
Failure Detection with Booting in Partially
Synchronous Systems�

Josef Widder1, Gérard Le Lann2, and Ulrich Schmid1

1 Technische Universität Wien, Embedded Computing Systems Group E182/2,
Treitlstraße 3, A-1040 Vienna (Austria)

{widder, s}@ecs.tuwien.ac.at
2 INRIA Rocquencourt, Projet Novaltis, BP 105,

F-78153 Le Chesnay Cedex (France)
gerard.le lann@inria.fr

Abstract. Unreliable failure detectors are a well known means to enrich
asynchronous distributed systems with time-free semantics that allow to
solve consensus in the presence of crash failures. Implementing unreli-
able failure detectors requires a system that provides some synchrony,
typically an upper bound on end-to-end message delays. Recently, we
introduced an implementation of the perfect failure detector in a novel
partially synchronous model, referred to as the Θ-Model, where only the
ratio Θ of maximum vs. minimum end-to-end delay of messages that
are simultaneously in transit must be known a priori (while the actual
delays need not be known and not even be bounded). In this paper, we
present an alternative failure detector algorithm, which is based on a
clock synchronization algorithm for the Θ-Model. It not only surpasses
our first implementation with respect to failure detection time, but also
works during the system booting phase.

1 Introduction

Asynchronous distributed algorithms maximize systems coverage, i.e., the prob-
ability that a fault-tolerant distributed real-time system works as required dur-
ing its lifetime. In particular, systems coverage is known to be higher with
asynchronous algorithms than with synchronous algorithms, for identical per-
formance figures (e.g., response times) [1, 2]. Due to the well-known FLP impos-
sibility result [3], however, important generic problems like consensus cannot be
solved deterministically in purely asynchronous systems if just a single process
may crash. Solving such generic problems hence requires a purely asynchronous
system augmented with some semantics.

Dolev, Dwork and Stockmeyer [4] investigated how much synchronism is re-
quired in order to solve consensus. They identified five synchrony parameters

� Supported by the Austrian START program Y41-MAT, the BM:vit FIT-IT project
DCBA (proj. no. 808198), and by the FWF project Theta (proj. no. P17757-N04).

pp. 20–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.): EDCC 2005, LNCS 3463,

Failure Detection with Booting in Partially Synchronous Systems 21

(processors, communication, message order, broadcast facilities and atomicity
of actions), which can be varied into 32 different partially synchronous models.
For each of those, they investigated whether consensus is solvable. A different —
more abstract — approach was taken by Chandra and Toueg [5, 6], who intro-
duced the concept of unreliable failure detectors (FDs). A local failure detector
module is associated with every process, which provides the consensus algorithm
with hints about processes that (seem to) have crashed. Several different classes
of unreliable failure detectors sufficient for solving consensus have been identi-
fied in [5]. In this paper we focus on the perfect FD P. Informally, this FD has
the semantics that (1) all correct processes will detect all crashes and (2) no
processes will be falsely suspected of having crashed.

Failure detectors are particularly attractive, since they encapsulate synchrony
assumptions in a time-free manner. Consensus algorithms using FDs are hence
time-free in the sense that no local clocks are needed and no real-time variables
show up in the algorithm’s code. Therefore such algorithms share the cover-
age maximization property proper to purely asynchronous algorithms. Never-
theless, the question of coverage arises also when implementing an FD, which of
course requires the underlying system to satisfy some synchrony assumptions. In
fact, existing implementations of the perfect FD P (see [7] for a comprehensive
overview of existing work) rest upon knowing an upper bound on the end-to-end
transmission delays of messages and hence require a synchronous system [8]. In
[7] and [2], we introduced a novel system model, referred to as Θ-Model1, which
is essentially the purely asynchronous FLP model [3] augmented with a bound
upon the ratio Θ of maximum vs. minimum end-to-end computation + trans-
mission delay between correct processes. Since just a bound upon the ratio Θ —
but not on the maximum delay itself —must be known, this type of partial syn-
chrony is not covered in the classic literature on synchrony [4, 9, 8]: The existing
models require both an upper bound upon (1) the relative speed Φ of any two
correct processes and (2) the absolute message transmission delay ∆. In sharp
contrast, the Θ-Model does not incorporate any absolute bound on delays and
works even in situations where actual delays are unbounded. (This is formalized
in [10].) Unlike the global stabilization time model of [9], which assumes that
the system is synchronous from some unknown point in time on, it belongs to
the class of models where bounds on transmission and computation delays are
unknown but are always assumed to hold.

Another issue where the Θ-Model differs from the partially synchronous mod-
els of [4, 9, 8] is the fact that it allows message-driven algorithms only, where every
computation event at a process is a direct response to some (remote) message
reception. In [7] we showed that spontaneous local events — e.g. due to clocks
or timers — are in fact not necessary for solving generic agreement problems.
Θ-algorithms are hence time-free in that they do not rely upon local time in-
formation (no clocks, no a priori bounds on the duration of computation steps)
and can only make decisions based on and triggered by received messages.

1 Visit http://www.ecs.tuwien.ac.at/projects/Theta/ for our papers on the Θ-Model.

22 J. Widder, G. Le Lann, and U. Schmid

In [7], we also introduced an algorithm for implementing P in the Θ-Model.
By definition, this algorithm circumvents both the impossibility of implementing
P in the presence of unknown delay bounds of [11] and the impossibility of
consensus in presence of unbounded delays of [4], by resorting to the assumption
of an a priori known ratio between largest and shortest end-to-end delays.

This paper presents an alternative implementation of P in the Θ-Model,
which surpasses the failure detector implementation [7] with respect to detec-
tion time. The new solution is based upon a clock synchronization algorithm in-
troduced in [12, 13], which employs an extension of the non-authenticated clock
synchronization algorithm by Srikanth and Toueg [14]. Among its particularly
attractive features is its ability to properly handle system booting: Given that
the Θ-Model allows just message-driven algorithms, Θ-algorithms must imple-
ment any required functionality without resorting to time or timers. This also
constrains the solution space for the important — but often neglected — system
startup problem considerably: Since our FD algorithm requires a quorum of pro-
cesses in order to achieve its properties, we cannot simply assume that it works
also during the booting phase, where processes get up independently of each
other at unpredictable times. After all, processes that get up late typically miss
at least some of the messages sent by earlier started ones.

Straightforward system startup solutions (see [12] for an overview of existing
approaches) either constrain the maximum allowed duration of the booting phase
via timeouts, or considerably increase the system size n for a given number of
failures to be tolerated. Both deficiencies are avoided by the clock synchroniza-
tion algorithm of [12], which in fact guarantees some of its properties (including
precision) also during system startup. Using this algorithm, we provide an imple-
mentation of P for the Θ-Model which behaves like an eventually perfect failure
detector �P during system startup and becomes P when sufficiently many pro-
cesses have completed booting.

Organization of the paper: After an overview and a short discussion of the Θ-
Model in Section 2 and Section 3, respectively, we provide some required results
related to the clock synchronization algorithm of [12, 13] in Section 4. Section 5
starts with the presentation of the new FD algorithm for the simplified case where
all processes boot simultaneously, which is then extended to handle realistic
system startup scenarios. A short discussion of our results and some remarks on
coverage issues in Section 6 complete the paper.

2 System Model

We consider an asynchronous distributed system of n processes denoted by
p, q, . . ., which communicate through a reliable, error-free and fully connected
point-to-point network. Even under the perfect communication assumption, mes-
sages that reach a process that is not booted are lost. The communication chan-
nels do not necessarily provide FIFO delivery of messages. We assume that every
(non-faulty) receiver of a message knows its sender, which is actually ensured by
our point-to-point assumption. Our algorithms do not require an authentication

Failure Detection with Booting in Partially Synchronous Systems 23

service. (Except when our algorithms have to be implemented in systems where
a point-to-point network must be simulated via a shared channel like Ethernet,
since authentication is required to prevent masquerading here.)

Failure model: Among the n processes, there is a maximum of f faulty ones.
When considering just the clock synchronization algorithm in Section 4, no re-
striction is put on the behavior of faulty processes; they may exhibit Byzantine
failures. Since the existing work on muteness detector specifications [15, 16, 17,
18, 19] suggests to also consider more severe types of failures in FD-based appli-
cations, we decided to retain the Byzantine failure model for the implementation
of our FD as well. More advanced hybrid versions of our algorithm, which tol-
erate hybrid processor and link failures, can be found in [2, 13]. Note that the
perfect communications assumption could also be dropped in favor of fair lossy
links by using the simulation of reliable links proposed by Basu, Charron-Bost
and Toueg [20]. Since we also investigate system startup, correct processes that
have not booted yet are not counted as faulty.

Despite of using the Byzantine failure model for implementing our FD, it
is nevertheless true that the classic perfect failure detector specification is only
meaningful for crash failures. When our FD is used in conjunction with a classic
FD-based consensus algorithm [5], the f faulty processes should hence exhibit
crash failures only. Actually, even a classic FD-based consensus algorithm using
our FD would also tolerate early timing failures, i.e., up to f processes that
inconsistently output correct messages too early.

Computational model: Let FD-level be the abstraction/implementation level of
our FD and the underlying clock synchronization algorithm. Following the fast
failure detector approach of [1], this level should typically be thought of as a
level fairly close to the raw computing and communication facilities. In contrast,
such algorithms as consensus or atomic broadcast are typically thought of as
middleware-level algorithms. Combining this with appropriate scheduling algo-
rithms, it follows that FD-level end-to-end delays are significantly smaller than
those end-to-end delays proper to consensus or atomic broadcast algorithms —
typically, one order of magnitude smaller (see [1]). This feature is of particular
interest with the Θ-Model [7], which is the computational model employed in this
paper. For simplicity, we employ the basic version of the Θ-Model [7] here: As-
sume that the FD-level end-to-end delay δpq between any two correct processes p
and q satisfies τ− ≤ δpq ≤ τ+, where the maximum and minimum τ+ < ∞ and
τ− > 0, respectively, are not known a priori. δpq includes computation delays at
sender and receiver, communication delays, and sojourn times in waiting queues.
Note that τ− > 0 must also capture the case p = q here; τ+ < ∞ secures that
every message is eventually delivered. The timing uncertainty is determined by
the transmission delay uncertainty ε = τ+−τ− and the transmission delay ratio
Θ = τ+/τ−. Note that neither τ− nor τ+ show up in our algorithm’s code, but

24 J. Widder, G. Le Lann, and U. Schmid

only Ξ, which is a function of an a priori given2 upper bound Θ̄ upon Θ. (We
discuss some consequences of the fact that just Θ̄ needs to be known a priori in
Section 3.)

In [10], it has been shown formally that for ensuring safety and liveness prop-
erties of Θ-algorithms, τ+ and τ− need not even be invariant, i.e., that they may
vary during operation. The only requirement is that they increase and decrease
together such that Θ always holds. Note that this time-variance prohibits to
compute a valid upper bound on τ+ as the product of some measured message
delay and Θ, since this bound may already be invalid when it is eventually ap-
plied. A general theorem allows algorithms to be analyzed for constant τ+ and
τ− (like it is done in this paper), however, and the results — e.g. Theorem 5 and
Theorem 7 —to be translated directly into the variable timing model of [10].

Note finally that there are more advanced versions of the Θ-Model, which
allow a more accurate (i.e., less pessimistic e.g. w.r.t. detection time) modeling
of the behavior of our FD algorithm in real systems. Lacking space does not
allow us to elaborate on those extensions here.

Model of the Initialization Phase: Initially, all correct processes are down, i.e.,
do not send or receive messages. Every message that arrives at a correct process
while it is down is lost. A correct process decides independently when it wishes
to participate in the system (or is just switched on). As faulty processes may be
Byzantine, we can safely assume that faulty processes are always up or at least
booted before the first correct one. Correct processes go through the following
operation modes:

1. down: A process is down when it has not been started yet or has not com-
pleted booting.

2. up: A process is up if it has completed booting. To get a clean distinction
of up and down, we assume that a process flushes the input queues of its
network interface as first action after booting is completed. Hence, it receives
messages only if they have arrived when it was up.

3 Discussion of the Θ-Model

In this section, we provide a short justification and discussion of the Θ-Model
taken from [7]. Our arguments will show why a timing model where a bound
on message delays is replaced by a bound on the ratio of largest and shortest
end-to-end message delays makes sense for distributed fault-tolerant real-time
systems.

In real systems, the end-to-end message delay δpq consists not only of phys-
ical data transmission and processing times. Rather, queuing delays due to the
inevitable scheduling of the concurrent execution of multiple processes and mes-
sage arrival interrupts/threads on every processor must be added to the picture.

2 Overbars are used for given bounds (Θ̄) on actual values (Θ). Such bounds must be
derived from worst case and best case schedulability analyses.

Failure Detection with Booting in Partially Synchronous Systems 25

CPU

CPUC

C

C

C

C

C

proc.

proc.

p2

p3

p1

p4

Fig. 1. A simple queuing system representation of a fully connected distributed system

Figure 1 shows a simple queuing system model of a fully connected distributed
system: All messages that drop in over one of the n−1 incoming links of a proces-
sor must eventually be processed by the single CPU. Every message that arrives
while the CPU processes former ones must hence be put into the CPU queue for
later processing. In addition, all messages produced by the CPU must be sched-
uled for transmission over every outgoing link. Messages that find an outgoing
link busy must hence be put into the send queue of the link’s communication
controller for later transmission.

Consequently, the end-to-end delay δpq = dpq + ωpq between sender p and
receiver q consists of a “fixed” part dpq and a “variable” part ωpq. The fixed
part dpq > 0 is solely determined by the processing speeds of p and q and the
data transmission characteristics (distance, speed, etc.) of the interconnecting

26 J. Widder, G. Le Lann, and U. Schmid

link. It determines the minimal conceivable δpq and is easily determined from
the physical characteristics of the system. The real challenge is the variable part
ωpq ≥ 0 which captures all scheduling-related variations of the end-to-end delay:

– Precedences, resource sharing and contention, with or without resource pre-
emption, which creates waiting queues,

– Varying (application-induced) load,
– Varying process execution times (which may depend on actual values of

process variables and message contents),
– Occurrence of failures.

It is apparent that ωpq and thus δpq depend critically upon (1) the schedul-
ing strategy employed (determining which message is put at which place in a
queue), and (2) the particular distributed algorithm(s) executed in the system:
If the usual FIFO scheduling is replaced by head-of-the-line scheduling favor-
ing FD-level messages and computations over all application-level ones, as done
with the fast failure detectors of [1], the variability of ωpq at the FD-level can be
decreased by orders of magnitude, see Table 1. That the queue sizes and hence
the end-to-end delays δpq increase with the number and processing requirements
of the messages sent by the particular distributed algorithm that is run atop of
the system is immediately evident. Interestingly, however, fast FDs diminish the
effect of the latter upon FD-level end-to-end delays as well, as the highest pri-
ority processing and communication activities involved with FDs are essentially
“adversary immune” (the “adversary” being all activities other than FD-level
related ones, in particular, application-level ones) here. This reduces both the
order of magnitude of δpq and the complexity of schedulability analyses (see
below) very significantly.

The above queuing system model thus reveals that the popular synchronous
and partially synchronous models rest upon a very strong assumption: That an a
priori given upper bound B exists which is —as part of the model — essentially
independent of the particular algorithm or service under consideration, indepen-
dent of the scheduling algorithm(s) used, as well as independent of the “loads”
generated by algorithms or services other than the one being considered. Since
the distinction between FD-level and application level is almost never made, it
is almost always the case that B � τ̄+ ≥ δpq.

In reality, such a bound B can only be determined by a detailed worst-case
schedulability analysis3 [21, 22]. In order to deal with all the causes of delays
listed above, this schedulability analysis requires complete knowledge of the un-
derlying system, the scheduling strategies, the failure models, the failure occur-
rence models and, last but not least, the particular algorithms that are to be

3 Measurement-based approaches are a posteriori solutions. Asserting a priori knowl-
edge of an upper bound implies predictability, which is achievable only via worst-case
schedulability analysis. With measurement-based approaches, the actual bounds re-
main unknown (even “a posteriori”), which might suffice for non-critical systems,
but is out of question with many real-time embedded systems, safety-critical systems
in particular.

Failure Detection with Booting in Partially Synchronous Systems 27

executed in the system. Compiling B into the latter algorithms, as required by so-
lutions that rest upon timing assumptions, hence generates a cyclic dependency.
Moreover, conducting a detailed worst-case schedulability analysis for a solution
that is not “adversary immune” is notoriously difficult. Almost inevitably, it
rests on simplified models of reality (environments, technology) that may not
always hold. As a consequence, B and hence any non time-free solution’s basic
assumptions might be violated at run time in certain situations.

The actual value of Θ̄, which obviously depends upon many system parame-
ters, can only be determined by a detailed schedulability analysis as well. Note,
however, that τ̄+ has a coverage which can only be greater than the coverage
of B, since our design for FDs is “adversary immune”. Note also that τ̄− which
is the result of a best case analysis (just dpq) can be considered to have an
assumption coverage higher than τ̄+.

Values for Θ̄ depend of the physical properties of the system considered. They
may range from values close to 1 in systems based on satellite broadcast chan-
nels to higher values in systems where processing and queuing delays dominate
propagation delays.

To get an idea of how Θ(t) behaves in a real system (Θ(t) is the relation of
longest and shortest end-to-end delays just of the messages that are simultane-
ously in transit at time t), we conducted some experiments [23] on a network
of Linux workstation running our FD algorithm. A custom monitoring software
was used to determine bounds τ̄− ≤ τ−(t) and τ̄+ ≥ τ+(t) as well as Θ̄ ≥ Θ(t)
under a variety of operating conditions. The FD algorithm was run at the appli-
cation level (AL-FD), as an ordinary Linux process, and as a fast failure detector
(F-FD) using high-priority threads and head-of-the-line scheduling [1]. Table 1
shows some measurement data for 5 machines (with at most f = 1 arbitrary
faulty one) under low (5 % network load) and medium (0–60 % network load,
varying in steps) application-induced load.

Table 1. Some typical experimental data from a small network of Linux workstations

running our FD algorithm

FD Load τ̄ − (µs) τ̄ + (µs) Θ̄ τ̄ +

τ̄ − : Θ̄

AL-FD low 55 15080 228.1 1.20
F-FD low 54 648 9.5 1.26
F-FD med 56 780 10.9 1.27

Our experimental data thus reveal that a considerable correlation between
τ+(t) and τ−(t) indeed exists: The last column in Table 1 shows that Θ̄ is nearly
30 % smaller than τ̄+/τ̄−. Hence, when τ+ increases, τ− goes up to some extent
as well. Note that τ− must in fact only increase by α/Θ to compensate an
increase of τ+ by α without violating the Θ-assumption.

Informally, this correlation between τ+ and τ− for systems where all com-
munication is by (real or simulated) broadcasting can be explained as follows:
If some message m experiences a delay greater than τ+, this is due to messages

28 J. Widder, G. Le Lann, and U. Schmid

scheduled ahead of it in the queues along the path from sender p to q. Due to
broadcast communication, those messages must also show up somewhere in the
path from p to r, however. The copy of m dedicated to receiver r will hence see
at least some of those messages also ahead of it. In other words, this message
cannot take on the smallest possible delay value in this case, as it does not arrive
in an “empty” system. Hence, the smallest delays must be larger than τ−, at
least for some messages.

4 Clock Synchronization in the Θ-Model

In [13, 12], we introduced and analyzed a clock synchronization algorithm that
can be employed in the Θ-Model which will be the core of the novel failure
detector algorithm of Section 5. It assumes that every process p is equipped
with an adjustable integer-valued clock Cp(t), which can be read at arbitrary
real-times t. The clock synchronization algorithm at p is in charge of maintaining
Cp(t), in a way that guarantees the following system-wide properties:

(P) Precision: There is some constant precision Dmax > 0 such that

|Cp(t) − Cq(t)| ≤ Dmax (1)

for any two processes p and q that are correct up to real-time t.
(A) Accuracy: There are some constants R−, O−, R+, O+ > 0 such that

O−(t2 − t1) − R− ≤ Cp(t2) − Cp(t1) ≤ O+(t2 − t1) + R+ (2)

for any process p that is correct up to real-time t2 ≥ t1.

Informally, (P) states that the difference of any two correct clocks in the
system must be bounded, whereas (A) guarantees some relation of the progress
of clock time with respect to the progress of real-time; (A) is also called envelope
requirement in the literature. Note that (P) and (A) are uniform [24], in the
sense that they hold also for processes that crash or become otherwise faulty
later on.

Figure 2 shows a simplified version of the clock synchronization algorithm
in [13].4 Based upon the number of processes that have completed booting, two
modes of operation must be distinguished here: In degraded mode, less than n−f
correct processes are up and running. Our algorithm maintains both precision
(P) and the upper envelope bound (i.e., fastest progress) in (A) here for all
processes. Soon after the n − f -th correct process gets up, the system makes
the transition to normal mode, where it also guarantees the lower envelope (i.e.,
slowest progress). This holds for all processes that got synchronized (termed
active in [13]) by executing line 19 in Figure 2 at least once.

In this section, we review some results of our detailed analysis in [13], as far
as they are required for this paper. We start with some useful definitions.

4 Additionally to the algorithm, [13] presents a full analysis of the algorithm under
the perception-based hybrid failure model of [25].

Failure Detection with Booting in Partially Synchronous Systems 29

0 VAR k : integer := 0;
1

2 /* Initialization */
3 send (init, 0) to all [once];
4

5 if received (init, 0) from process p
6 → if an (echo) was already sent
7 → re-send last (echo) to p
8 else → re-send (init, 0) to p
9 fi
10 fi
11

12 if received (init, k) from at least f + 1 distinct processes
13 → send (echo, k) to all [once];
14 fi
15

16 if received (echo, k) or (echo, k + 1) from at least f + 1 distinct
processes

17 → send (echo, k) to all [once];
18 fi
19 if received (echo, k) or (echo, k + 1) from at least n − f distinct

processes
20 → C := k + 1; /* update clock */
21 k := k + 1;
22 send (init, k) to all [once]; /* start next round */
23 fi
24 if received (echo, �) or (echo, � + 1) from at least f + 1 distinct

processes with � > k
25 → C := �; /* update clock */
26 k := �; /* jump to new round */
27 send (echo, k) to all [once];
28 fi

Fig. 2. Clock Synchronization Algorithm

Definition 1 (Local Clock Value). Cp(t) denotes the local clock value of a
correct process p at real-time t; σk

p , where k ≥ 0, is the sequence of real-times
when process p sets its local clock value to k + 1.

Definition 2 (Maximum Local Clock Value). Cmax(t) denotes the max-
imum of all local clock values of correct processes that are up at real-time t.
Further, let σk

first = σk
p ≤ t be the real-time when the first correct process p sets

its local clock to k + 1 = Cmax(t).

We proceed with the properties that can be guaranteed during both degraded
mode and normal mode. The following Lemma 1 gives the maximum rate at
which clock values of correct processes could increase.

30 J. Widder, G. Le Lann, and U. Schmid

Lemma 1 (Fastest Progress). Let p be the first correct process that sets its
clock to k at time t. Then no correct process can reach a larger clock value k′ > k
before t + 2τ−(k′ − k).

Theorem 1 specifies the precision DMCB that is eventually achieved by all
correct clocks. For processes that boot simultaneously, it holds right from the
start. Late starting processes could suffer from a larger precision Dmax = �Θ + 2�
during a short time interval (duration at most 2τ+) after getting up, but are
guaranteed to also reach precision DMCB after that time.

Theorem 1 (Precision). Let an arbitrary number nup ≤ n of initially syn-
chronized processes and/or processes that are up sufficiently long participate in
the algorithm of Figure 2 for n ≥ 3f +1. Then, |Cp(t)−Cq(t)| ≤ DMCB for any
two processes p and q that are correct up to real-time t. DMCB =

⌊
1
2Θ + 3

2

⌋
.

The properties stated so far can be achieved during degraded mode, with
any number nup of participating processes. Unfortunately, they do not guaran-
tee progress of clock values. In normal mode, however, the following additional
properties can be guaranteed:

Lemma 2 (Slowest Progress). Let p be the last correct process that sets its
clock to k at time t. In normal mode, no correct process can have a smaller clock
value than k′ > k at time t + 2τ+(k′ − k).

Theorem 2 (Simultaneity). If some correct process sets its clock to k at
time t, then every correct process that is up sufficiently long sets its clock at
least to k by time t + τ+ + ε.

Theorem 3 (Precision in Normal Mode). During normal mode, the algo-
rithm of Figure 2 satisfies |Cp(t)−Cq(t)| ≤ D′

MCB for any two processes p and
q that are correct up to time t and D′

MCB =
⌊
Θ + 1

2

⌋
.

Finally, the following Theorem 4 shows that normal mode is entered within
bounded time after the n − f -th correct process got up.

Theorem 4 (Progress into System). Let t be the time when n − f correct
processes have completed booting and started the algorithm of Figure 2 for n ≥
3f +1. Then, normal mode is entered by time t+5τ++ε and all booted processes
that are correctly up by then are within min{DMCB ,D′

MCB} of each other.

5 Perfect Failure Detection in the Θ-Model

In this section, we show how to extend the clock synchronization algorithm of
Section 4 in order to obtain a perfect failure detector P. We first recall the
properties that must be provided by P [5]:

(SC) Strong completeness: Eventually every process that crashes is permanently
suspected by every correct process.

(SA) Strong accuracy: No process is suspected before it crashes.

Failure Detection with Booting in Partially Synchronous Systems 31

0 VAR suspect[∀q] : boolean := false;
1 VAR saw max[∀q] : integer := 0;

2 Execute Clock Synchronization from Figure 2

3 if received (init, �) or (echo, �) from q
4 → saw msg[q] := max(�, saw msg[q]);
5 fi

6 whenever clock C is updated do (after updating)
7 → ∀q suspect[q] := (C − Ξ) > saw msg[q];

Fig. 3. Failure Detector Implementation

Our failure detector exploits the fact that correct processes always send their
clock values — via (init, k) or (echo, k) messages — to all. Due to bounded pre-
cision, a correct process p can determine a minimal clock value that it must have
seen from every process by some specific time. Consequently, if appropriate mes-
sages are missing, p must have crashed. Like the algorithm of [7], our solution
needs a priori knowledge of an integer constant Ξ only, which is a function of Θ̄
(see Theorem 5). No a priori knowledge of a bound for τ+ is required here.

5.1 A Simple Perfect FD Algorithm

In order to properly introduce the details of our clock synchronization-based
failure detector, we first ignore system startup: We assume in this subsection
that all correct processes are initially up and listening simultaneously, i.e., that
they cannot miss each others’ messages. Faulty processes may be initially dead
or may crash at arbitrary times during operation.

The algorithm given in Figure 3 is a simple extension of the clock synchro-
nization algorithm of Figure 2; note that it could dispose of the join-protocol
(line 5-10 in Figure 2) since we consider simultaneous booting in this section.
The first addition is the vector saw max[∀q] that stores, for every process q, the
maximum clock tick k received via (init, k) or (echo, k). It is written upon every
message reception. Whenever a process updates its clock to k (compare line 19
and line 24 in Figure 2), it checks saw max[∀q] to find out which processes
failed to send messages for tick k−Ξ at least. All those processes are entered into
the vector suspect[∀q], which is the interface to upper layer programs that use
the failure detector module. We will now show that, if Ξ is chosen appropriately,
the algorithm given in Figure 3 implements indeed the perfect failure detector.

Theorem 5. Let Ξ ≥ min
{⌈

3
2 Θ̄ + 1

2

⌉
,
⌈
Θ̄ + 3

2

⌉}
, where Θ̄ is a given upper

bound upon Θ. In a system with n ≥ 3f + 1 processes, the algorithm given in
Figure 3 implements the perfect failure detector.

Proof. We have to show that (SC) and (SA) are satisfied.
For showing (SC), it is sufficient to notice that a process that crashes before

it updates its clock to � + 1 will be suspected by every correct process p when

32 J. Widder, G. Le Lann, and U. Schmid

p reaches clock value k ≥ � + Ξ. Since progress of clock values is guaranteed by
Lemma 2, every correct process will eventually reach clock value k (in systems
with bounded τ+ such clock value is reached within bounded time —the exact
time bound is derived below in Theorem 6).

To prove (SA), we have to show that Ξ is chosen sufficiently large such that
every correct process that reaches a clock value k at time t has already received
messages for ticks at least k − Ξ by every correct process. In the worst case
setting, a correct process p sets its clock to k at instant σk−1

p = σk−1
first; hence

k = Cmax(σk−1
p). From Lemma 1, it follows that Cmax(σk−1

p − τ+) ≥ k − 	 1
2Θ
.

Assuming a maximum precision Dmax, a bound for the smallest possible clock
value of a correct process reads Cmin(σk−1

p − τ+) ≥ Cmax(σk−1
p − τ+)−Dmax =

k−	 1
2Θ
−Dmax. Consequently, every correct process must have sent a message

for tick Cmin(σk−1
p −τ+) by time σk−1

p −τ+ that arrives at p by time σk−1
p . Thus,

choosing Ξ ≥ 	 1
2Θ
 + Dmax is sufficient to ensure that p does not incorrectly

suspect any correct process.
Since 	x
+	y
 ≥ 	x+y
 and 	−x
 = −�x�, it follows from setting x = z +w

and y = −w that 	z + w
 ≥ 	z
 + �w�. By setting z = 1
2Θ and �w� = Dmax

we employ 	z + w
 to choose Ξ. Depending on Θ, precision D′
MCB or DMCB

is smaller and can be used to calculate Ξ (by replacing Dmax). Hence, using
D′

MCB = �Θ + 1
2�, we get Ξ ≥ 	 3

2 Θ̄ + 1
2
. Performing the same calculation for

DMCB = � 1
2Θ + 3

2�, we get Ξ ≥ 	Θ̄ + 3
2
. ��

To find the worst case detection time of our FD algorithm, we have to deter-
mine how long it may take from the time a process p crashed with clock value k
until all correct processes reach a clock value of k+Ξ and hence suspect p. In the
worst case setting, the process p with maximum clock value crashes immediately
after reaching it. All other processes must first catch up to the maximum value,
and then make progress for Ξ ticks until correctly suspecting p.

Theorem 6 (Detection Time). The algorithm of Figure 3 with the value Ξ
chosen according to Theorem 5 implements a perfect failure detector. Its detec-
tion time is bounded by (2Ξ + 2)τ+ − τ−.

Proof. Assume the worst case: A process p is crashing at time tc where k =
Cp(tc) = Cmax(tc). By Theorem 2 every correct process must reach clock value k
by time t′ = tc + τ+ + ε. When a correct process reaches clock value k + Ξ it
will suspect p. By Lemma 2 every correct process must reach that clock value
by time t = t′ + 2Ξτ+ = tc + τ+ + ε + 2Ξτ+ = tc + (2Ξ + 2)τ+ − τ−. ��

Theorem 6 reveals that the detection time depends upon the actual τ+,
i.e., adapts automatically to the current system load. Nevertheless, following
the design immersion principle [1, 26], a bound on the detection time can be
computed when our algorithm is immersed in some real system. By conducting
a worst-case schedulability analysis of our FD, a bound for τ+ can be established.

Failure Detection with Booting in Partially Synchronous Systems 33

5.2 A Failure Detector Algorithm with Startup

In this subsection, we will add system startup to the picture: All processes are
assumed to be initially down here, and correct processes get up one after the
other at arbitrary times. Faulty processes either remain down or get up before
they finally crash. Note that this setting is stricter than the crash-recovery model
of [27], since there are no unstable5 processes allowed in this paper.

Recalling the semantics of P, the properties of our clock synchronization al-
gorithm suggest two approaches for adding system startup to our FD. First,
we noted already in Section 4 that our algorithm maintains some precision
Dmax > DMCB during the whole system lifetime. Hence, if we based Ξ upon
Dmax = �Θ + 2�, most of the proof of Theorem 5 would apply also during system
startup: (SC) is guaranteed, since progress of clock values is eventually guaran-
teed, namely, when normal mode is entered. The major part of the proof of (SA)
is also valid, provided that DMCB is replaced by Dmax.

There is one remaining problem with this approach, however: During system
startup, the resulting algorithm could suspect a correct process that simply
had not started yet. When this process eventually starts, it is of course removed
from the list of suspects —but this must not happen in case of the perfect failure
detector. Note that not suspecting processes that never sent any message until
transition to normal mode does not work either, since a process cannot reliably
detect when the transition to normal mode happens. Consequently, unless the
perfect FD specification is extended by the notion of “not yet started” processes,
there is no hope of implementing P also during system startup.

The alternative is to accept degraded failure detection properties during sys-
tem startup: We will show below that the failure detector of Figure 3 imple-
ments actually an eventually perfect failure detector �P. This FD is weaker than
P, since it assumes that there is some time t after which (SA) must hold. In
our case, t is the time when the last correct process has completed booting and
normal mode is entered. Nevertheless, viewed over the whole system lifetime,
our FD algorithm only provides eventual semantics.

Theorem 7 (Eventually Perfect FD). The algorithm given in Figure 3 im-
plements a failure detector of class �P.

Proof. We have to show that (SC) and (SA) are eventually satisfied. Let tup be
the time when the last correct process gets up. Theorem 4 shows that progress of
clock values comes into the system and all correct processes are within precision
min{DMCB ,D′

MCB} by time tup + 5τ+ + ε. Hence, after that time, the proof
of Theorem 5 applies literally and reveals that our algorithm implements P and
hence belongs to the class �P during the whole system lifetime. ��

Theorem 7 reveals that any consensus algorithm that uses �P under the
generalized partially synchronous system model of [5] solves the booting problem
if used in conjunction with our FD implementation. After all, the model of [5]

5 Unstable processes change between up and down infinitely often.

34 J. Widder, G. Le Lann, and U. Schmid

allows arbitrary message losses to occur until the (unknown) global stabilization
time GST. �P-based consensus algorithms that work with eventually reliable
links can also be used immediately. Such solutions are useful even in the context
of real-time systems, since we can bound the time until �P becomes P. Even
if the consensus algorithm is designed to work with �P it is possible to give
termination times when the FD in fact provides the semantics of P.

6 Discussion

It has been taken for granted for many years that fault-tolerant distributed
real-time computing problems admit solutions designed in synchronous compu-
tational models only. Unfortunately, given the difficulty of ensuring that stip-
ulated bounds on computation times and transmission delays are always met
(which is notoriously difficult with many systems, especially those built out of
COTS products), the safety/liveness/timeliness properties achieved with such
systems may have a poor coverage. This holds true for any design that rests
upon (some) timed semantics, including timed asynchronous systems [28] and
the Timely Computing Base [29]. With such solutions, the core questions are:
How do you set your timers? How do you know your response times?

Some safety properties (e.g. agreement in consensus), and liveness proper-
ties, can be guaranteed in purely asynchronous computational models, however.
Since asynchronous algorithms do not depend upon timing assumptions, those
properties hold regardless of the underlying system’s actual timing conditions.
The coverage of such time-free solutions is hence necessarily higher than that of
a solution involving some timing assumptions. The apparent contradiction be-
tween time-free algorithms and timeliness properties can be resolved by following
the design immersion principle, which was introduced in [26] and referred to as
the late binding principle in [1]. Design immersion permits to consider time-free
algorithms for implementing system or application level services in real-time
systems, by enforcing that timing-related conditions (like “delay for time X”)
are expressed as time-free logical conditions (like “delay for x round-trips” or
“delay for x events”). Safety and liveness properties can hence be proved inde-
pendently of the timing properties of the system where the time-free algorithm
will eventually be run. Timeliness properties are established only late in the de-
sign process, by conducting a worst-case schedulability analysis, when a time-free
solution is immersed in a real system with its specific low-level timing proper-
ties.

Design immersion can of course be applied to FD-based consensus algorithms,
which are purely asynchronous algorithms, and to our partially synchronous
time-free FD algorithms (this paper, as well as [7]). Immersion of the Θ-Model
into some synchronous model permits to conduct schedulability analyses strictly
identical to the analysis given in [1]. The FD algorithm presented in this paper
surpasses the one from [7] with respect to detection time: The former algorithm’s
detection time is bounded by (3Θ+3)τ+−τ−, whereas our clock synchronization-
based solution achieves (2Θ + 5)τ+ − τ−. The latter is hence at least as good as

Failure Detection with Booting in Partially Synchronous Systems 35

the former one, and even better when Θ > 2. Note that the detection time can
hence be bounded a priori if a priori bounds τ̄+, τ̄− and Θ̄ are available.

In sharp contrast to the solution of [7], our new FD algorithm properly han-
dles system startup as well, without requiring undue additional assumptions or
an increased number of processes. Due to the uncertainty introduced by initially
down correct processes, however, it can only provide the semantics of �P. In
conjunction with a �P-based consensus algorithm that can handle eventually
reliable links, our FD hence allows to solve consensus even during system boot-
ing. Since we can bound the time until �P becomes P, this solution can even be
employed in real-time systems.

As said before, our failure detector has advantageous properties regarding
assumption coverage. Compared to solutions where timeouts are increased during
periods of high system/network load, our approach has the advantage that during
overload no increase of timeout values has to be effected. This is due to the fact
that, in real systems, there is typically some sufficient correlation between τ+

and τ− such that Θ is always maintained. Note that it suffices to have this
correlation property holding at least once in a system’s lifetime for making the
coverage of the Θ-Model greater than the coverage of a non time-free model.
(See [10] for a more detailed discussion on the Θ assumption.)

It follows that our failure detector provides the required (time-free) proper-
ties (SC) and (SA) while just the detection time possibly increases. Note care-
fully that the detection time is always as good as provided by the underlying
system/network, i.e., the FD timing properties “emerge” naturally from the sys-
tem/network capabilities [1, 26]. Moreover, if the system/network load returns
to expected behavior, our algorithm is still as exact and fast as predicted, while
algorithms that adapt their timeouts would have larger detection latencies then.

Since failure detection is often considered as a system service provided to
application-level algorithms, the overhead of the failure detector implementation
is an important issue. It might seem that this paper’s algorithm induces an
excessive overhead as there are always FD-level messages in transit. This is not
true, however, since one must distinguish between message delay (in time units)
and the throughput of a link (in messages per time unit).

A logical link in real distributed systems consists of various outbound message
queues, the physical link and the inbound message queues. If a message m is in
transit for δ real-time units, obviously not all resources belonging to a logical
links are used by m during the whole interval δ but only at most one at a time
(assuming m is in some queue, waiting for being chosen by the scheduler to be
processed next, one could say no resource is allocated to m at this time); thus the
overhead is never 100%. In systems with a reasonably large delay×bandwidth
product, the overhead is in fact quite small.

Consider the extreme case of a satellite broadcast communication link, for
example, where the end-to-end propagation delay typically is in the order of
300 ms. With up to n = 10 processors, 1,000 bit long FD messages, and a
link throughput of 2 megabit/second, the link occupancy time for this paper’s
algorithm would be 5 ms per round, entailing a communication overhead smaller

36 J. Widder, G. Le Lann, and U. Schmid

than 2%. Moreover, the overhead can be reduced further by introducing local
pauses between rounds (which does not even need timers as it can be done by
counting suitable local events), see [2] for details.

References

1. Hermant, J.F., Le Lann, G.: Fast asynchronous uniform consensus in real-time
distributed systems. IEEE Transactions on Computers 51 (2002) 931–944

2. Le Lann, G., Schmid, U.: How to maximize computing systems coverage. Technical
Report 183/1-128, Department of Automation, Technische Universität Wien (2003)

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty processor. Journal of the ACM 32 (1985) 374–382

4. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34 (1987) 77–97

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43 (1996) 685–722

7. Le Lann, G., Schmid, U.: How to implement a timer-free perfect failure detector
in partially synchronous systems. Technical Report 183/1-127, Department of
Automation, Technische Universität Wien (2003)

8. Larrea, M., Fernandez, A., Arevalo, S.: On the implementation of unreliable failure
detectors in partially synchronous systems. IEEE Transactions on Computers 53
(2004) 815–828

9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35 (1988) 288–323

10. Widder, J.: Distributed Computing in the Presence of Bounded Asynchrony. PhD
thesis, Vienna University of Technology, Fakultät für Informatik (2004)

11. Larrea, M., Fernández, A., Arévalo, S.: On the impossibility of implementing
perpetual failure detectors in partially synchronous systems. In: Proceedings of the
10th Euromicro Workshop on Parallel, Distributed and Network-based Processing
(PDP’02), Gran Canaria Island, Spain (2002)

12. Widder, J.: Booting clock synchronization in partially synchronous systems.
In: Proceedings of the 17th International Symposium on Distributed Computing
(DISC’03). Volume 2848 of LNCS., Sorrento, Italy, Springer Verlag (2003) 121–135

13. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous sys-
tems with hybrid node and link failures. Technical Report 183/1-126, Department
of Automation, Technische Universität Wien (2003) (submitted for publication).

14. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the ACM 34
(1987) 626–645

15. Dolev, D., Friedman, R., Keidar, I., Malkhi, D.: Failure detectors in omission
failure environments. In: Proc. 16th ACM Symposium on Principles of Distributed
Computing, Santa Barbara, California (1997) 286

16. Malkhi, D., Reiter, M.: Unreliable intrusion detection in distributed computations.
In: Proceedings of the 10th Computer Security Foundations Workshop (CSFW97),
Rockport, MA, USA (1997) 116–124

17. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Solving consensus in a byzan-
tine environment using an unreliable fault detector. In: Proceedings of the Inter-
national Conference on Principles of Distributed Systems (OPODIS), Chantilly,
France (1997) 61–75

Failure Detection with Booting in Partially Synchronous Systems 37

18. Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness failure detec-
tors: Specification and implementation. In: Proceedings 3rd European Dependable
Computing Conference (EDCC-3). Volume 1667 of LNCS 1667., Prague, Czech
Republic, Springer (1999) 71–87

19. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating failure detection: From
crash to byzantine failures. In: Reliable Software Technologies - Ada-Europe 2002.
LNCS 2361, Vienna, Austria, Springer (2002) 24–50

20. Basu, A., Charron-Bost, B., Toueg, S.: Simulating reliable links with unreliable
links in the presence of process crashes. In Babaoglu, Ö., ed.: Distributed algo-
rithms. Volume 1151 of Lecture Notes in Computer Science. (1996) 105–122

21. Liu, J.W.S.: Real-Time Systems. Prentice Hall (2000)
22. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Schedul-

ing for Real-Time Systems. Kluwer Academic Publishers (1998)
23. Albeseder, D.: Experimentelle Verifikation von Synchronitätsannahmen für Com-

puternetzwerke. Diplomarbeit, Embedded Computing Systems Group, Technische
Universität Wien (2004) (in German).

24. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In
Mullender, S., ed.: Distributed Systems. 2nd edn. Addison-Wesley (1993) 97–145

25. Schmid, U., Fetzer, C.: Randomized asynchronous consensus with imperfect com-
munications. In: 22nd Symposium on Reliable Distributed Systems (SRDS’03),
Florence, Italy (2003) 361–370

26. Le Lann, G.: On real-time and non real-time distributed computing. In: Proceed-
ings 9th International Workshop on Distributed Algorithms (WDAG’95). Volume
972 of Lecture Notes in Computer Science., Le Mont-Saint-Michel, France, Springer
(1995) 51–70

27. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-
recovery model. Distributed Computing 13 (2000) 99–125

28. Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems 10 (1999) 642–657

29. Veŕıssimo, P., Casimiro, A., Fetzer, C.: The timely computing base: Timely ac-
tions in the presence of uncertain timeliness. In: Proceedings IEEE International
Conference on Dependable Systems and Networks (DSN’01 / FTCS’30), New York
City, USA (2000) 533–542

	Introduction
	System Model
	Discussion of the -Model
	Clock Synchronization in the -Model
	Perfect Failure Detection in the -Model
	A Simple Perfect FD Algorithm
	A Failure Detector Algorithm with Startup

	Discussion
	References

