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2 École Polytechnique, F-91128 Palaiseau cedex (France)
Francesco.Logozzo@Polytechnique.fr

Abstract. The paper investigates a formal approach to the verification
of non functional software requirements, e.g. portability, time and space
efficiency, dependability/robustness. The key-idea is the notion of ob-
servable, i.e., an abstraction of the concrete semantics when focusing on
a behavioral property of interest. By applying an abstract interpretation-
based static analysis of the source program, and by a suitable choice of
abstract domains, it is possible to design formal and effective tools for
non-functional requirements validation.

1 Introduction

Abstract interpretation [10] is a theory of semantics approximation for com-
puting conservative over-approximations of dynamic properties of programs. It
has been successfully applied to infer run-time properties useful for debugging
(e.g., type inference [7, 28]), code optimization (e.g., compile-time garbage col-
lection [22]), program transformation (e.g., partial evaluation [25], paralleliza-
tion [36]), and program correctness proofs (e.g., safety [20], termination [5], cryp-
tographic protocol analysis [33], proof of absence of run-time errors [3], semantic
tattooing/watermarking [13]).

As pointed out in [30], there is still a large variety of tasks in the software
engineering process that could greatly benefit from techniques akin to static
program analysis, because of their firm theoretical foundations and mechanical
nature.

In particular, as observed by [26], during the development of large-scale soft-
ware systems, effective and efficient management of customer and user require-
ments is one of the most crucial, but unfortunately also least understood issues.
Problems in the requirements are typically not recognized until late in the devel-
opment process, where negative impacts are substantial and cost for correction
has grown large. Even worse, problems in the requirements may go undetected
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through the development process, resulting in software systems not meeting
customers and users expectations, especially when the coordination with other
components is an issue. Therefore, methods and frameworks helping software
developers to better manage software requirements are of great interest for com-
ponent based software.

In this paper, we are interested to investigate the impact of Abstract Interpre-
tation theory in the formalization and automatic verification of Non-Functional
Software Requirements, as they seem not adequately covered by most require-
ments engineering methods ([27], pag. 194). Non functional requirements can be
defined as restrictions or constraints on the behavior of a system service [35]. Dif-
ferent classifications have been proposed in the literature [4, 16, 15], though their
specification may give rise to troubles both in their elicitation and management,
and in the validation process.

In fact, this work originated from a quite naive question: “what do we mean
when we say that a program is portable on a different architecture?”. In [17] a
software is said portable if it can run in different environments. It is clear that it
is assumed not only that it runs, but that it runs the same way. And it is also clear
that if we require that the behavior is exactly the same, portability to different
systems (e.g., from a PC to a PDA, or from an OS to another) can almost never
be reached. This means that implicit assumptions are obviously made about the
properties to be preserved, and about the ones that might be simply disregarded.
In other words, portability needs to be parameterized on some specific properties
of interest, i.e. it assumes a suitable abstraction of the software behavior. The
same holds also for other product non-functional requirements, like space and
time efficiency, dependability, robustness, usability, etc. It is clear that, in this
context, the main features of abstract interpretation theory, namely modularity,
modulability, and effectiveness may then become very valuable.

The main contributions of the paper can be summarized as follows:
– We extend the usual abstract interpretation notions to the deal with systems,

i.e. programs + architectures.
– We show that a significant set of product qualities (non functional require-

ments) can be formally expressed in terms of abstraction of the concrete
semantics when focusing on a behavioral property of interest. This yields an
unifying view of product non-functional requirements.

– We show how existing tools for automatic verification can be re-used in
this setting to support requirements validation; their practicality directly
depends on the complexity of the abstract domains.

The advantage of this approach with respect to previous attempts of mod-
elling software requirements, e.g. by using Milner’s Calculus of Communicating
Systems [19] or formal methods like Z [24] or B [1, 2] is twofold: (i) the soundness
of the approach is guaranteed by the general abstract interpretation theory, and
(ii) the automatic validation process can be easily tuned according to the desired
granularity of the abstraction.

As far as we know, this is the first attempt to apply Abstract Interpretation
theory to the treatment of non-functional software requirements. These semi-
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nal results can be seen as a partial contribution towards the achievement of a
more challenging objective: to integrate formal analysis by abstract interpreta-
tion in the full software development process, from the initial specifications to
the ultimate program development [9].

Paper Structure. In Section 2, the concrete semantics of a simple imperative
language is introduced to instantiate our framework. In Section 3, the core ab-
stract interpretation theory is extended to deal with program and architecture
abstractions. In Section 4 we show how to instantiate our framework on a suite
of non-functional product requirements. Section 5 concludes the paper.

2 Operational Semantics of a Core Imperative Language
with Exceptions

In order to illustrate the results of this paper, we instantiate our framework
with a core imperative language with exceptions and a core architecture. The
results can be easily generalized to more complex languages and architectures.
We give the syntax, the transition relations and the trace semantics of systems,
composed by architectures and a programs.

2.1 Syntax

In this paper setting an architecture is a tuple 〈bits,Op, stdio, stdout〉, where
bits is the number of bits used to store integer numbers, Op is a set of functions
implementing basic arithmetic operations, stdio is the input stream (e.g., the
keyboard) and stdout is the output stream (e.g., the screen). The input stream
has a method next that returns immediately the next value in the stream, and
the output stream has a method add to put a pair 〈v, c〉, i.e., a value v with a
color c. We assume that if an arithmetic error occurs in the application of an
operation op ∈ Op (e.g., an overflow or a division by zero), then the exception
ExcMath is raised.

The syntax of programs is specified by the following grammar:

C ::= skip | x = E | C1; C2 | if(E != 0) C1 else C2 | while (E != 0) C
write(x, col) | throw Exc | try C1 catch(Exc) C2

E ::= k | read | E1 + E2 | E1 − E2 | E1 ∗ E2 | E1/E2
where x and col belong to a given set Var of variables, Exc belongs to a given set
Exceptions of exceptions (including the arithmetic ones) and k is (the syntactic
representation of) an integer number.

A system is a pair 〈A, C〉, where A is an architecture and C is a program.

2.2 Semantics

The semantics of a system is described in operational style. We assume that
the only available type is that of architecture-representable natural numbers:
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k∈Nbits

〈k,σ〉 E−→k

k �∈Nbits

〈k,σ〉 E−→〈ExcMath,σ〉
A.stdio.next=v

〈read,σ〉 E−→〈v,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 v1,v2 �=ExcMath A.op(v1,v2)=v �=ExcMath

〈E1opE2,σ〉 E−→〈v,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 v1,v2 �=ExcMath A.op(v1,v2)=ExcMath

〈E1opE2,σ〉 E−→〈ExcMath,σ〉

〈E1,σ〉 E−→〈v1,σ〉 〈E2,σ〉 E−→〈v2,σ〉 (v1=ExcMath) or (v2=ExcMath)

〈E1op E2,σ〉 E−→〈ExcMath,σ〉

Fig. 1. The transition relation for expressions

Nbits = {0, , . . . 2bits − 1}. Given the syntactic representation k of a number, k
is the semantic correspondent. For instance, 0xFFFF = 65535 so that 0xFFFF �∈
N8 . An environment is a partial map from variables to representable integers:
Env = [Var → Nbits ]. If a variable x is not defined in a state σ, we denote that
by σ(x) = Ω. A state is either a command to execute in a given environment,
or an environment, or an exception raised within an environment. Formally:
Σ = C × Env ∪ Env ∪ Exceptions × Env.

The transition relations for expressions and programs are defined by struc-
tural induction, and they are depicted in Fig. 1 and Fig. 2. It is worth noting
that the transition rules are parameterized by the underlying architecture (e.g.,
the raising of an overflow exception depends on Nbits).

Let Σ∗ denote the set of finite traces on Σ, and let S0 ⊆ Σ be a set of initial
states. With a slight abuse of notation, we refer to a state as a trace of unitary
length. The partial-traces semantics [12] of a system is then expressed as a least
fixpoint over the complete boolean lattice 〈P(Σ∗),⊆〉 as follows:

��〈A, C〉�(S0) = lfp⊆
∅ λX. S0 ∪ {σ0 . . . σnσn+1 | σ0 . . . σn ∈ X, σn −→ σn+1}.

3 Abstracting Systems = Programs + Architectures

Abstract interpretation [10] is a general theory of approximation which formal-
izes the idea that the semantics of a program can be more or less precise de-
pending on the considered observation level. In this section we revise some basic
concepts, and we extend them to deal with composed systems.

In the abstract interpretation terminology, 〈P(Σ∗),⊆〉 is the concrete domain,
its elements are semantic properties, and the order ⊆ stands for the logical
implication. As a consequence, the most precise property about the behavior
of a system is the semantics ��〈A, C〉�, called the concrete semantics [10]. Set
of traces are approximated are represented by suitable abstract elements, which
capture interesting properties while disregarding other execution properties that
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〈skip,σ〉−→σ
〈E,σ〉 E−→〈v,σ〉 v �=ExcMath

〈x=E,σ〉−→σ[x�→v]
〈E,σ〉 E−→〈ExcMath,σ〉

〈x=E,σ〉−→〈ExcMath,σ〉

〈C1,σ〉−→σ′

〈C1;C2,σ〉−→〈C2,σ′〉
〈C1,σ〉−→〈Exc,σ〉

〈C1;C2,σ〉−→〈Exc,σ〉

〈E,σ〉 E−→〈k,σ〉 k �=0
〈if(E!=0)C1 else C2,σ〉−→〈C1,σ〉

〈E,σ〉 E−→〈0,σ〉
〈if(E!=0)C1 else C2,σ〉−→〈C2,σ〉

〈E,σ〉 E−→〈ExcMath,σ〉
〈if(E!=0)C1 else C2,σ〉−→〈ExcMath,σ〉

〈E,σ〉 E−→〈k,σ〉 k �=0
〈while(E!=0) C,σ〉−→〈C;while(E!=0) C,σ〉

〈E,σ〉 E−→〈0,σ〉
〈while(E!=0) C,σ〉−→σ

〈E,σ〉 E−→〈ExcMath,σ〉
〈while(E!=0) C,σ〉−→〈ExcMath,σ〉

A.stdout .add(σ(x),σ(col))
〈write(x,col),σ〉−→σ

Exc∈Exceptions
〈throw Exc,σ〉−→〈Exc,σ〉

〈C1,σ〉−→σ′

〈try C1 catch(Exc) C2,σ〉−→σ′
〈C1,σ〉−→〈Exc,σ′〉

〈try C1 catch(Exc) C2,σ〉−→〈C2,σ′〉
〈C1,σ〉−→〈Exc′,σ′〉 Exc′ �=Exc

〈try C1 catch(Exc) C2,σ〉−→〈Exc′,σ′〉

Fig. 2. The transition relations for programs

are out of the scope of interest. Abstract properties (or elements) belong to an
abstract domain of observables, D̄, and they are ordered according to 	̄, the
abstract counterpart for logical implication. In this work we assume that 〈D̄, 	̄〉
is a complete lattice.

The correspondence between the concrete and the abstract semantic domains
is given by a pair of monotonic functions 〈α, γ〉. The function α ∈ [P(Σ∗) → D̄],
called the abstraction function, formalizes the notion of the abstraction, and
α(T ) represents the best approximation in D̄ of the set of traces T (wrt the
order in D̄). If α(T )	̄p̄ then p̄ is also a correct, although less precise, abstract
approximation of T . On the other hand, the function γ ∈ [D̄ → P(Σ∗)], called
the concretization function, returns the set of traces that are captured by an
abstract property p̄. The abstraction and concretization functions must satisfy
the following property:

∀T ∈ P(Σ∗).∀d̄ ∈ D̄. α(T ) 	̄ d̄ ⇐⇒ T ⊆ γ(d̄),

in such a case, we say that 〈α, γ〉 form a Galois connection between the concrete
and the abstract domains. We write is as
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〈P(Σ∗),⊆〉 −−−→←−−−
α

γ
〈D̄, 	̄〉. (1)

The abstract semantics of a system, �̄�〈A, C〉�, is defined over an abstract
domain that is linked to the concrete domain by a Galois connection. It must
satisfy the soundness criterion, [10]:

∀S0 ⊆ Σ. α(��〈A, C〉�(S0)) 	̄ �̄�〈A, C〉�(α(S0)).

The soundness criterion above imposes that, when the properties encoded by
a given abstract domain are considered, the abstract semantics �̄�〈A, C〉� cap-
tures all the behaviors of 〈A, C〉. As a consequence, given a specification of a
system 〈A, C〉 expressed as an abstract property p̄, if �̄�〈A, C〉�(α(S0))	̄p̄, by the
soundness criterion and by the transitivity of 	̄, we have that

α(��〈A, C〉�(S0))	̄p̄.

This means that 〈A, C〉 respects the specification p̄.
In the following, we instantiate the abstract domain and p̄ in order to re-

flect non-functional requirements of systems and we show how well-known static
analyses can be re-used in this enhanced context for the automatic verification
of such properties.

4 Application: Non-functional Requirement Analysis

Non-functional software requirements are requirements which are not directly
concerned with the specific functions delivered by the system [35]. They may
relate to emergent system properties such as reliability, response time and store
occupancy. Alternatively, they may define constraints on the system like the data
representation used in system interfaces.

The ‘IEEE-Std 830 - 1993’ [23] presents a comprehensive list of non-functional
requirements. In the following we will focus on a few of such requirements, namely
portability, efficiency, robustness and usability. The approach can be extended
to cope with other non-functional requirements.

In this section, we show (i) how such requirements admit a rigorous formal-
ization, unlike, e.g., what stated in [27–§8.2], (ii) how, by a suitable choice of
abstract domains, existing tools can be re-used to verify such requirements, and
(iii) the effectiveness of the approach on a public-domain static analyzer [8].

4.1 Portability

Informal Definition. According to [17], a software “is portable if it can run on
different environments”. The term environment may refer to a hardware plat-
form or a software environment. Analogously, another widespread textbook, [31],
defines portability as “the ease of transferring software products to various hard-
ware and software environments”. The first observation is that the two definitions
implicitly link the requirement to unspecified software metrics. Furthermore, as
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any natural-based language specifications, they are intrinsically ambiguous. For
instance, the word “run” can be read as just the possibility of recompiling and
executing the software on different system, but also as the request that some
behavioral properties of the software are preserved in different platforms.

Formal Definition. We specify portability as a property of the execution of a
program that is preserved when it is ported on different architectures. This
means that up to a certain property of interest, the behavior of a software is the
same on a different architecture.

Definition 1 (Portability). Let us consider a program C, an architecture A

and a Galois connection 〈P(Σ∗),⊆〉 −−−→←−−−
α

γ
〈D̄, 	̄〉. We say that C, developed on

A, is portable on the architecture B w.r.t. the observable domain D̄, if

∀S0 ⊆ Σ. α(��〈B, C〉�(S0)) 	̄ α(��〈A, C〉�(S0)).

Abstraction. A class property one is interested to keep unchanged among dif-
ferent porting of the software is the behavior w.r.t. arithmetic overflow. For
instance, the violation of such a property in porting the control software on a
different architecture was at the origin of the Arianne V crash [29].

Arithmetic overflow can be checked by using numerical abstract domains,
e.g., [10, 14, 32]. In such domains the range of the values assumed by a variable
can be constrained so that it can be checked against the largest representable
number in a given architecture.

Example 1 (Portability). Let us consider the program C in Fig. 3(a), and let
us consider an architecture A such that A.bits = 32. We can use the Inter-
vals abstract domain [10], and the public-domain static analyzer [8] to infer
that �̄�〈A, C〉�(i �→ [−∞,+∞]) = [1, 216], and as 216 is representable on a 32
bit architecture, then program C does not cause any arithmetic overflow. As a
consequence, by the soundness of the static analysis (guaranteed by abstract
interpretation theory), we can safely infer that the program is portable to any
architecture in which 216 is representable (this is not the case in a 16 bits archi-
tecture).

4.2 Efficiency

Informal Definition. In the existing literature, efficiency “refers to how econom-
ically the software utilizes the resources of the computer” [17], or it is “the ability
of a software system to place as few demands as possible on hardware resources,
such as processor time or space occupied” [31]. Once again, such definitions suffer
from the ambiguity of the natural language,e.g., it is not clear if when verifying
efficiency requirements the underlying architecture must be considered or not,
or if space and time requirements must be considered independently or not.
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C � i = 1;
while (216-i != 0)

i = i*4

(a) C, a program not
portable on 16 bits ar-
chitectures

C’ � i = 1;
while (216-i != 0)

i = i+2

(b) C’, a non-efficient
program

D � try
i = ?;
if(i !=0) c = i / 0
else throw Err

catch(Err)
c = 0;

write(c,255)

(c) D, a robust program

E � x = ?; r = ?; g = ?; b = ?
if(r+g-1!=0)
col = 2r + 2g + 2b

else col = 0;
write(x,col)

(d) E, a program usable by dal-
tonians

Fig. 3. Four programs on which we verify non-functional prequirements

Formal Definition. Efficiency can be formally defined as an abstraction of the
execution traces of a program. As such behavior depends on the underlying archi-
tecture, our definition explicitly mentions the architecture in which the program
is executed. Efficiency requirements can be specified by natural numbers, stand-
ing, for instance, for the number of processor cycles or the size of the heap. As a
consequence our abstract domain will be set of natural numbers with the usual
total order, 〈N,≤〉.

We distinguish between efficiency in time and space. The first one corresponds
to the length of a trace, i.e. the number of transitions for executing the system,
and the second one to the size of the environment, i.e. the maximum quantity of
memory allocated during program execution. It is worth noting that the following
definitions are well-formed as we consider partial execution traces, i.e., (possible
infinite) sets of finite traces. Recall that Ω denotes an uninitialized variable.

Definition 2 (Time Efficiency). Let C be a program, A an architecture, length
∈ [P(Σ∗) → N] be the length of a trace, and 〈P(Σ∗),⊆〉 −−−→←−−−

αt

γt 〈N,≤〉 a Galois
connection where

αt = λT. sup({length(τ) | τ ∈ T})
γt = λn. {τ ∈ P(Σ∗) | length(τ) ≤ n}.

We say that the system 〈A, C〉 respects the time requirement k if

∀S0 ⊆ Σ. αt(��〈A, C〉�(S0)) ≤ k.
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Definition 3 (Space Efficiency). Let C be a program, A an architecture, size ∈
[P(Σ) → N] be the function defined as

size = λσ. #{x ∈ Vars | σ(x) �= Ω},

and 〈P(Σ∗),⊆〉 −−−→←−−−
αs

γs 〈N,≤〉 a Galois connection where

αs = λT. max
τ∈T

{size(σ) | σ ∈ τ}

γs = λn. {τ ∈ P(Σ∗) | ∀σ ∈ τ. size(σ) ≤ n}

We say that the system 〈A, C〉 respects the space requirement k if

∀S0 ⊆ Σ. αs(��〈A, C〉�(S0)) ≤ k.

Abstractions. In order to automatically verify time requirements, we must find
an upper bound to the number of transitions performed during the execution
of a system. Once again, we can do it by using a numerical abstract domain.
In fact, we can endow a concrete state σ with a (hidden) variable time, to be
incremented at each transition [18]. Then, the values taken by time will be upper-
approximated in the numerical domain, say by time, so that the verification boils
to check that time ≤ k. In the same way, the verification of space requirements
can be obtained by abstracting a state with the number of variables different from
Ω it contains. The approach can be generalized to more complex languages, e.g.,
a language with recursive functions. In this case, the stack will be approximated
by its height.

In our approach, verification of time and space efficiency requirements can
be easily combined by considering the reduced product of the two abstract do-
mains [10].

Example 2 (Efficiency). Let us consider the programs C and C′ in Fig. 3, an
architecture A, where the multiplication is a primitive operation, and an archi-
tecture A′ where the multiplication is implemented as a sequence of additions,
e.g., i = i ∗ 4 becomes i = i + i; i = i + i. Using the analyzer described in [8],
we can infer:

�̄�〈A, C〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [1, 216], time �→ [0, 9]〉
�̄�〈A′, C〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [1, 216], time �→ [0, 25]〉,
�̄�〈A, C′〉�(〈i �→ [−∞,+∞], time �→ 0〉) = 〈i �→ [0, 216], time �→ [0, 32769]〉.

Observe that the results above can be used for comparing different programs on
different architectures.

4.3 Robustness

Informal Definition. Robustness, or dependability, for [17] is “the ability of a
program to behave reasonably, even in circumstances that were not anticipated
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in the specifications”, for [31] is “the ability of software systems to react appropri-
ately to abnormal conditions”, and for [27] is “the time to restart after failure”.
Once again, the three definitions are not rigorous enough: the first definition
does not specify what is a reasonable behavior, the second one does not specify
what is an abnormal condition, and the latter has implicit the strong assumption
that all possible failures are considered.

Formal Definition. A software is robust, if any exception raised during its execu-
tion, in any architecture and with any initial state, is caught by some exception
handler. We recall that exceptions can be raised either by the architecture, e.g.,
division-by-zero, or by the software itself. As a consequence, a robust program
never terminates in an exceptional state.

Definition 4 (Robustness). Let C be a program, and let 〈P(Σ∗),⊆〉 −−−→←−−−
αd

γd

〈P(Σ),⊆〉 be a Galois connection where

αd = λT. {σn | σ0 . . . σn ∈ T}
γd = λS. {σ0 . . . σn−1σn | ∀i ∈ [0, n − 1].σ ∈ Σ ∧ σn ∈ S}.

We say that a system is robust if for all the architectures A,

∀S0 ∈ P(Σ). αd(��〈A, C〉�(S0)) ∩ Exceptions × Env = ∅.

Abstraction. Robustness can be checked either by considering an abstract do-
main for inferring the uncaught exceptions [34], or by considering an abstract
domain for reachability analysis [8]. In the first case, a program is robust if the
analysis reports that no exception can be raised; in the latter, a program is ro-
bust if the analysis reports that the lines of code that may raise an exception
(e.g., with a throw statement) are never reached.

Example 3 (Robustness). Let us consider the program D of Fig. 3(c). An interval
analysis determines that when the true-branch of the if statement is taken, i is
different from zero, so that the MathErr exception cannot be raised. In the other
case, the exception Err is raised and then it is also caught. As a consequence, D
is robust w.r.t. the chosen abstraction.

4.4 Usability

Informal Definition. The definition of usability is probably the most contrived
one. The definition in [17] says that “software system is usable [. . . ] if its hu-
man users find it easy to use”, whereas [31] talks about ease of use as “the
ease with which people of various backgrounds [. . . ] can learn to use software”
and [27] defines it in function of other, undefined, basic concepts as “learnability,
satisfaction, memorability”.
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Formal Definition. In our setting, usability is a abstraction of the output stream
that is preserved when a given property, depending on the particular user, is
considered. For instance, an abstraction that considers the colors of the output
characters can be used to verify if a system is usable for daltonians. We need
some auxiliary definitions. Output streams belong to the set Stdout. Given a
state σ ∈ Σ, the function out ∈ [Σ → Stdout] is such that out(σ) is the output
stream in the state σ.

Definition 5 (Usability). Let C be a program, A an architecture, let 〈P(Σ∗),
⊆〉 −−−−→←−−−−

αΣ

γΣ 〈P(Stdout),⊆〉 be a Galois connection where

αΣ = λT. {out(σ) ∈ Σ | ∃τ ∈ T. σ ∈ T}
γΣ = λO. {τ ∈ Σ∗ | ∀σ ∈ τ. ∃o ∈ O. out(σ) = o},

let 〈P(Stdout),⊆〉 −−−→←−−−
α

γ
〈D̄, 	̄〉 be a Galois connection, and let p̄ ∈ D̄. We say

that the system 〈A, C〉 is usable w.r.t. the observable p̄ if

∀S0. α(αΣ(��〈A, C〉�)(S0)) 	̄ p̄.

Abstract Domains. The definition above can be instantiated to consider the us-
ability of a system for daltonians, i.e., people afflicted by red/green color blind-
ness. In fact, the colors of the output stream can be abstracted in order to col-
lapse together colors indistinguishable by daltonians. As colors are represented
by integers in the RGB color system, numerical abstract domains can be used
to automatically check properties on colors.

Example 4 (Usability). Let us consider the program E in Fig. 3(d), an architec-
ture where the input stream is a sequence of 0/1 digits, and colors are represented
as in RGB schema using 3 bits, i.e. colors range between 0 (black) and 7 (white).
Using the static analyzer of [8] instantiated with the Intervals abstract domain,
and refined with trace partitioning [21], one infers that

�̄�〈A, E〉�(〈x �→ [0, 1], r, g, b �→ [0, 1]〉)
= (〈x �→ [0, 1], r, g, b �→ [0, 1], col �→ [0, 1] ∪ [6, 7]〉),

so that as col is always in the set of the colors distinguishable by daltonians
(i.e. { black, blue, yellow, white}), E respects the usability specification.

4.5 Other Non-functional Requirements

We showed how four typical non-functional requirements can be encapsulated
in our framework. This approach based on preservation of a property up to
a given observation, can be easily generalized to other product non-functional
requirements. For instance, upgrade means that when a new program N, replaces
a program O on a given architecture A, then the observed behavior is preserved:
α(��〈A, N〉�)	̄α(��〈A, O〉�). Similarly, if compatibility is a property specified by
an abstract element c̄, then we say that two programs P and P′ are compatible
w.r.t. c̄ if α(��〈A, P〉�)	̄c̄ and α(��〈A, P′〉�)	̄c̄.
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5 Conclusions and Future Work

In this paper, we faced the issue of applying Abstract Interpretation theory
in order to model non functional software requirements and to support their
automatic validation.

Recent very encouraging experiences show that abstract interpretation-based
static program analysis can be made efficient and precise enough to formally
verify a class of properties for a family of large programs with few or no false
alarms, also in case of critical embedded systems [3]. We strongly believe that
also the treatment of non functional requirements can well fit in this picture.

Two research directions seem particularly promising, in this respect: (i) the
design of a library of sophisticated abstract domains for non functional require-
ments validation, and (ii) the automatic derivation of metrics associated to the
domain of observables. In the first case, as observed in Example 2, the preci-
sion of the analysis can be greatly improved by a suitable choice of operators
on domains (e.g., reduced product [11], and open product [6]). In the second
case, it would be interesting to study abstract metrics, i.e. metrics tunable with
respect to a given observable. In fact, any (even infinite) finite-height domain
of observables can be associated with at least two metrics, by considering as
distance between two abstract properties

ρ1(d1, d2) = min{length(di, d1 � d2) | i ∈ {1, 2}}
ρ2(d1, d2) = min{length(di, d1 � d2) | i ∈ {1, 2}}

where length returns the length of the path in the domain D̄. ρ1 computes the
lack of precision with respect to the element that represents the union of the
information the two elements contain, while ρ2 does the same with respect to
the element that keeps the common information.
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