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Abstract. Tuple centres allow for dynamic programming of the coor-
dination media: coordination laws are expressed and enforced as the be-
haviour specification of tuple centres, and can change over time. Since
time is essential in a large number of coordination problems and pat-
terns (involving timeouts, obligations, commitments), coordination laws
should be expressive enough to capture and govern time-related issues.

Along this line, in this paper we discuss how tuple centres and the
ReSpecT language for programming logic tuple centres can be extended
to catch with time, and to support the definition and enforcement of time-
aware coordination policies. Some examples are provided to demonstrate
the expressiveness of the ReSpecT language to model timed coordination
primitives and laws.

1 Introduction

Coordination artifacts are general-purpose run-time abstractions embedded in
a MAS (multi-agent system) coordination infrastructure [1, 2], and meant to
provide agents with coordination as a service [3]. In particular, coordination
artifacts aim at automating specific coordination tasks, encapsulated outside
the agents, and featuring relevant engineering properties such as predictability,
inspectability and malleability of behaviour [1].

The reference coordination model supporting the notion of coordination arti-
fact is TuCSoN [4, 5]. TuCSoN tuple centres populate network nodes and play the
role of coordination artifacts. Tuple centres are Linda-like tuple spaces [6], whose
reactive behaviour can be programmed using the logic-based, Turing-complete
language ReSpecT [7]. By this language, tuple centres can encapsulate any co-
ordination task, from simple synchronisation policies up to complex workflows
[8, 9].

However, in most application scenarios characterised by a high degree of open-
ness and dynamism, coordination tasks need to be time dependent. On the one
hand, handling time is necessary to specify (and enforce) given levels of liveness
and quality of service: for instance, an agent could be required to interact with
a coordination artifact at a given minimum / maximum frequency. On the other
hand, temporal properties are also fundamental in the agent-artifact contract: for
instance, an agent could commit to accomplish a task before a given timeout ex-
pires, or could require the artifact to provide a response within a given time.
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The expressive need for timed coordination policies already emerged in the
field of distributed systems as well. For instance, in JavaSpaces [10] primitives
read and take — looking for tuples in the same way as rd and in in Linda —
come with a timeout value: when the timeout expires without a matching tuple
is found, a failure result is returned. Similarly, tuples can be equipped with a
lease time when they are inserted in the space: as soon as the lease expires, the
tuple is automatically removed. All these primitives, and others based on time,
can actually be used as the basis for structuring more complex coordination
scenarios, such as e.g. auctions and negotiations protocols including time-based
guarantees and constraints. However, they are typically too specific solutions
to capture all the time-related coordination problems, which instead require a
general and comprehensive model for time in coordination.

Along this line, in this paper we discuss how the basic ReSpecT tuple-centre
model has been extended to support the definition and enaction of time-aware
coordination policies. Section 2 discusses the general concept of time-aware coor-
dination artifacts, and describes how tuple centres and ReSpecT can be extended
accordingly to deal with time. Section 3 exemplifies the approach by showing
how the dining-philosopher problem can be modelled in ReSpecT, and then ex-
tended with time constraints. Section 4 briefly discusses the expressiveness of
the extended ReSpecT tuple-centre model, by showing how it can be used to
express some well-known temporal features as found in a number of well-known
coordination models (such as tuple leasing and timed requests). Section 5 gives
some clues of the model implementation. Finally, Section 6 considers related
works, and Section 7 provides for conclusions.

2 Timed Coordination Artifacts

In order to represent and enforce timed coordination laws within a coordination
artifacts, some conceptual and practical pre-conditions have to be satisfied, and
some issues need to be properly addressed.

First of all, time has to be an integral part of the ontology of a coordination
artifact. Generally speaking, time can be local or global (if it refers to the global
system time, or to the local artifact time), relative or absolute (if it assumes as
zero the starting time of the artifact, or uses a standard time convention like
date-time), continuous or discrete. Typically, local and relative time are the most
natural reference for coordination artifacts in distributed systems, since it can be
always be defined and used with no conceptual difficulties. Global and absolute
time can be defined conventionally / pragmatically from there — for instance,
global system time is the time of a specific artifact (along with some practical
methods to extract time from there, and define some notion of simultaneity),
absolute time is obtained by properly labelling time 0 of the artifact, and then
using relative time as a delta. Finally, discrete time is the obvious choice for any
computational machine. As a result, a coordination artifact can label any event
(either incoming or outgoing) with its own (local, relative and discrete) time,
which is then amenable to be used as a unique label within the coordination
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artifact, under the simple hypotheses that it works with a single flow of control,
and has a fine-enough-grained time scale.

Correspondingly, a coordination artifact should allow coordination laws to
talk about time. A range of predicates / functions has then to be provided as
the syntactic sugar to access the time information (label) featured by any event
to be handled (the time when the action that produced the event has affected
the artifact, and the current time of the computation within the artifact), and
to perform simple computations over time (comparing time points and / or
intervals).

Of course, time has to be embedded into the coordination-artifact working
cycle. So, some notion of time event has to be introduced, which triggers some
time-related computation within the artifact. In fact, it is not enough to allow the
time of an event to be accessed: time-related laws like “the answer should come
within 3 minutes after the question, otherwise some penalty will be inflicted”
cannot be expressed only referring to actions actually performed — since they
contemplate the case of no action performed, the corresponding law cannot refer
to a reaction to no action. So, time events (as events triggering some behaviour
of the coordination artifact, conceptually corresponding to the passage of time)
have to be autonomously generated by the coordination artifact in order to suit-
ably handle time-related laws, within the normal working cycle of the artifact.
Quite obviously, attention should be paid on the one hand not to overload the
cycle, on the other hand not to be too coarse in time intervals.

Along this line, the ability to capture time events and to react appropriately
is another obvious capability required to a timed coordination artifact. Time-
aware coordination laws can then be enforced, that can specify / constraint
behaviours that depend on time, and can suitably relate time with the evolution
of the coordination (artifact) state.

Finally, talking about time naturally recalls the dynamics that is typically
featured by the coordination laws encapsulated within coordination artifacts.
So, a fundamental complement to the ability of the artifact to specify and en-
act time-related coordination policies is the ability to modify the coordination
specification over time, during the “active life” of the artifact, and possibly de-
pending on some time-aware behaviour of the artifact itself. Correspondingly, it
should be possible to express how to add a new coordination law, and how to
remove an old one, so as to adapt the artifact behaviour (and the coordination
altogether) to the passage of time — or to the change, more generally.

2.1 Timed Tuple Centres

Tuple centres are introduced in [7] as coordination artifacts meant at engineering
coordination activities in MASs. Technically, a tuple centre is a programmable
tuple space, i.e. a tuple space whose reactive behaviour to communication events
can be programmed so as to specify and enact any coordination policy [7]. Tuple
centres can be thought then as general purpose coordination artifacts, which can
be suitably forged in order to provide specific coordination services. The tuple
centre model is not bound to any specific model / language for behaviour spec-
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ification or to a specific communication language: these aspects are defined by
specific instances of the model. An example, discussed in next subsection, is given
by ReSpecT tuple centres [11], which adopt logic tuples as the communication
language, and the ReSpecT language for tuple centre behaviour specification.
Independently of the specific language adopted, the tuple centre behaviour is
meant to be specified in terms of reactions to (communication) events occurring
in the artifact. So, the core idea behind tuple centres (and coordination artifacts,
more generally) is to have first-class coordination abstractions which are power-
ful enough to encapsulate and enforce at execution time the coordination laws
required to support MAS activities. This does not happen, for instance, in basic
Linda-like models, where complex coordination activities surpassing the limited
expressive power of tuple space coordination force the global logic of coordina-
tion to be spread among individual agents [7]. As coordination artifacts, tuple
centres have a usage interface, composed by the basic Linda primitives, plus
two primitives — set spec and get spec — for setting and reading the tuple
centre behaviour specification. As coordination artifacts, tuple centres also fea-
ture inspectability and malleability properties, i.e. their coordinating behaviour
can be inspected and changed dynamically, at execution time.

Timed tuple centres extend tuple centres with the temporal framework de-
picted above for timed coordination artifacts. First, the notion of current time
for a tuple centre is introduced as a local, relative and discrete time. Conceptu-
ally, tuple-centre time is generated by an inner clock owned by the tuple centre:
no relationships can be established in principle between the current time of two
different tuple centres. The current time of a timed tuple centre is zero when the
tuple centre is actually created by the infrastructure at run time. Absolute time
is available, conventionally computed by suitably adding the (absolute) tuple-
centre creation time (as provided by the infrastructure) to the current time.

With respect to the formal model defined in [7], a time transition is intro-
duced in the basic tuple centre working cycle, in addition to the existing listening,
speaking, and reacting transitions. The time transition is meant to have priority
with respect to all the other transitions, including the reacting one. Conceptu-
ally, the time transition is executed at each tick of the tuple centre clock — as
reacting to the generation of a time event for each tick.1

Then, similarly to communication events, it is possible to specify reactions
triggered by time events (timed reactions). Timed reactions follow the same
semantics of other reactions: once triggered, they are placed in the triggered-
reaction set and then executed, atomically, in a non-deterministic order. Since
at a given time, only one time event can occur, each timed reaction is executed
only once.

As a result, a timed tuple centre can be programmed to react to the passing
of time, so as to enforce time-aware coordination policies.

1 In practice, then, the time transition needs to be executed only when the tuple
centre specification actually contains triggerable timed reactions, according to a
simple mechanism sketched in Section 5.
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2.2 Timed ReSpecT

ReSpecT tuple centres are tuple centres based on first-order logic, adopted both
for the communication language (logic tuples), and for the behaviour specifi-
cation language (ReSpecT) [11]. Basically, reactions in ReSpecT are defined as
Prolog-like relations of the form

reaction(Head, Body ).

which specify the list of the operations to be executed (the Body of the reaction)
when a certain communication event occurs (represented by the reaction Head ).
Such operations make it possible to inspect and change current communication
and coordination state, for instance by inserting / reading / removing tuples
from the tuple set (see [11] for details). Operations can trigger new reactions.
If just only one of the operations invoked in the body of the reaction fails, the
entire reaction fails atomically, rolling back any change possibly done by previous
operations successfully executed by the same reaction.

According to the timed-tuple-centre model described in Subsection 2.1, the
ReSpecT language is extended with time (i) by introducing some temporal pred-
icates to get information about both tuple-centre and event time, and (ii) by
making it possible to specify reactions on the occurrence of time events. The
temporal predicates introduced are the following:2

– current time(?Time ) This predicate succeeds if Time (typically a vari-
able) unifies with the current tuple-centre time. As an example, the reaction
specification tuple
reaction(in(p(X)),(current time(Time),out r(request log(Time,p(X))))).

inserts a new tuple (request log) with timing information each time a re-
quest to retrieve a tuple p(X) is executed, thus implementing the temporal
log of a specific sort of request.

– event time(?Time ) This predicate succeeds if Time unifies with the tuple-
centre time when the original communication event triggering the reaction
occurred.

– before(@Time ), after(@Time ), between(@MinTime,@MaxTime ) These
predicates succeeds if the current tuple-centre time is respectively less than,
greater than, and between the specified temporal arguments.

Reactions to time events are specified analogously to ordinary reactions:
reaction(time(Time ), Body ).

where Time is a ground term. The intended semantics is the following: as soon as
the tuple-centre time reaches the Time value — so, the time event time(Time )
is conceptually generated — all the reactions whose head matches the event
time can be triggered, and their Body inserted in the triggered-reaction set. As
a simple example, consider the following specification:

2 A Prolog-like notation is adopted for describing the modality of arguments: + is
used for specifying input argument, - output argument, ? input/output argument,
@ input argument which must be fully instantiated.
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reaction(time(TimeAlarm),( out r(alarm(TimeAlarm)) )).

When the tuple-centre current time reaches the TimeAlarm value (which must
be instantiated to some numeric value), the reaction can be triggered, and its
subsequent execution causes the insertion of the tuple alarm in the tuple centre.

Given that a timed reaction is conceptually triggered when the tuple-centre
current time exactly matches the time specification in its head, each timed re-
action is executed at most once: correspondingly, any triggered timed-reaction
is automatically consumed after its execution, and so removed from the spec-
ification. Then, timed-reaction execution follows the same atomic semantics of
normal reactions [11].

In ReSpecT tuple centres, it is possible to add and remove time reactions
dynamically by exploiting the self-modifying specification predicates defined in
ReSpecT: out r spec, in r spec and rd r spec predicates, which are used in
to add, remove, and read reactions in general. In particular, the effect of an
out r spec(H,B ) is to add a reaction reaction(H,B ) to the current specifica-
tion, while in r spec(H,B ) / rd r spec(H,B ) removes / reads a reaction whose
head and body match with H and B , respectively. This makes it possible to add
and remove also timed-reaction specifications dynamically, by need.

For instance, the following specification

(1) reaction(out(clockStart), ( in_r(clockStart),
current_time(StartTime), out_r(tick(StartTime)) ) ).

(2) reaction(out_r(tick(ClockTime)),(
in_r(tick(ClockTime)), rd_r(delta_time(DeltaTime)),
NewClockTime is ClockTime + DeltaTime,
// any activity to be done at each clock goes here
out_r_spec( time(NewClockTime), out_r(tick(NewClockTime)) ))).

(3) reaction(out(clockStop), ( in_r(clockStop),
in_r_spec( time(ClockTime), out_r(tick(ClockTime)) ))).

defines a clock that starts when the tuple clockStart is first inserted in the
timed tuple centre (reaction 1), cycles every delta_time(@DeltaTime) millisec-
onds (reaction 2), and stops when the tuple clockStop is finally inserted in the
tuple centre (reaction 3).

3 An Example: Dining with Time Constraints

As a main example to show the effectiveness of the approach, we consider here an
extension to the well-known dining philosopher problem, tackling the time issue.
The dining philosopher is a classical problem used for evaluating the expressive-
ness of coordination languages in the context of concurrent systems [12]. In this
problem, a number of philosophers eat at the same round table, using shared
chopsticks. Philosophers alternate thinking with eating: two chopsticks are re-
quired to eat, no chopstick to think. Each philosopher shares the two chopsticks
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on his left and right sides, respectively with the philosophers on his left and right
sides. Coordination here is mostly needed to avoid deadlock, which can happen
if each philosopher has taken a chopstick and is waiting for the other one, which
is in turn taken by another waiting philosopher. In spite of its almost trivial
formulation, the dining philosophers problem is generally used as an archetype
for non-trivial resource-access policies.

The solution to the problem via ReSpecT consists in using a tuple
centre — we call it table — for encapsulating the coordination policy required
to decouple agent requests from the actual requests of resources — specifically,
to encapsulate the management of chopsticks (for details refer to [7]). From the
agent viewpoint, each philosopher (i) gets the two chopsticks needed by retriev-
ing a tuple chops(C1,C2), (ii) eats for a certain amount of time, (iii) provides
back the chopsticks by inserting the tuple chops(C1,C2) in the tuple centre, and
(iv) finally starts thinking until the next dining cycle. A process-algebraic-like
description of this interactive behaviour is the following:

PHILO(C1,C2)::=
THINK.table?in(chops(C1,C2)).EAT.table?out(chops(C1,C2)).PHILO(C1,C2)

The main point here is that philosophers do not need to worry about how to
coordinate themselves, or how the resources are represented: they simply need
to know which specific chopstick pair to ask for, and then they can focus on their
main tasks (thinking and eating).

The tuple centre table is used as a coordination artifact to help their col-
lective activity. Chopsticks are represented by chop(N ) tuples, with N between
1 and the number of philosophers. Philosophers directly deal with couples of
chopsticks (chops/2 tuples). The tuple centre is programmed with the ReSpecT
specification shown in Table 1 (top). Generally speaking, the coordinating be-
haviour accounts for mediating the representation of the resources (chops/2 vs.
chop/1 tuples), and most importantly for avoiding deadlocks among the agents.
In particular, if a philosopher requests a couple of available chopsticks, the re-
quest is reified by inserting a tuple required in the tuple centre (reaction 1). As
this tuple is inserted, and if both the chopsticks are available, they are removed
and a chops tuple is released to the agent (reaction 2). When the agent request is
satisfied, the tuple required representing the pending agent request is removed
(reaction 3). Then, when a philosopher inserts back the tuple representing the
couple of chopsticks, the artifact reacts in order to mediate between the differ-
ent chopsticks representations, by removing the chops(C1,C2 ) tuple (reaction
5) and inserting two separated chopsticks chop(C1 ) and chop(C2 ) (reaction 4).
As a single chopstick is inserted, a control is made to check if such a chopstick is
required by a pending agent request (required tuple) and — at the same time
— if the other chopstick that appears in the pending agent request is available
(reactions 6 and 7). In case, both chopsticks are removed, and the pending agent
request is satisfied by producing a suitable chops tuple.

The basic formulation of the dining philosopher problem focuses on the dead-
lock issue. However, another relevant aspect for a correct collective behaviour of
a MAS is fairness in the use of resources: once acquired the chopsticks, philoso-
phers are meant to release them back, sooner or later. If a philosopher inciden-
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Table 1. Timed ReSpecT specification for coordinating dining philosophers: (top) with-
out maximum eating time constraints, (bottom) adaptation / extension to deal with
timing constraints. In particular, reaction 8 is added to the specification, and reaction
4 is replaced by a new version (reaction 4’)

1 reaction(in(chops(C1,C2)), (
pre, out r(required(C1,C2)))).

2 reaction(out r(required(C1,C2)),(
in r(chop(C1)),in r(chop(C2)),out r(chops(C1,C2)))).

3 reaction(in(chops(C1,C2)), (
post, in r(required(C1,C2)))).

4 reaction(out(chops(C1,C2)), (
out r(chop(C1)),out r(chop(C2)))).

5 reaction(out(chops(C1,C2)), (
in r(chops(C1,C2)))).

6 reaction(out r(chop(C1)), (
rd r(required(C1,C)),in r(chop(C1)),in r(chop(C)),out r(chops(C1,C)))).

7 reaction(out r(chop(C2)), (
rd r(required(C,C2)), in r(chop(C)),inr(chop(C2)),out r(chops(C,C2)))).

4’ reaction(out(chops(C1,C2)), (
in r(used(C1,C2,T)),
out r(chop(C1)),out r(chop(C2)))).

8 reaction(in(chops(C1,C2)), (
post, current time(T), rd r(max eating time(Max)), T1 is T + Max,
out r(used(C1,C2,T)),
out r spec(time(T1),(

in r(used(C1,C2,T)), out r(chop(C1)),out r(chop(C2)))))).

tally dies or refuses to release back the chopsticks, some philosophers can die by
starvation and the coordination activity is compromised. So, a further issue that
the coordination policy should capture is how to impose a constraint over the
maximum time which philosophers can take to eat (i.e., to use the resources).
Whenever such a constraint is violated, chopsticks released to philosophers are
considered no more valid (no more usable), and new valid copies are re-created
in the tuple centre, so as to allow the other philosophers to use them. If the
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agent autonomy is to be preserved, such a coordinating behaviour should be
obtained without forcing any individual agent behaviour: instead, this should
be achieved by instrumenting the coordination artifact with suitable time-aware
coordination laws.

Such a behaviour can straightforwardly be implemented with the ReSpecT
model extended with time. By exhibiting the typical incremental nature of
ReSpecT specifications, the previous (non-timed) specification is almost entirely
reused, with only one minor change and one extension (reactions 4’ and 8, respec-
tively), as described in the bottom part of Table 1: the logic of the previous solu-
tion is mostly kept, and only the time-related aspects are specifically addressed
by the two new reactions. Precisely, the behaviour is obtained by installing a
timed reaction implementing a timeout every time a couple of chopsticks is re-
trieved by a philosopher (reaction 8), and keeping track of the chopstick currently
in use by means of tuple used. The timed reaction is triggered after Max time
units, where Max is the maximum eating time, stored in the max eating time
tuple. When a philosopher inserts back the couple of chopsticks on time, the
used tuple is successfully removed, along with the corresponding timed reac-
tion, and the individual chopsticks are inserted back as in the non-timed case
(compare reaction 4’ with 4). If an installed timed reaction is triggered, it means
that eating time for a philosopher has expired: then, tuple used is removed and
the corresponding individual chopsticks (chop tuples) are re-created. When (if)
a philosopher inserts back the couple of chopstick out of time, the related used
tuple is no longer found, and the individual chopsticks are not inserted back
(reaction 4’ fails).

It is worth noting that keeping track of the maximum eating time as a tuple
(max eating time in the example) makes it possible to easily change it dy-
namically, while the activity is running. This can be very useful for instance in
scenarios where this time need to be adapted (at run time) according to the
workload and, more generally, to environmental changes affecting the system.

4 Other Examples

In this section we describe how the extended model can be used to realise some
other well-known coordination patterns based on the notion of time, namely
timed requests and tuple leasing.

It is worth noting, however, that our point here is not to show that timed
requests, or tuple leasing, can be expressed better by Timed ReSpecT than by the
specific timed-primitives provided by JavaSpaces [10] and TSpaces [13]: those,
in fact, are not general-purpose approaches, and can then address only a limited
range of time-related coordination problems. Instead, the most relevant point
here is the generality of our approach: here, in fact, the same simple model
is shown to be capable to express time-based coordination policies of different
kinds.

So, even the simple dining-philosophers problem extended with time con-
straints discussed in Section 3 can not be solved (at least, not straightfor-
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wardly) with the timed primitives of JavaSpaces and TSpaces. Instead, the
Timed ReSpecT model discussed above proves to be general enough to easily ex-
press timed requests and tuple leasing, as well as the timed dining-philosophers
example.

4.1 Timed Requests

In this first example we model a timed in primitive, i.e. an in request that
blocks only for an a-priori limited amount of time. An agent issues a timed in by

Table 2. Timed requests modelled using Timed ReSpecT

1 reaction(in(timed(MaxTime,Tuple, )),(
pre, out r(required(MaxTime,Tuple)) )).

2 reaction(out r(required(MaxTime,Tuple)),(
in r(Tuple),
in r(required(MaxTime,Tuple)),out r(timed(MaxTime,Tuple,yes))
;
current time(Time), Timeout is MaxTime + Time,
out r spec(time(Timeout),(

in r(required(MaxTime,Tuple)),
out r(timed(MaxTime,Tuple,no)))) )).

3 reaction(out(Tuple),(
in r(required(MaxTime,Tuple)),out r(timed(MaxTime,Tuple,yes)))).

executing primitive in(timed(@Time,?Template,-Res )). If a tuple matching
Template is inserted within Time units of time, the requested tuple is removed
and returned to the agent via unification with Template , with Res bound to
the yes atom. Conversely, if no matching tuples are inserted within the spec-
ified Time , the request is unblocked by producing a suitable timed tuple with
Template untouched and Res bound to no, which is then returned to the agent.
Table 2 reports the Timed ReSpecT specification that implements the behaviour
of this new primitive. When a timed in operation is issued, the request is rei-
fied by inserting a required tuple in the tuple centre (reaction 1). If a tuple
matching the request is found, then the agent request is immediately satisfied
by inserting back a timed tuple reporting a successful result (first part of reac-
tion 2). Conversely, if no tuples are found, a timed reaction is installed, to be
triggered after the amount of time specified by the agent request (second part
of reaction 2)3. If a tuple matching the request is inserted on time (reaction 3),

3 The ; operator in ReSpecT has a meaning similar to the Prolog one: (G1;G2) succeeds
if either G1 or G2 succeeds. More precisely, first G1 is executed: if it fails, G2 is then
executed.
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a timed tuple reporting a successful result is generated. Otherwise, if the timed
reaction is triggered with the request still pending (tuple required is still in the
tuple centre), a timed tuple reporting a negative result is generated, unblocking
the agent request.

4.2 Tuples in Leasing

Finally, in this last example we model the notion of lease, analogously to the
lease notion in models such as JavaSpaces [10] and TSpaces [13]. Tuples can be
inserted in the tuple set specifying a lease time, i.e. the maximum amount of
time for which they can reside in the tuple centre before automatic removal. The
ReSpecT code implementing a simple form of leasing is:

reaction( out(leased(Tuple,LeaseTime)),(

out r(Tuple),

current time(Time), ExpireTime is Time + LeaseTime,

out r spec( time(ExpireTime), in r(Tuple) ))).

An agent inserts a tuple with a lease time by issuing an
out(leased(@Time,@Tuple ))

According to the reaction described above, when a tuple with a lease time is
inserted in the tuple centre, a timed reaction is inserted to be triggered when the
leasing time has expired. The timed reaction simply removes the tuple in leasing.
If the tuple is not found anymore (because it has been removed by some other
agent request), the timed-reaction execution has no effect, for it simply fails.

5 Implementation Overview

The basic ReSpecT virtual machine has been designed and realised as a finite
state automaton, with transitions through the basic stages (listening, speak-
ing, reacting) as defined in the operational semantics described in [7, 11]. The
tuple set, the pending query set, the triggered-reaction set and input/output
event queues defined in [7] constitute the main data structures of the virtual
machine. A Prolog engine is used for reaction triggering and execution; in par-
ticular ReSpecT primitives are implemented as Prolog built-in predicates defined
in a library extending the basic engine. The technology is fully Java-based, and
has been developed exploiting tuProlog, a Java-based Prolog engine, which is
available as an open-source project at the tuProlog web site [14].

In the time-extended model, some new data structures are added:

– a clock, realised as a long-integer counter, holding current tuple-centre time
expressed in milliseconds;

– a timed-reaction specification list, which is the list of timed reactions cur-
rently defined in the specification. The list is ordered by the time specified
in the heads. The list is updated by the out r spec and in r spec, when
inserting and removing timed reactions, and by the set spec coordination
primitive, when setting a specification which includes also time reactions;
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– a timer service, triggering a tuple centre virtual machine in idle state at
specific time points.

The Prolog library defining ReSpecT predicates has been extended with new pred-
icates implementing the behaviour of the new temporal primitives (predicates).

The basic virtual-machine working-cycle has been extended so as to imple-
ment the time transition: at each cycle (that is, after any listening, speaking and
reacting transition), current time is updated and the head timed-reaction spec-
ification list is checked: if there are timed-reaction specifications whose reaction
time is less or equals than current tuple-centre time, they are removed from the
list, and their bodies are added to the triggered-reaction set.

Also, to avoid problems due to idleness — when the timed-reaction list is not
empty but no timed reaction have to be triggered yet, and there are no exter-
nal requests to be served, no pending satisfiable pending requests, no triggered
reactions to execute — the tuple-centre virtual machine properly configures the
timer service, before going idle. In particular, the timer service is programmed
so as to trigger the machine at the time point specified by the reaction time of
the first timed reaction of the list.

6 Related Works

Outside the specific context of coordination models and languages, the issue of
defining suitable languages for specifying the communication and coordination
in timed systems have been extensively studied. Examples of such languages are
Esterel [15] and LUSTRE [16], both modelling synchronous systems, the former
with an imperative style, and the latter based on dataflow. In the coordination
literature several approaches have been proposed for extending basic coordina-
tion languages with timing capabilities. [17] introduces two notions of time for
Linda-style coordination models, relative time and absolute time, providing for
a number of time-related features. Time-outs have been introduced in JavaS-
paces [10] and in TSpaces [13], and have been generally formalised by Timed
Linda [18].

The Timed ReSpecT approach described in this work differs from these ap-
proaches for at least two main reasons. First of all, Timed tuple centres extend
the tuple-centre model without altering the basic Linda model: Linda prim-
itives are kept unchanged (no change to their semantics, no timed primitives
added), and the extension focuses instead on the expressiveness and behaviour
of the coordination medium. Also, Timed ReSpecT does not provide agents with
specific time capabilities, but — following the philosophy of programmable coor-
dination media [19] — aims instead at instrumenting the model with the general
expressiveness required to capture any time-based coordination pattern.

7 Conclusions

The first attempt to enhance ReSpecT with time is reported in [20]. There,
however, the syntax and the semantics of the extension (based on the notion
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of trap) are quite ad hoc, and do not fit well the original ReSpecT model: the
examples reported there can be easily compared with the ones in this article
to clearly appreciate the differences between the two approaches. Moreover, the
contribution provided by this work is meant to be broader, since it generalises
over the notion of tuple centre, and extends to the design and development of
general-purpose time-aware coordination artifacts in MASs [1].

Our approach aims to be general and expressive enough to allow for the de-
scription of a wide range of coordination patterns based on the notion of time,
by exploiting medium programmability and the basic time-based mechanisms.
An important feature exhibited by our approach is the encapsulation of coordi-
nation: embedding (specifying, enacting) time-aware policy directly inside the
coordination medium promotes modularity of the coordination programs, and
then reusability and extensibility. Temporal features have been added with no
changes to the usage interface of tuple centres, which is still based on the basic
set of Linda-like coordination primitives. Also, the extension has been realised
while preserving all the essential properties of the ReSpecT model: in particular,
reaction execution is still atomic (both at the system and at the agent levels
[7]), and reactions are executed sequentially. Even more, the declarative nature
of the reactions, along with the execution model, makes (Timed-)ReSpecT mostly
incremental in its specifications, as shown by the example discussed in Section 3.

In the implementation of the model, the issue of the centralised vs. dis-
tributed implementation of tuple centres arises. The basic tuple centre model
does not necessarily require a centralised implementation per se: however, the ex-
tension provided in this work — devising out a notion of time for each individual
medium — leads quite inevitably to realise tuple centres with a specific spatial
location. This is what already happens in the TuCSoN coordination infrastruc-
ture, where there can be multiple tuple centres spread over the network, collected
and localised in infrastructure nodes. It is worth mentioning that this problem
is not caused by our framework, but is somehow inherent in any approach aim-
ing at adding temporal aspects to a coordination model. However, according to
our experience in agent-based distributed system design and development, the
need for a distributed implementation of an individual coordination medium is
an issue of some relevance only for very specific application domains. For most
applications, the bottleneck and single point of failure arguments against the
use of centralised coordination media can be answered by a suitable design of
the MAS and an effective use of the coordination infrastructure. At this level,
it is fundamental that a software engineer would know the scale of the coordi-
nation artifacts he/she is going to use, and the quality of service (robustness in
particular) ensured by the infrastructure.

Even though the model of time used here is not meant to deal with real-time
issues in any way, we understand that this work could provide us with a solid
grounding for soft and hard real-time agent coordination. In the future, we mean
to explore real-time issues by suitably extending (for instance, with time-labelled
triggered reactions) the time model presented here.
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