
Global Computing in a Dynamic Network
of Tuple Spaces�

Rocco De Nicola1, Daniele Gorla2,��, and Rosario Pugliese1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Roma “La Sapienza”

{denicola, pugliese}@dsi.unifi.it
gorla@di.uniroma1.it

Abstract. We present a calculus inspired by Klaim whose main features are: ex-
plicit process distribution and node interconnections, remote operations, process
mobility and asynchronous communication through distributed tuple spaces. We
first introduce a basic language where connections are reliable and immutable;
then, we enrich it with two more advanced features for global computing, i.e.
failures and dynamically evolving connections. In each setting, we use our for-
malisms to specify some non-trivial global computing applications and exploit
the semantic theory based on an observational equivalence to equationally estab-
lish properties of the considered case-studies.

1 Introduction

Programming computational infrastructures available globally for offering uniform ser-
vices has become one of the main issues in Computer Science. The challenges come
from the necessity of dealing at once with issues like communication, co-operation,
mobility, resource usage, security, privacy, failures, etc. in a setting where demands and
guarantees can be very different for the many different components. A key issue is the
definition of innovative theories, computational paradigms, linguistic mechanisms and
implementation techniques for the design, realization, deployment and management of
global computational environments and their application.

On the linguistic side, we believe that a language for global computing should be
equipped with primitives that support network awareness (i.e. locations can be explic-
itly referenced and operations can be remotely invoked), disconnected operations (i.e.
code can be moved from one location to the other and remotely executed), flexible
communication mechanisms (like distributed repositories [11, 8, 15] storing content ad-
dressable data), and remote operations (like asynchronous remote communications).
On the foundational side, the demand is on the development of tools and techniques to

� This work has been partially supported by EU FET - Global Computing initiative project
MIKADO IST-2001-32222. The funding bodies are not responsible for any use that might be
made of the results presented here.

�� Most of this work was carried on while the second author was a PhD student at the University
of Florence.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 157–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 R. De Nicola, D. Gorla, and R. Pugliese

build safer and trustworthy global systems, to analyse their behaviour, and to demon-
strate their conformance to given specifications. Clearly, such semantic theories should
reflect all the above listed distinctive features of global systems.

In this paper, we introduce a foundational language that retains the main features of
Klaim [12] (explicit distribution, remote operations, process mobility and asynchronous
communication through distributed data spaces), but extends it with new constructs
(somehow inspired by [4]) to flexibly model the interconnection structure underlying
a network. The resulting formalism, called tKlaim (topological Klaim), permits to ex-
plicitly model inter-node connections and to establish and remove them dynamically.
Connections are then essential to enable tKlaim remote operations: such an operation
can be performed only if the node where it is executed and that on which it acts upon
are directly connected. Routing algorithms are then needed to enable remote operations
between nodes that are not directly connected.
tKlaim takes its origin from two formalisms with opposite objectives. On one hand,

we have the programming language X-Klaim [3], a full fledged programming language
for global computers based on Klaim; on the other hand, we have the π-calculus [22],
the generally recognised minimal common denominator of calculi for mobility. By fol-
lowing well-established techniques for the π-calculus, in a companion paper [13] we
formally develop the semantic theory of tKlaim. Here, we use such a theory to state and
prove properties of some meaningful global computing applications. Given the direct
correspondence of tKlaim with X-Klaim, we believe that the behavioural study carried
on at the level of the calculus can be faithfully transposed at the level of the program-
ming language to let programs run in a controlled way on an actual global computer,
like the Internet.

To softly introduce the reader to our language, we start in Section 2 by presenting a
very basic model where inter-node connections are explicitly programmable but fixed
at the outset. This scenario is very close to LANs, where physical connections are re-
liable and immutable (or change very rarely). We then present two variations of this
basic formalism. In Section 3, we enrich the language with different forms of failures,
another key feature of global computers. We start with a scenario where only nodes and
node components (i.e., data or processes) can fail and use it to establish soundness of
a distributed fault-tolerant protocol, the ‘k-set agreement’ [10]; then, we briefly present
a way to also encompass link failures. The second variation of the basic framework is
in Section 4, where links can be dynamically changed by processes. The use of the lan-
guage with both link failures and dynamic connections is exemplified by programming
two routing scenarios and by establishing their soundness.

Section 5 concludes the paper with a discussion on related work. In all the exam-
ples, properties of the proposed case-studies are formulated and proved by exploiting
may testing [14], an intuitive observational equivalence. Our proofs rely on a tractable
(bisimulation-based) proof technique whose definition has been omitted from this paper
for the sake of space and can be found in [13].

2 The Language

Syntax. The syntax of tKlaim, given in Table 1, is parameterised with respect to the
following syntactic sets, which we assume to be countable and pairwise disjoint: L, of

Global Computing in a Dynamic Network of Tuple Spaces 159

Table 1. Syntax of tKlaim

Nets: Components:
N ::= 0

∣∣∣ l :: C
∣∣∣ {l1 ↔ l2}

∣∣∣ (νl)N
∣∣∣ N1‖N2 C ::= P

∣∣∣ 〈t〉 ∣∣∣ C1|C2

Processes: Tuples:
P ::= nil

∣∣∣ a.P
∣∣∣ P1|P2

∣∣∣ X
∣∣∣ rec X.P t ::= e

∣∣∣ �
∣∣∣ t1, t2

Actions:
a ::= in(T)@�

∣∣∣ read(T)@�
∣∣∣ out(t)@�

∣∣∣ eval(P)@�
∣∣∣ new(l)

Templates: Expressions:
T ::= e

∣∣∣ ! x
∣∣∣ �
∣∣∣ ! u
∣∣∣ T1,T2 e ::= V

∣∣∣ x
∣∣∣ . . .

localities, ranged over by l;U, of locality variables, ranged over by u;V, of basic val-
ues, ranged over by V;Z, of basic variables, ranged over by x; X, of process variables,
ranged over by X. Finally, � is used to denote elements of L ∪U.

The exact syntax of expressions, e, is deliberately omitted; we just assume that ex-
pressions contain, at least, basic values and variables. Localities, l, are the addresses
(i.e. network references) of nodes. Tuples, t, are sequences of expressions, localities or
locality variables. Templates, T , are used to select tuples: in particular, ! x and ! u, that
we call formal fields, are used to bind variables to values.

Processes, ranged over by P,Q,R, . . ., are the tKlaim active computational units and
may be executed concurrently either at the same locality or at different localities. They
are built up from the terminated process nil and from the basic actions by using pre-
fixing, parallel composition and recursion. Actions permit removing/accessing/adding
tuples from/to tuple spaces (actions in/read/out, resp.), activating new threads of exe-
cution (action eval) and creating new nodes (action new). Action new is not indexed
with an address because it always acts locally; all the other actions explicitly indicate
the (possibly remote) locality where they will take effect.

Nets, ranged over by N,M, . . ., are finite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address of the node and C is the
(parallel) component located at l. Components, ranged over by C,D, . . ., can be either
processes or data, denoted by 〈t〉. Connections, or links, are pairs of node addresses
{l1 ↔ l2} stating that the nodes with address l1 and l2 are directly (and bidirectionally1)
linked. In (νl)N, name l is private to N; the intended effect is that, if one considers the
term M ‖ (νl)N, then locality l of N cannot be referred from within M.

Names (i.e. localities and variables) occurring in tKlaim processes and nets can be
bound. More precisely, prefixes in(T)@�.P and read(T)@�.P bind T ’s formal fields in
P; prefix new(l).P binds l in P, and, similarly, net restriction (νl)N binds l in N; finally,
rec X.P binds X in P. A name that is not bound is called free. The sets fn(·) and bn(·)
(respectively, of free and bound names of a term) are defined accordingly. The set n(·)
of names of a term is the union of its sets of free and bound names. We say that two

1 For the sake of simplicity, we assumed bidirectional links; nevertheless, all the theory and the
examples we develop here could be tailored to the framework where links are directed.

160 R. De Nicola, D. Gorla, and R. Pugliese

terms are alpha-equivalent if one can be obtained from the other by renaming bound
names. In the sequel, we shall work with terms whose bound names are all distinct and
different from the free ones. Moreover, as usual, we shall only consider closed terms,
i.e. processes and nets without free variables.

Notation 1. We write A � W to mean that A is of the form W; this notation is used to
assign a symbolic name A to the term W. We shall use notation ·̃ to denote sets of
objects (e.g. l̃ is a set of names). We shall sometimes write in()@l, out()@l and 〈〉 to
mean that the argument of the actions or the datum are irrelevant. Finally, we shall omit
trailing occurrences of process nil and write Π j∈J Wj for the parallel composition (both
‘|’ and ‘‖’) of terms (components or nets, resp.) Wj.

Operational Semantics. tKlaim operational semantics is given in terms of a structural
congruence and a reduction relation. The structural congruence, ≡, identifies nets which
intuitively represent the same net. It is inspired to π-calculus’s structural congruence
(see, e.g., [25]) and includes laws stating that ‘‖’ is commutative, associative and has 0
as identity element, laws equating alpha-equivalent nets, laws regulating commutativity
of restrictions, and laws allowing to freely fold/unfold recursive processes. Moreover,
the following laws are crucial to our setting:

(Clone) (Self) (BiDir)
l :: C1|C2 l :: C1 ‖ l :: C2 l :: nil ≡ {l↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}
(RNode) (Ext)
(νl)N ≡ (νl)(N ‖ l :: nil) N ‖ (νl)M ≡ (νl)(N ‖ M) if l � fn(N)

Law (Clone) turns a parallel between co-located components into a parallel between
nodes; law (Self) states that nodes are self-connected; law (BiDir) states that links are
bidirectional; law (Ext) is the standard π-calculus’ rule for scope extension. Finally, law
(RNode) states that any restricted name can be used as the address of a node; indeed,
we consider restricted names as private network addresses, whose corresponding nodes
can be activated and deactivated when needed. By relying on rule (RNode), we shall
only consider nets where each bound name is associated to a node.

The reduction relation is given in Table 2 and relies on two auxiliary functions:
E[[]] and match(;). The tuple/template evaluation function, E[[]], evaluates com-
ponentwise the expressions occurring within the tuple/template ; its definition is sim-
ple and, thus, omitted. The pattern matching function, match(;), verifies the compli-
ance of a tuple w.r.t. a template and associates values to variables bound in the template.
Intuitively, a tuple matches a template if they have the same number of fields, and cor-
responding fields match. Formally, function match is defined as

match(l; l) = ε match(!u; l) = [l/u]

match(V; V) = ε match(!x; V) = [V/x]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1,T2; t1, t2) = σ1 ◦ σ2

where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions composition.
Here, a substitution σ is a mapping of localities and basic values for variables; Pσ
denotes the (capture avoiding) application of σ to P.

Global Computing in a Dynamic Network of Tuple Spaces 161

Table 2. tKlaim Reduction Relation

(R-Out)
E[[t]] = t′

l :: out(t)@l′.P ‖ {l↔ l′} �−→ l :: P ‖ {l↔ l′} ‖ l′ :: 〈t′〉

(R-Eval) l :: eval(P2)@l′.P1 ‖ {l↔ l′} �−→ l :: P1 ‖ {l↔ l′} ‖ l′ :: P2

(R-In)
match(E[[T]]; t) = σ

l :: in(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ {l↔ l′}

(R-Read)
match(E[[T]]; t) = σ

l :: read(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 �−→ l :: Pσ ‖ {l↔ l′} ‖ l′ :: 〈t〉

(R-New) l :: new(l′).P �−→ (νl′)(l :: P ‖ {l↔ l′})

(R-Par)
N1 �−→ N′1

N1 ‖ N2 �−→ N′1 ‖ N2

(R-Res)
N �−→ N′

(νl)N �−→ (νl)N′

(R-Struct)
N ≡ M M �−→ M′ M′ ≡ N′

N �−→ N′

The operational rules of tKlaim can be briefly motivated as follows. Rule (R-Out)
evaluates the expressions within the argument tuple and sends the resulting tuple to the
target node. However, this is possible only if the source and the target nodes are directly
connected. Rule (R-Eval) is similar: a process can be spawned at l′ by a process running
at l only if l and l′ are directly connected. Rules (R-In) and (R-Read) require existence
of a matching datum in the target node and of a connection between the source and the
target node. The tuple is then used to replace the free occurrences of the variables bound
by the template in the continuation of the process performing the actions. With action
in the matched datum is consumed while with action read it is not. Rule (R-New) says
that execution of action new(l′) adds a restriction over l′ to the net and a link between
the creating node l and the created node l′; from then on, a new node with locality l′ can
be activated/deactivated by using law (RNode). Rules (R-Par), (R-Res) and (R-Struct)
are standard.
tKlaim adopts a Linda-like [18] communication mechanism: data are anonymous

and associatively accessed via pattern matching, and communication is asynchronous.
Indeed, even if there exist prefixes for placing data to (possibly remote) nodes, no syn-
chronization takes place between (sending and receiving) processes, because their in-
teractions are mediated by nodes, that act as data repositories.

To conclude the presentation of tKlaim operational semantics, we want to stress that
interactions between directly linked nodes can be used to permit interactions between
nodes that are not directly linked. However, as it happens in practice, this feature must
be explicitly programmed. If a process running at l wants to send a tuple t to l′ and there

162 R. De Nicola, D. Gorla, and R. Pugliese

exists a path of links from l to l′ in the underlying connection graph, the one needs a
mobile process be spawned by l ‘towards’ l′ that delivers tuple t. The main challenges of
such a process is to discover the shortest (or, at least, a possible) path connecting l and l′.
This functionality can be accomplished by relying on routing tables, i.e. distributed data
structures that record information on routing paths. We leave the formal specification
of this process, together with a proof of its soundness, for a forthcoming full paper.

Observational Semantics. We now present a preorder on tKlaim nets yielding sensible
semantic theories. We follow the approach put forward in [14] and use may testing
preorder and the associated equivalence. Intuitively, two nets are may testing equivalent
if they cannot be distinguished by any external observer taking note of the data offered
by the observed net. More precisely, an observer O is a net containing a node whose
address is a reserved locality name test. A computation reports success if, along its

execution, a datum at node test appears; this is written
OK
===⇒ .

Definition 2 (May Testing Preorder and Equivalence). May testing preorder, �, is

the least preorder on tKlaim nets such that, for every N � M, it holds that N ‖ O
OK
===⇒

implies M ‖ O
OK
===⇒ , for any observer O.

May testing equivalence, �, is defined as the intersection of � and �.

To conclude, we give a simple Proposition collecting a few equational laws that
will simplify the proofs of the case-studies considered in this paper. Soundness of such
laws can be easily established by exploiting the co-inductive (bisimulation-based) proof
technique provided in [13]. Indeed, directly establishing may-testing may be very hard
because of the universal quantification over contexts.

Proposition 1.
1. l :: out(t)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: 〈t〉
2. l :: eval(Q)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: Q
3. (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) � (νl′)(l :: Pσ) if match(E[[T]]; t) = σ
4. (νl)(l :: C) � 0 whenever C is a datum 〈t〉, a stuck process nil or the parallel

composition of such components
5. l :: new(l′).P � (νl′)(l :: P ‖ {l↔ l′})
6. (νl′){l↔ l′} � l :: nil

3 Modelling Failures

We now enrich the basic framework with a mechanism for modelling various forms of
failures, a key feature of global computers. We start by modelling failure of nodes and of
node components; then, we use the new setting to prove some properties of a distributed
fault-tolerant protocol. Finally, we sketch a minor modification of our framework to take
into account link failures.

3.1 Failure of Nodes and Node Components

We start by modelling a framework where only nodes and node components fail. This
can be achieved by adding the operational rule

Global Computing in a Dynamic Network of Tuple Spaces 163

(R-FailN) l :: C �−→ 0

that models corruption of data (message omission) if C � 〈t1〉| . . . |〈tn〉, node (fail-
silent) failure if l :: C collects all the clones of l, and abnormal termination of some
processes running at l otherwise. Modelling failures as disappearance of a resource
(a datum, a process or a whole node) is a simple, but realistic, way of representing
failures in a global computing scenario [6]. Indeed, while the presence of data/nodes
can be ascertained, their absence cannot because there is no practical upper bound to
communication delays. Thus, failures cannot be distinguished from long delays and
should be modelled as totally asynchronous and undetectable events.

For the sake of clarity, we shall denote with � f and � f the may testing preorder
and equivalence obtained when adding rule (R-FailN) to the rules in Table 2.

A Distributed Fault-tolerant Protocol: k–set Agreement. We now use may testing to
verify the correctness of k–set agreement [10], a simple distributed fault-tolerant pro-
tocol. Let us consider a totally-connected distributed system with n principals relying
on an asynchronous message-passing communication paradigm. Moreover, we also as-
sume that principals can fail according to a fail-silent model of failures; however, the
communication medium is reliable, i.e. messages sent will surely be received although
the order and the moment in which messages will arrive are unpredictable because of
asynchrony.

Each principal has an input value (taken from a totally ordered set) and must produce
an output value. The agreement problem requires to find a protocol that satisfies three
properties: termination (i.e. the non-faulty principals eventually produce an output),
agreement (i.e. the non-faulty principals produce the same output value) and validity
(i.e. the output value must be one of the input values). It is well-known (see, e.g. [2])
that a solution for this problem does not exists even if a single failure occurs.

The k–set agreement problem relaxes the agreement property to enable the existence
of a solution. Indeed, for each 1 ≤ k ≤ n, it requires that, assuming at most k − 1 faulty
principals, the non-failed principals successfully complete their execution by producing
outputs taken from a set whose size is at most k. Notice that for k = 1 we get the
agreement problem without failures.

A possible solution for the k-set agreement problem is given by the following pro-
tocol, taken from [2], executed by each principal:

(i) send your input value to all principals (including yourself)
(ii) wait to receive n − k + 1 values

(iii) output the minimum value received

In this way, if we call I the set of the input values, the set of output values O is formed
by the k smallest values in I. For the sake of simplicity, we assume that the elements in
I are pairwise distinct; however, the protocol works also if input values are duplicated
(in this case I and O are multisets).

We use integers as input/output values, while principals are represented as distinct
nodes, whose addresses are taken from the set L = l̃ � { l1, . . . , ln}; moreover, we use
di ∈ I to denote the input value of the principal associated to the node whose address
is li. Once we fix the value for k, node li hosts the process

Pk
i � out(di)@l1.out(di)@ln.in(!zi

1)@li.in(!zi
n−k+1)@li.out(mi)@l

164 R. De Nicola, D. Gorla, and R. Pugliese

with mi � min{zi
j : j = 1, . . . , n− k+ 1} and l be a distinct locality used to collect output

values. The net implementing the whole protocol is

Nk
n � (ν̃l)(n

Π
i=1

li :: Pk
i ‖ Γ)

where
Γ � Π

i� j
{li ↔ l j}

We restricted the localities associated to the principals because no external context is
allowed to interfere with the execution of the protocol. Notice that, having restricted
the l̃, all the principals are connected and no out prefix will ever block Pk

i (because of
law (RNode)). However, this does not prevent failures: the failure of (a reduct of) Pk

i is
indeed the failure of principal i.

A formulation of the three properties for the k-set agreement problem is given by
Equations (1) and (2) below. The formalisation of k-set agreement and validity proper-
ties is given by the Equation

Nk
n � f Mk

n (1)

There, we exploit the auxiliary net

Mk
n � (ν̃l, l̃′)(n

Π
i=1

li :: new(l′i).(Q
k
i | Π

w∈O
out(w)@l′i) ‖ Γ)

where

Qk
i � out(di)@l1. · · · .out(di)@ln.in(!zi

1)@li. · · · .in(!zi
n−k+1)@li.in(mi)@l′i .out(mi)@l

We assume that nodes whose addresses are in l̃′ cannot fail; this is reasonable because
they are only auxiliary nodes and hence their failure is irrelevant for the original for-
mulation of the problem. Intuitively, node l′i acts as a repository for li and contains the
possible output values (i.e. the elements of O), while the last in action of Qk

i is a test for
checking that the output value produced by the principal i is in O. The net Mk

n obviously
satisfies the wanted properties since its principals output only values present in O. The
fact that |O| = k then implies the k-set agreement property, while the fact that O ⊆ I
implies validity.

In order to prove the termination property, it suffices to prove that

l ::
n−k+1
Π
j=1
〈〉 � f N̂k

n (2)

where N̂k
n � (ν̃l)(n

Π
i=1

(li :: P̂k
i ‖ {li ↔ l}) ‖ Γ) and processes P̂k

i is defined like Pk
i

with action out()@l in place of out(mi)@l. Clearly, if we only consider termination,
Nk

n and N̂k
n are equivalent, in the sense that a non-faulty principal produces an output

value in the first net if and only if its counterpart produces an output in the second net.
Equation (2) implies termination of the protocol, since it requires that at least n − k + 1
tuples are produced at l; by definition of the protocol, this is possible only if n − k + 1
principals terminate successfully.

Global Computing in a Dynamic Network of Tuple Spaces 165

Before proving the equations stating the soundness of the protocol, we want to re-
mark that other solutions to the agreement problem in presence of failures have been
given in literature. Some of these solutions use failure detectors [9, 2]. Recently, one
such solution has been formalised and proved sound by using a process algebraic ap-
proach [17]. The solution in loc.cit. is, however, heavier than ours and exploits proper-
ties of the operational semantics, instead of working in a (simpler) equational setting.
Moreover, it exploits failure detectors which are hardly implementable in a global com-
puting scenario.

Proof of Equations (1) and (2). To prove the properties formulated above, we first need
a new equality

l :: I1| . . . |In � f l :: I1| . . . |Im if n ≤ m (†)
Second, we need to smoothly adapt some of the equalities put forward by Proposition 1:
the first equality holds only under the hypothesis that l′ is restricted, while the third
equality holds only under the further hypothesis that 〈t〉 is not corruptible at l′ (with “〈t〉
is not corruptible at l′ ”, we mean that l′ :: 〈t〉 does never fail). Then, we prove Equation
(1) as follows:

Nk
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out(mi)@l | 〈d1〉 | . . . | 〈dn〉 ‖ Γ)
� f (ν̃l)(n

Π
i=1

li :: out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ Γ)
� f (ν̃l, l̃′)(n

Π
i=1

(li :: in(m′i)@l′i .out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉
‖ l′i :: Π

w∈O
〈w〉 ‖ {li ↔ l′i }) ‖ Γ)

� f (ν̃l, l̃′)(n
Π
i=1

(li :: in(!zi
1)@li.in(!zi

n−k+1)@li.in(mi)@l′i .out(mi)@l

| 〈d1〉 | . . . | 〈dn〉 ‖ l′i :: Π
w∈O
〈w〉 ‖ {li ↔ l′i }) ‖ Γ)

� f Mk
n

where m′i denotes mi[d̃/̃z], with d̃ � {d1, . . . , dn} − {di1 , . . . , dik−1 } and z̃ � {z1, . . . , zn−k+1}.
The first and the last steps have been inferred by applying several times (the revised
formulation of) Proposition 1.1 . The second and the fourth steps have been inferred by
applying several times (the revised formulation of) Proposition 1.3; notice that, since
the number of failures is at most k − 1, the number of non-corruptible data present in
each li is at least n − k + 1. The third step relies on Proposition 1.3, .4 and .6 . It is
worth to notice that m′i ∈ O because, since |O| = k, at least one principal whose input
value, say d′, is in O has not failed; hence d′ has been received by all the (non-failed)
principals. Moreover, we assumed that the l̃′ cannot fail and hence the data they host
are uncorruptable.

To conclude, we are left with proving Equation (2). This can be done very similarly
as follows:

N̂k
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out()@l | 〈d1〉 | . . . | 〈dn〉 ‖ {li ↔ l})
� f (ν̃l)(n

Π
i=1

li :: out()@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ {li ↔ l})

166 R. De Nicola, D. Gorla, and R. Pugliese

� f l ::
n
Π
j=1
〈〉

� f l ::
n−k+1
Π
j=1
〈〉

The first two steps are derived in the same way. The third step is derived using (the
revised version of) Proposition 1.1/.4 and Proposition 1.6 . The fourth step derives from
law (†).
3.2 Failure of Inter-node Connections

The philosophy underlying our failure model can be easily adapted to deal with link
failures too. To this aim, we only need to add the operational rule

(R-FailC) {l1 ↔ l2} �−→ 0

that models the (asynchronous and undetectable) failure of the link between nodes l1
and l2.

Discovering Neighbours. When the (multi)set of links in a net can change during com-
putations, routing tables must be dynamic, because the original topology can change at
runtime. This task is usually carried on by the so-called adaptive (or dynamic) routing
algorithms. Several proposals have been presented in literature and different standards
use different solutions. However, in general, routing algorithms are repeated at regular
time intervals and consist in two main phases: first, each node discovers its neighbours;
then, it calculates its routing table by usually sharing local information with its neigh-
bours. We present here a simple way to implement in tKlaim the first phase; the (more
challenging) study of the second phase is left for future work.

Neighbours can be discovered in a simple way. Each node l can try to send a “hello”
message to another node l′; if this action succeeds, then a connection between l and
l′ does exist; otherwise, nothing can be said (e.g., the message could get lost or the
link could be congested and this caused a delay to the message). In our framework, no
explicit message is needed: a simple action eval(nil)@l′ performed at l can be used as
test for existence of link {l↔ l′} in the net.

By letting � f still denote the may testing preorder in this refined framework, sound-
ness of our solution follows by proving that

l :: eval(nil)@l′.out(“CONN”, l, l′)@l � f {l↔ l′} ‖ l :: 〈“CONN”, l, l′〉
The equation above states that if the left hand side successfully passes the test of an
observer looking for a tuple 〈“CONN”, l, l′〉 at l, then the link {l ↔ l′} must exist. Its
soundness can be easily proved by exploiting the co-inductive proof technique in [13].

4 Modelling Dynamic Connections

Finally, we present another variation of the basic language that let connections dynam-
ically evolve. To this aim, we add two actions to create and destroy a link, respectively.
Formally, we add the productions

Global Computing in a Dynamic Network of Tuple Spaces 167

a ::= . . .
∣∣∣ conn(�)

∣∣∣ disc(�)

to the syntax of Table 1. Intuitively, the first action, when executed at node l, creates a
new link between l and �, if the latter name is associated to a network node. Conversely,
the second action, when executed at node l, removes a link between l and �, if such a
link exists. These intuitions are formalised by the following operational rules, that must
be added to those in Table 2:

(R-Conn) l :: conn(l′).P ‖ l′ :: nil �−→ l :: P ‖ {l↔ l′}

(R-Disc) l :: disc(l′).P ‖ {l↔ l′} �−→ l :: P ‖ l′ :: nil

Again, for the sake of clarity, we denote with �d the may testing equivalence in the
calculus with dynamic connections.

Message Delivering in a Dynamic Net. To conclude, we now give an application of our
theory in a setting where node links change dynamically. To this aim, we use a simpli-
fied scenario inspired by the handover protocol, proposed by the European Telecommu-
nication Standards Institute (ETSI) for the GSM Public Land Mobile Network (PLMN).
The formal specification of the protocol and its service specification are in [24]; we use
here an adaption of their approach.

The PLMN is a cellular system which consists of Mobile Stations (MSs), Base Sta-
tions (BSs) and Mobile Switching Centres (MSCs). MSs are mobile devices that provide
services to end users. BSs manage the interface between the MSs and a stationary net;
they control the communications within a geographical area (a cell). Any MSC handles
a set of BSs; it communicates with them and with other MSCs using a stationary net.

A new user can enter the system by connecting its MS with a MSC that, in turn, will
decide the proper BS responsible for such a MS. Then, messages sent from the user
are routed to their destinations by the BS, passing through the MSC handling the BS.
However, it may happen that the BS responsible for a MS should be changed during
the computation (e.g., because the MS left the area associated to the BS and entered
in the area associated to a different BS). In this case, the MSC should carry on the
rearrangements needed to cope with the new situation, without affecting the end-to-end
communication.

We now model the key features of a PLMN in tKlaim; however, for the sake of
simplicity, several aspects will be omitted, like, e.g., the criterion to choose a proper
BS for a given MS, or the event originating an handover. Both MSs, BSs and MSCs are
modelled as nodes. For the sake of simplicity, we consider a very simple PLMN, with
one MSC (whose address is M) and two BSs (whose addresses are B1 and B2, resp.).

Let us start with the process that performs the connecting formalities in M.

ENT ER � < gather a new connection f rom l > .read(!B)@BSlist.
eval(conn(l))@B.disc(l).out(l, B)@Table

When a new user want to enter the PLMN, it has to perform a conn(M) from his MS,
whose address is l; this generates an interrupt in M (that we do not model here) by
which the MSC can gather the address of the MS. This address, together with other
information (like the geographical area of the user or its credentials), are used by the

168 R. De Nicola, D. Gorla, and R. Pugliese

MSC to choose a proper BS; in our simplified framework, we let M take a BS’s address
from a private repository BSlist. Then, the MSC creates a new link from the chosen
BS to the MS and destroys the link from itself to the MS. Finally, it records in a private
repository Table the fact that the new MS is under the control of the chosen BS.

Once entered the PLMN, the new user can send some data d to (the MS of) a remote
user (whose address is l′); this is achieved by letting his MS (whose address is l) perform
an action of the form out(‘send’, l′, d)@l. Then, the BSs associated to l and l′ come into
the picture to properly deliver the message. In particular, let Bi be the BS associated to l
and B j be the BS associated to l′ (for i, j ∈ {1, 2}). Then, the message is forwarded from
Bi to B j by the process

FWDi � read(!x, Bi)@Table.in(‘send’, !y, !z)@x.in(y, !B)@Table.out(y, z)@B

This process first retrieves the address of a MS associated to Bi (in particular, l); then,
it collects the message and forwards it to the BS associated to the destination MS.
Notice that, in doing this, it ‘locks’ the link between l′ and B j until the message will
be delivered to l′ (see below); this is necessary to avoid that a handover may interfere
with the message delivering. Then, the message is collected by B j and passed to l′ by
the process

CLT j � in(!dest, !mess)@B j.out(mess)@dest.out(dest, B j)@Table

This process retrieves the message sent by Bi and passes it to the final MS; then, it
releases the ‘lock’ on the link {B j ↔ l′} acquired by Bi by putting back in Table the
tuple 〈l′, B j〉. Clearly, there are also processes FWDj and CLTi running in B j and Bi

respectively, but they do not play any role here.
Finally, the handover is handled by the MSC via the following process:

HNDVR � in(!x, !B)@Table.read(!B′)@BSlist.
eval(disc(x))@B.eval(conn(x))@B′.out(x, B′)@Table

This process first selects a MS-to-BS association to be changed (the reason why this
is needed is not modelled here); then, it chooses a new BS, properly changes the links
between the MS and the BSs, and updates the repository Table.

The overall resulting system is

S YS � (νTable, BSlist, B1, B2)(M :: ∗ENT ER | ∗ HNDVR
‖ BSlist :: 〈B1〉 | 〈B2〉 ‖ Table :: nil
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2)

where ∗P denotes the replication of P and stands for an unbounded number of copies
of P running in parallel. Replication can be easily encoded through recursion by letting
∗P be a shortcut for rec X.(P|X). Soundness of the system can be formulated as:

(νl)(l :: conn(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: conn(M) ‖ S YS)
�d (νl)(l′ :: 〈‘HI’〉 ‖ S YS)

(3)

Global Computing in a Dynamic Network of Tuple Spaces 169

Notice that l is restricted only to simplify proofs: soundness of the protocol is not af-
fected by the fact that the MSs are public or not.

Proof of Equation (3). To prove the equation above, we first need two laws for the
primitives conn and disc, that are quite expectable.

l :: conn(l′).P ‖ l′ :: nil �d l :: P ‖ {l↔ l′} (�)

(νl′)(l :: disc(l′).P ‖ {l↔ l′}) �d (νl′)(l :: P ‖ l′ :: nil) (��)

Moreover, we also need an adapted version of Proposition 1.3 to deal with action read.
It is defined as follows:

(νl′)(l :: read(T)@l′.P ‖ l′ :: 〈t〉) �d (νl′)(l :: Pσ ‖ l′ :: 〈t〉)
if match(E[[T]], t) = σ.

(‡)

We are ready to prove Equation (3), yielding the soundness of the protocol for the
PLMN. It is easy to prove that

(νl)(l :: conn(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: conn(M) ‖ S YS)

�d (νl, Table, BSlist, B1, B2)(l :: 〈‘send’, l′, ‘HI’〉 ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉
‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2)

�d (nul, Table, BSlist, B1, B2)(l :: nil ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉
‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗CLT2

‖ Bi :: in(l′, !B)@Table.out(l′, ‘HI’)@B)
� K

The first equality can be inferred using laws (�) and (‡), Proposition 1.2, laws (�)
and (��), and Proposition 1.1; the second equality can be inferred using law (‡) and
Proposition 1.3. Now we cannot proceed equationally: indeed, there are two paral-
lel components that may want to retrieve the tuple 〈l′, B j〉 at Table, i.e. the process
in(l′, !B)@Table.out(l′, ‘HI’)@B running at Bi and the process HNDVR running at M.
This fact makes Proposition 1.3 not applicable here.

To overcome this problem, we observe that there are only three possible evolutions
for K: make a handover for l, make a handover for l′, or complete the delivering of the
message that l sent to l′. The first evolution is compatible with the latter two ones that, in
turn, are mutually exclusive. Thus, letH be the set of pairs (N, (νl)(l′ :: 〈‘HI’〉 ‖ S YS)),
where N is any reduct of K obtained by giving the precedence to the handover of l′ w.r.t.
the message delivering. Symmetrically, let D be the set of pairs (N, (νl)(l′ :: 〈‘HI’〉 ‖
S YS)), where N is any reduct of K obtained by giving the precedence to the message
delivering w.r.t. the handover of l′. Now, it can be easily proved that

{ (K, (νl)(l′ :: 〈‘HI’〉 ‖ S YS)) } ∪ H ∪ D
is a bisimulation. By the fact that ≈d ⊂ �d and by transitivity of �d, this suffices to
prove Equation (3).

170 R. De Nicola, D. Gorla, and R. Pugliese

5 Conclusions and Related Work

We have presented a calculus inspired by Klaim whose main feature is the handling of
inter-node connections. We have first presented a basic setting where connections are
reliable and immutable; then, we have enriched the basic framework with failures and
dynamically evolving connections, two more advanced features for global computing.
In each setting, we have used our formalisms to specify and verify some non-trivial
global computing applications, by exploiting a may-testing equivalence.
Related work. In the last decade, several languages for modelling and programming
distributed and global computing systems have been proposed in literature; we mention
here only the most strictly related ones.

In DJoin [16], located mobile processes are hierarchically structured and form a
tree-like structure evolving during the computation. Entire subtrees, not just single pro-
cesses, can move and fail. Communication takes place in two steps: first, the sending
process sends a message on a channel; then, the ether (i.e. the environment contain-
ing all the nodes) delivers the message to the (unique) process that can receive on that
channel. Failures are programmed (i.e., they result from the execution of some process
actions) and can be detected by processes. We believe that the setting presented in this
paper is more realistic than DJoin because the considered interconnection topology is
more general than trees and also because we do not assume any implicit engine for dis-
tant communications. Finally, we model failures in a way that is closer to actual global
computers.

The Ambient calculus [7] is an elegant notation to model hierarchically structured
distributed applications. Like in our work, the calculus is centered around the notion of
connections between ambients, that are containers of processes and data. Each language
primitive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambient n can enter an ambient m only if n and m are sibling, i.e. they are
both contained in the same ambient. However, like DJoin, Ambient strongly relies on
a tree-like structure for the ambient hierarchy. Moreover, to the best of our knowledge,
no explicit notion of failures, close to actual global computing requirements, has been
ever given for Ambient.

[27] presents Nomadic Pict, a distributed and agent-based language based on the π-
calculus. It relies on a flat net where named agents can roam. Communication between
two agents can take place only if they are located at the same node (thus no low-level
remote communication is allowed). However, the language also provides a (high-level)
primitive for remote communication, that transparently delivers a message to an agent
even if the latter is not co-located with the sender. This primitive is then encoded in
the low-level calculus by a central forwarding server, implemented by only using the
low-level primitives. The assumption that only co-located agents can communicate is,
in our opinion, too demanding. Moreover, it is not clear to us how the theory can be
adapted to consider failures.

Another distributed version of the π-calculus is presented in [21]; the resulting cal-
culus contains primitives for code movement and creation of new localities/channels in
a net with a flat architecture. The main feature of the language is the possibility of con-
trolling process activities via (sophisticated and non-standard) type systems. No notion
of explicit connections and of failures have been integrated in the framework yet.

Global Computing in a Dynamic Network of Tuple Spaces 171

We now touch upon some formalisms for distributed computing relying on the
powerful paradigm put forward by Linda [18]. In TuCSoN [23], tuple spaces are en-
hanced with the capability of programming their behaviour in response to communi-
cation events; moreover, the computational model relies on a hierarchical collection of
(possibly) distributed tuple spaces. MARS [5] is a coordination tool for Java-based mo-
bile agents that defines Linda-like tuple spaces programmable to react when accessed
by agents. Such mechanisms can be used to control accesses to specific tuples. In tK-
laim, this can be obtained either by using dynamically created (private) nodes or by
tailoring the capability-based type systems presented in [19, 20]. Lime [26] exploits
multiple tuple spaces to coordinate mobile agents and adds mobility to tuple spaces: it
allows processes to have private tuple spaces and to transparently and transiently share
them. In tKlaim, sharing of resources can be somehow achieved via dynamic handling
of links; however, tuple spaces are bound to nodes and nodes cannot move.

Finally, we want to remark that the use of observational equivalences to state and
proof soundness of protocols is a well-established technique in the field of process
calculi; some notable examples are [1, 22, 24, 28]. In particular, in the last paper, an
automatic verification tool to prove equivalences in the π-calculus is described. As an
application, the authors automatically verify an equality, similar to ours, stating the
soundness of the PLMN example.

Acknowledgements. We would like to thank the anonymous referees for some sugges-
tions that helped in improving the paper.

References

1. M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the Spi calculus.
In Proc. of CONCUR’97, volume 1243 of LNCS, pages 59–73. Springer, 1997.

2. H. Attiya and J. Welch. Distributed Computing. McGraw Hill, 1998.
3. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-Klaim.

In Proc. of the 7th WETICE, pages 110–115. IEEE, 1998.
4. L. Bettini, M. Loreti, R. Pugliese. An Infrastructure Language for Open Nets. In Proc. of

the 2000 ACM Symposium on Applied Computing, pages 373–377, ACM Press, 2002.
5. G. Cabri, L. Leonardi and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent Coordi-

nation. In Proc. of the 2nd Int. Workshop on Mobile Agents, volume 1477 of LNCS, pages
237–248. Springer, 1998.

6. L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, number 1603 in LNCS, pages 51–94. Springer,
1999.

7. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000.

8. S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination system.
Tech. Rep. UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ. di Bologna, Italy, 1996.

9. T. Chandra and S.Toueg. Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225–267, 1996.

10. S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105(1):132–158, 1993.

172 R. De Nicola, D. Gorla, and R. Pugliese

11. N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple space based platform for
adaptive mobile applications. In Int. Conference on Open Distributed Processing/Distributed
Platforms (ICODP/ICDP’97), 1997.

12. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

13. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global comput-
ing. Technical Report 07/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”. Available
at http://www.dsi.uniroma1.it/˜gorla/papers/bo4k-full.pdf.

14. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer
Science, 34:83–133, 1984.

15. D. Deugo. Choosing a Mobile Agent Messaging Model. In Proc. of ISADS 2001, pages
278–286. IEEE, 2001.

16. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.
In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

17. R. Fuzzati, M. Merro, and U. Nestmann. Modelling Consensus in a Process Calculus. In
Proc. of CONCUR’03, volume 2761 of LNCS. Springer-Verlag, 2003.

18. D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

19. D. Gorla and R. Pugliese. Resource Access and Mobility Control with Dynamic Privileges
Acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119-132. Springer, 2003.

20. D. Gorla and R. Pugliese. Enforcing Security Policies via Types. In Proc. of Security in
Pervasive Computing (SPC’03), volume 2802 of LNCS, pages 88-103. Springer, 2003.

21. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. Informa-
tion and Computation, 173:82–120, 2002.

22. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification,
volume 94 of Series F. NATO ASI, Springer, 1993.

23. A. Omicini and F. Zambonelli. Coordination of Mobile Information Agents in Tucson. Jour-
nal of Internet Research, 8(5):400-413, 1998.

24. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects of
Computing, 4:497–543, 1992.

25. J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–
543. Elsevier Science, 2001.

26. G.P. Picco, A.L. Murphy and G.-C. Roman. Lime: Linda Meets Mobility. In Proc. of the 21st

Int. Conference on Software Engineering (ICSE’99), pages 368–377. IEEE, 1999.
27. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructures for Mo-

bile Computation. In Proc. of POPL’01, pages 116–127. ACM Press, 2001.
28. B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. In Proc. of

CAV ’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

	Introduction
	The Language
	Modelling Failures
	Failure of Nodes and Node Components
	Failure of Inter-node Connections

	Modelling Dynamic Connections
	Conclusions and Related Work

