. So, an
employee has at least one partition and, therefore, global behaviour.

If a process has one or more partitions, the semantics guarantee, a state
change in the process only happens if that transition belongs to each current
subprocess of the process. In other words, for an employee process the detailed
transitions are consistent in all partitions with the current subprocesses for that
process. The global transitions correspond to a detailed state transition in some
manager process. Such a global transition can only happen if the traps of the
relevant subprocesses have been reached. Informally, a manager prescribes new
subprocesses to some of its employees by making a suitable state transition;
similarly, an employee, by entering a suitable trap, allows a manager to prescribe
a new subprocess to it. In other words, a global transition is consistent with the
connecting trap that has actually been entered.

In the present setting based on the operational model of [11], in contrast to
the operational semantics given in [12], we allow an employee to have more than
one manager, even with respect to the same partition. This forms the basis for
delegation. Even more extremely, an employee can be its own manager. This is
self-management, which can be very useful in combination with delegation.

3 Delegation I

In this section, we consider a delegation example where n clients are served by
m servers. For simplicity, all clients behave the same; similarly, all servers behave
the same. A broker selects a client in round-robin order and assigns a server to
it when necessary. This server is subsequently responsible for handling the needs
of the client.
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A client can state its interest in a service by ‘approaching the desk’. When the
needs of the client are clear –possibly after some interaction with the broker, not
modeled here– a server is selected by the broker to handle the client’s request.
After this delegation, the broker continues its activities. The server takes care
of the clients it has been assigned to in a round-robin fashion. Once the client
is being served, it releases the service by getting satisfied. The server does not
inform the broker that it has become available for serving client i, but the broker
will conclude so, if needed, when it sees this client at its desk again.

A formal description of the above in Paradigm involves three process types:
client, broker, server. A client process is given by the state-transition diagram of
Figure 1. It consists of a cycle of 5 states, viz. no needs, at desk, need clear,
service and satisfied, that are subsequently visited. The state no needs is
considered to be the starting state of the process. We distinguish n client pro-
cesses named Client(1), . . . , Client(n). For presentational reasons we assume
in the pictures below the number n to be equal to 5.

Each client process has a partition named STATUS that has the three subpro-
cesses WithoutService, Orienting and UnderService given in Figure 4. The
three subprocesses together describe the global or coarse-grained behaviour of
the client process as pictured in Figure 5. It simply cycles through its three
subprocesses.

The trap asking of the subprocess WithoutService comprises the local
states at desk and need clear. If a client process has entered this trap, i.e. has
control in one of the two local states mentioned, it signals that it is ready for mov-
ing to a next phase. The traps of the subprocesses Orienting and UnderService
are likewise. When residing in state need clear or in either of the two states
satisfied and no needs, respectively, the corresponding phase has reached its
final stage and the client process is ready to be transferred (in its single STATUS
partition).

The state-transition diagram of the broker process is given in Figure 2. The
broker process checks all the client processes and mediates service on their desire.
The broker process has no partition.

The state-transition diagram of the m server processes have a similar shape
as the broker process. We assume that a server will check in a round-robin
fashion whether a client has been assigned to it, see Figure 3. A server process
has n partitions called CLIENT(i), one per client. Each CLIENT(i) partition has
two subprocesses, Assigned and NotAssigned., see Figure 6. Thus, the current
subprocesses of a server process together indicate, out of 2n possibilities, the
server’s status: for each client whether it is to be served or not. See Figure 7 for
the global behaviour of a server process in one of its n partitions.

Next, we have to describe the coordination of the n client processes, the
broker process and the m server processes. This is done via the so-called con-
sistency rules in Table 1. For the concrete case here, we explain the mechanism
of a consistency rule as described abstractly in the previous section. E.g., the
consistency rule (B2) of the broker process



Delegation Modeling with Paradigm 99

Table 1. Consistency rules I

(B1) Broker : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2) Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B3) Broker : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

(C1) Client(i) : no needs → at desk
(C2) Client(i) : at desk → need clear
(C3) Client(i) : need clear → service
(C4) Client(i) : service → satisfied
(C5) Client(i) : satisfied → no needs

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService,
Server(j)[CLIENT(i)] : Assigned → NotAssigned

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService

(S3) Server(j) : check(i) → check(i + 1)

Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

expresses a transfer dependent on three conditions: (i) the broker resides in its
local state mediate(i); (ii) the i-th client process, in its single partition STATUS,
has reached the trap of subprocess Orienting; (iii) the j-th server processes
has reached in its partition CLIENT(i) the trap of subprocess NotAssigned. The
effect of the transfer is also threefold: (i) the broker process will move to its
local state check(i + 1); (ii) the i-th client processes will continue adhering to
the subprocess Orienting in its partition STATUS (though in fact it cannot do
anything); (iii) the j-th server will adhere to the subprocess Assigned in its
partition CLIENT(i).

From the point of view of designing the coordination for the client-broker-
server system the consistency rules of Table 1 can be interpreted as follows: The
rule (B1) allows for a local transition of the broker process in the local state
check(i) provided that the i-th client process has reached the trap asking of its
subprocess WithoutService. So, the current state of client i is either at desk or
need clear. The broker will move to the local state mediate(i) to see what are
the needs of the client; the client changes, on the level of the partition STATUS,
from subprocess WithoutService to subprocess Orienting.

The rule (B2) illustrates the coordination of three processes. If the broker is
mediating service for the i-th client, i.e. it resides in the local state mediate(i),
and the needs of this client have become clear, i.e. client i has reached the
trap serverClear of the Orienting subprocess that consists of the local state
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need clear, and the j-th server has not been assigned to this client, i.e. it is
prescribed the subprocess NotAssigned in the partition for the i-th client, then
the (B2) rule can fire. The choice of the particular server is non-deterministic.
The broker moves to the local state client(i+1) as it considers its involvement
with the i-th client to be finished for the moment. This has been delegated to the
j-th server. The ith client is left in the subprocess Orienting waiting for service.
The j-th server is notified to take care, at the appropriate time, of client i as it
now follows the subprocess Assigned for this client.

The consistency rule (B3) is an instance of the negative rule format. It
expresses that the broker can make a local transition from state check(i) to
check(i+1) in case the i-th client does not reside in the trap asking of the sub-
process WithoutService. Note that the non-determinacy of moving either to
state mediate(i) or to state check(i+1) for the broker process in state check(i)
is resolved by the i-th client (and, strictly speaking, also involving the server
processes). We claim, an equivalent Paradigm model without negative rules can
be constructed as well, an issue not treated here.

The consistency rules of the client processes are rather simple. As the clients
have not been assigned coordination tasks, their local transitions are uncondi-
tional, but for the overall requirement that the transitions belong to the current
subprocess of the partition STATUS.

The consistency rule (S1) of the server is similar to the rule (B1) of the broker
process. The rule covers the case where the server j has been delegated coordi-
nation of client i by the broker. Here, we also see a case of self-management: the
server process will transfer itself from its subprocess Assigned to the subprocess
NotAssigned. This way, the server will be available for the broker for assign-
ment to client i again, when this client returns to the desk asking for brokerage
of another service. By the delegation, the broker is leviated from keeping track
of the precise stage of the clients and of the availability of the servers. Based
on rule (S2), server j will only move from state serve(i) to state check(i + 1)
when client i has reached the trap ready of its subprocess UnderService. The
server then transfers the client to the subprocess WithoutService. The local
transition of the j-th server from state client(i) to state client(i + 1) has
no side-conditions in rule (S3). However, the transition is only possible if, on
the level of partition CLIENT(i), the server’s current subprocess is NotAssigned.
Thus, the broker resolves the non-determinacy of server j in state client(i). If
the server is assigned, it will only have the transition to its state serve(i) based

service

satisfied

at_desk

no_needs
Client(i):

Client(i):
need_clear

Fig. 1. Client STD
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mediate(1) mediate(2) mediate(3) mediate(4) mediate(5)

Broker:

check(1) check(2) check(3) check(4) check(5)

Fig. 2. Broker STD

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2) check(3) check(4) check(5)Server(j):

Fig. 3. Server STD

service

UnderService:

no_needs

satisfied
ready

need_clear

serverClear

Orienting:

at_desk

WithoutService:

no_needs

at_deskneed_clear need_clear

satisfied

asking

Fig. 4. Subprocesses of the Client process for partition STATUS

asking
WithoutService

ready serverClear

Orienting

UnderService

Fig. 5. Global behaviour of the Client process on the level of partition STATUS

check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2)

serve(1) serve(2) serve(3) serve(4) serve(5)

Assigned: Running:

triv

NotAssigned: OutOfService:check(4) check(5)check(3)

triv

Fig. 6. Subprocesses of a Server process for partition CLIENT(3)

on rule (S2) as an option; if the server is not assigned, it can only move to state
client(i + 1) by rule (S3).
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triv
NotAssigned Assigned

triv

Fig. 7. Global behaviour of a Server process on the level of partition CLIENT(i)

4 Delegation II

As in the previous section, we have three process types: client, broker, server.
Only the broker is slightly different, see Figure 8, as it has additional loops in
its states check(i). Furthermore, we consider the same configuration of n client
processes, 1 broker process and m server processes. See Figure 1 and Figure 3
for the other two process types.

The small difference of the broker has to do with the different details of the
delegation. In the previous section, the broker delegated the actual service of a
client to a server, without being informed explicitly about the precise beginning
of such service. In the current section we let the broker be informed about such a
beginning to serve Client(i) by Server(j). This enables the broker to withdraw
the assignment of Server(j) to Client(i). So now it is the broker who changes
subprocess Assigned into NotAssigned, instead of Server(j) doing it. So the
(partial) delegation of coordinating Server(j)’s global behaviour on the level of
partition CLIENT(i) does no longer exist: the broker does the complete coordina-
tion of this and similar global behaviours. This has the following consequences
for the Paradigm model. Partition STATUS and the global behavior for it remain
unchanged, see Figure 4 and 5. The servers remain unchanged, see Figure 3, but
their partitions CLIENT(1), . . . , CLIENT(n) are rather different, see Figure 9.

Their traps idle and busy are apparently nontrivial. Trap idle, being very
large, expresses that the server can do anything but starting to serve client(i).
So, a new assignment of this very client can happen when needed. Trap busy
is a small one, expressing that service can be started and completely given, but
it cannot be terminated, so the client is not really released - although it can
continue as far as state no needs. The slightly adapted global behaviour is given
in Figure 10. The coordination of the various detailed and global behaviours
is described by the consistency rules in Table 2 (rules for Broker and Server
processes only).

The differences between the rule set from Table 2 compared to those from
Table 1 exactly reflect, on the basis of the new Paradigm model, the new co-
ordination details. The delegation by the broker towards the individual servers
of controlling a part of their global behaviour on the level of their partition
CLIENT(i), is no longer there. Moreover, the delegation by the broker towards
the individual servers of controlling a part of the global behaviours of the various
clients on the level of partition STATUS is changed such that in the new situation
any server explicitly informs the broker when it starts or finishes such a dele-
gated task. The consistency rules changed to this aim, are as follows. Rule (B4)
is added to guarantee the transition from partition Assigned to NotAssigned,
which is no longer the responsibility of a server. Note that only after such a
global transition, the corresponding server can release the particular client it is
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Table 2. Consistency rules II

(B1) Broker : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2) Broker : mediate(i) → check(i + 1) ∗
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B3) Broker : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

(B4) Broker : check(i) → check(i) ∗
Server(j)[CLIENT(k)] : Assigned → NotAssigned

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService

(S3) Server(j) : check(i) → check(i + 1)

serving. Rule (S1) has been simplified, as the global transition from a subprocess
Assigned to NotAssigned is taken care of by the broker. The explicit informing
by a server to the broker when it starts or finishes its delegated task, occurs with
the (detailed) transition in rules (S1) and (S2). Thus, a server enters its trap
busy by rule (S1) or its trap idle by rule (S2). It is on the basis of a server
having entered such a trap, the broker applies rule (B2) or (B4). The other rules
do not change.

check(1) check(3)check(2) check(4) check(5)

mediate(1) mediate(2) mediate(3) mediate(4) mediate(5)

Broker:

Fig. 8. Broker STD II

5 Variations

In this section we illustrate some more flexibility of Paradigm. We discuss three
variations on the delegation example of Sections 3 and 4. We describe how one
can add other processes in a clean way. First, by addition of a tool that is
coordinated by the servers as manager; second, by extension of the configuration
with a maintainer that coordinates the servers as its employees. As a third
variation, we consider a refinement of the broker in its assignment of servers
based on a parameter mechanism.

5.1 Adding an Employee Process

We consider the case where the servers share some resources that are needed
for the servicing of clients. We add two tools, Tool(1) and Tool(2): the one
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check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2) check(3) check(4) check(5)

NotAssigned:

Assigned:

idle:

busy

Fig. 9. Subprocesses of a Server for partition CLIENT(3)

idle

busy
NotAssigned Assigned

Fig. 10. Global behaviour of a Server on the level of partition CLIENT(i)

shared amongst the odd-numbered servers, the other shared amongst the even-
numbered servers. Each tool will have one partition named AVAILABILITY rep-
resenting its availability, being either Released or Taken. The state-transition
diagram and subprocesses are pictured in Figure 11.

The tool alternates between its two states. Servers of the same parity are all
managing the corresponding tool in the same partition. When a tool has been re-
leased, as signaled by reaching the trap toBeTaken of subprocess Released, the
server can take the tool. The tool is then transferred to its subprocess Taken.
When the tool has reached its state occupied, i.e. the trap toBeReleased of
subprocess Taken, the server can use the tool at its leisure. The server then re-
leases the tool by transferring it to the subprocess Released, so that it can
move to its local state free, where it can be taken again. The transfer of
tool subprocesses thus maps 1-1 on the transitions check(i) → serve(i) and
serve(i) → check(i + 1).

In order to mix the coordination of the tools by the server and the exist-
ing client-broker-server dynamics, we add the signaling of traps and transfer
of subprocesses of the tools to the consistency rules of Table 1 of the servers.
The rules for the broker and client remain the same. The new rules for the
two tool processes are simple as the tool processes have no manager role. See
Table 3.

5.2 Adding a Manager Process

In the previous subsection the management of a tool was done by a collection of
servers. Therefore, the consistency rules of the servers were adapted to cope with
the new situation. Next, we show how to extend the system by the addition of a
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Table 3. Consistency rules for the Server and Tool processes

(S1) Server(j) : check(i) → serve(i) ∗
Client(i)[STATUS] : Orienting → UnderService,
Server(j)[CLIENT(i)] : Assigned → NotAssigned,
Tool(j mod 2)[AVAILABILITY] : Released → Taken

(S2) Server(j) : serve(i) → check(i + 1) ∗
Client(i)[STATUS] : UnderService → WithoutService,
Tool(j mod 2)[AVAILABILITY] : Taken → Released

(S3) Server(j) : check(i) → check(i + 1)
(T1) Tool(k) : free → occupied
(T2) Tool(k) : occupied → free

process that manages some existing ones. We introduce a maintenance process
that influences the dynamics of the servers. The state-transition diagram of the
Maintainer process is given in Figure 12. (Again, for reasons of presentation,
we choose in the figure the number of servers equal to 5 too.) The maintainer
in its starting state no maint selects non-deterministically one of the servers.
If the selected server is servicing a client, it can finish this. Then the server
is brought under maintenance; it resumes servicing as soon as the maintainer
process returns to its initial position.

As, with respect to the design choices made here, the maintenance issues
are orthogonal to the original dynamics, we simply add a new partition for
the servers. This is partition MAINTENANCE with subprocesses as in Figure 13:
subprocess OutOfService with trap stalled only allows to finish the current
service (a graceful interrupt) and the subprocess Running with the trivial trap
allows all behaviour.

The consistency rules for the Maintainer process are not surprising, see
Table 4. Note, as the trap used is trivial, rule (M1) is not biased to any of the
servers. Any server process can be interrupted for maintenance, based on the
maintainer’s decision only.

Table 4. Consistency rules for the Maintainer process

(M1) Maintainer : no maint → maint(j) ∗
Server(j)[MAINTENANCE] : Running → OutOfService

(M2) Maintainer : maint(j) → no maint ∗
Server(j)[MAINTENANCE] : OutOfService → Running

5.3 Parameter-Based Refinement

Our last variation shows how load balancing or history-based allocation can
be handled in Paradigm. A process can be decorated with a parameter repre-
senting the local variables or data of the process. The parameter mechanism
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Table 5. Consistency rules for the Broker process with parameter

(B1) Broker{H} : check(i) → mediate(i) ∗
Client(i)[STATUS] : WithoutService → Orienting

(B2a) Broker{H} : mediate(i) → check(i + 1) ∗ if (i, j) ∈ H
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned

(B2b) Broker{H} : mediate(i) → check(i + 1) ∗ if �k: (i, k) ∈ H
Client(i)[STATUS] : Orienting → Orienting,
Server(j)[CLIENT(i)] : NotAssigned → Assigned
Broker{H} =⇒ Broker{H + (i, j)}

(B3) Broker{H} : check(i) → check(i + 1) ∗
Client(i)[STATUS] : WithoutService �→

Tool(k):

free

occupied

free

occupied

Released:

free

occupied

Taken:

toBeTaken

toBeReleased

Fig. 11. Tool STD and subprocesses of the Tool process

maint(3)
maint(2)

maint(1)

maint(4)

maint(5)

no_maint

Maintainer:

Maintainer:

Fig. 12. Maintainer STD

is reminiscent to process languages as CCS or CSP. For a process with some
parameter, Proc(X) say, occurring at the left-hand side of a consistency rule, a
so-called change clause is added to the right-hand side of a consistency rule of
the format Proc(X) =⇒ Proc(X ′). The idea is that the rule can only be fired if
the data of Proc has value X. As an immediate consequence of firing the rule,
the data X of Proc will be changed into the data X ′ on behalf of the relevant
manager.

Consider, e.g., in the setting of Section 3, the case where the broker gives
a client the same server as before. If the client has not been brokered yet, the
broker simply selects one non-deterministically. We introduce the variable H
(for history) containing a pair (i, j) if client i was served by server j before. The
consistency rules are then augmented with the parameters and change clauses.
See Table 5. Now there are two consistency rules in place corresponding to
the local transition mediate(i) → check(i + 1) of the broker: If there exists a
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check(1) check(2) check(3) check(4) check(5)

serve(1) serve(2) serve(3) serve(4) serve(5)

check(1) check(2)

serve(1) serve(2) serve(3) serve(4) serve(5)

OutOfService: OutOfService:check(4) check(5)check(3)

stalled

Running: Running:

triv

Fig. 13. Subprocesses of the Server process in MAINTENANCE partition

pair (i, j) in H than the server j is allocated for client i by rule (B2a); if no such
pair (i, k) exists in H, any of the servers can be appointed to deal with client i
by rule (B2b). The other consistency rules remain the same.

6 Concluding Remarks

In this paper we showed how delegation can be modeled with Paradigm. For two
basic cases and variations we indicated what the Paradigm model looks like and
how the consistency rules capture the coordination of the processes involved. The
main point is that local or detailed behaviour of a process that is manager of part
of the system, is consistent with the global behaviour of its employee processes,
thus assuring horizontal consistency in that part of the system. Manager role and
employee role can change dynamically. Paradigm does not only allow for multiple
employees of one manager, but also for multiple managers of one employee, thus
allowing delegation and even self-management. The advantage of being able to
relate local and global behaviour is that of abstraction. Modeling or reasoning
about the behaviour of one process does not require to have knowledge in full
detail of the other processes that are involved. Here it is vertical consistency
between the local behaviour and the global behaviour that matters, as illustrated
above for delegation.

In the master’s thesis of Van Kampenhout [15], related to work of [1], some
initial work has been performed on verification of Paradigm models. In a case-
study concerning an insurance company typical properties such as allocation and
fairness have been checked. This was done using SMV. It is plausible, that the
software architecture arising from a Paradigm model by ‘cutting along parti-
tions’ is amendable to architecture slicing as proposed in [4] in the context of
the Charmy framework. It would be interesting to see how Paradigm and Spin
can be exploited, e.g., for the case study reported in [13], where also the issue
of coordination and UML is addressed. More generally, with the increased ex-
pressiveness and flexibility of Paradigm, the pattern trail is a promising line of
research. Currently, in joint work with Andries Stam, we are adapting Paradigm
models for the ToolBus machinery [2, 14] for prototyping purposes.
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7. G. Engels, R. Heckel, and J.M. Küster. The consistency workbench: A tool for
consistency management in UML-based development. In P. Stevens, J. Whittle,
and G. Booch, editors, UML 2003, pages 356–359. LNCS 2863, 2003.

8. P. Clements et al. Documenting Software Architectures: Views and Beyond. SEI
Series in Software Engineering. Pearson Education, 2002.

9. M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage (3rd edition). Addison Wesley, 2003.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley, 1995.

11. L.P.J. Groenewegen, N. van Kampenhout, and E.P. de Vink. Coordination in
networked organizations: the Paradigm approach. Technical Report CSR 03/13,
Technische Universiteit Eindhoven, 2003.

12. L.P.J. Groenewegen and E.P. de Vink. Operational semantics for coordination in
paradigm. In F. Arbab and C. Talcott, editors, Proceedings Coordination 2002,
pages 191–206. LNCS 2315, 2002.

13. P. Inverardi and H. Muccini. A coordination process based on UML and a software
architectural description. In H.R. Arabnia, editor, Proc. PDPTA, 2000. 7pp.

14. H. de Jong and P. Klint. Toolbus: The next generation. In F.S. de Boer et al.,
editor, FMCO 2002, Revised Lectures, pages 220–241. LNCS 2852, 2003.

15. N. van Kampenhout. Systematic specification and verification of coordination:
towards patterns for Paradigm models. Master’s thesis, Leiden University, 2003.
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