
The E�ectiveness of Choice of Programming
Language as a Diversity Seeking Decision

Meine J.P. van der Meulen1 and Miguel Revilla2

1 Centre for Software Reliability, City University, London
http://www.csr.city.ac.uk

2 Department of Applied Mathematics,
University of Valladolid, Spain

http://www.mac.cie.uva.es/»revilla/

Abstract. Software reliability can be increased by using a diverse pair
of programs (1-out-of-2 system), both written to the same speci�cation.
The improvement of the reliability of the pair versus the reliability of a
single version depends on the degree of diversity of the programs. The
choice of programming language has been suggested as an example of
a diversity seeking decision. However, little is known about the validity
of this recommendation. This paper assesses the e�ect of language on
program diversity.

We compare the e�ects of the choice of programming language as a
diversity seeking decision by using programs written to three di�erent
speci�cations in the �UVa Online Judge�. Thousands of programs have
been written to these speci�cations; this makes it possible to provide
statistical evidence.

The experiment shows that when the average probability of failure
on demand (pfd) of the programs is high, the programs fail almost inde-
pendently, and the choice of programming language does not make any
di�erence. When the average pfd of the pools gets lower, the programs
start to fail dependently, and the pfd of the pairs deviates more and
more from the product of the pfds of the individual programs. Also, we
observe that the diverse C/Pascal or C++/Pascal pairs perform as good
as or better than the other possible pairs.

1 Introduction
The use of a diverse pair of programs has often been recommended to achieve
high reliability [1] [2] [3] [4] [5]. Software diversity may however not lead to a
dramatically high improvement. This is caused by the fact that the behaviour of
the programs cannot be assumed to be independent [3] [5] [6] [7]. Two program
versions written by independent teams can still contain similar programming
mistakes, thus limiting the gain in reliability of the diverse pair.

In spite of this, the case for diversity for achieving high reliability remains
strong. The possible gain using diversity appears to be higher than can be
achieved by trying to write a high reliability single program [6].

M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.): EDCC 2005, LNCS 3463, pp.199�209, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



200 M.J.P. van der Meulen and M. Revilla

Several techniques have been proposed to decrease the likelihood that di�er-
ent programs fail dependently. These are called �Diversity Seeking Decisions� in
[9]. Examples are:
� Data diversity. Using random perturbations of inputs; using algorithm

speci�c re-expression of inputs.
� Design diversity. Separate (�independent�) development; diversity in pro-

gramming language; diverse requirements/speci�cations; di�erent expres-
sions of identical requirements; etc.
In this paper we will concentrate on design diversity and speci�cally on pro-

gramming language diversity. This is a potential defence against some program-
ming slips, and provides some, limited, cognitive diversity against mistakes in
higher-level problem solving; the e�cacy will however depend heavily on �how
di�erent� the programming languages are.

The �UVa Online Judge�-website (http://acm.uva.es) provides many pro-
grams written to many speci�cations, and gives us the opportunity to compare
diverse pairs. In this research we use the programs written in C, C++ and Pas-
cal, written to three di�erent speci�cations. Our aim is to compare the reliability
performance of diverse pairs with each other and with single programs.

2 The Experiment
2.1 The UVa Online Judge
The �UVa Online Judge�-Website is an initiative of Miguel Revilla of the Uni-
versity of Valladolid [10]. It contains problems to which everyone can submit
solutions. The solutions are programs written in C, C++, Java or Pascal. The
correctness of the programs is automatically judged by the �Online Judge�. Most
authors submit solutions until their solution is judged as being correct. There
are many thousands of authors and together they have produced more than
3,000,000 solutions to the approximately 1500 problems on the website.

In this paper we will analyse the programs written to three di�erent problems
on the website. We will submit every program to a test set, and then compare
their failure behaviour.

There are some obvious drawbacks from using this data as a source for sci-
enti�c analysis. First of all, these are not �real� programs: the programs under
consideration solve small, mostly mathematical, problems. We have to be careful
to not overinterpret the results.

Another point of criticism might be the fact that the Online Judge does not
give feedback on the demand on which the program failed. This is not necessarily
a drawback. It is certainly not comparable to a development process involving a
programmer and a tester, because in that case there will be feedback on the input
data for which the program fails. It has however similarities with a programmer's
normal development process: a programmer will in spite of the fact that there
are no examples of inputs for which a program fails, assume that it is not yet
correct. The programmer works until he is convinced that the program is correct,



The E�ectiveness of the Choice of Programming Language 201

based on his own analysis and testing. From this perspective, the Online Judge
only con�rms the programmer's intuition that the program is not yet correct. In
this experiment, we circumvent this drawback by only using �rst submissions.

A last possible criticism on our approach is that programmers may copy each
other's results. This may be true, but it is possible to limit the consequences of
this plagiarism for the analyses by assuming that authors will only copy correct
results from each other. For the analyses in this paper, the consequence is that
we cannot trust absolute results, and we will limit ourselves to observing trends
in relative performance.

2.2 Problems Selected
We selected problems from conforming to the following criteria:
� The problem does not have history, i.e. subsequent inputs should not in�u-

ence each other. Of course, some programmers may implement the problem
in such a way that it has history. Given our test approach, see below, we will
not detect these kinds of faults.

� The problem has a limited demand space: two integer inputs.
Both restrictions lead to a reduction of the size of the demand space and this
keeps the computing time within reasonable bounds (the necessary preparatory
calculations for the analysis of these problems take between a day and two weeks
to complete).

Below, we provide a short description of the problems, although this informa-
tion is not necessary for reading this paper: we will not go into detail with respect
to functionality. It gives some idea of the nature and di�culty of the problems,
which is useful for interpreting our results. See the websitehttp://acm.uva.es
for more detailed descriptions of the problems.
The �3n+1�-Problem. A number sequence is built as follows: start with a
given number; if it is odd, multiply by 3 and add 1; if it is even, divide by
2. The sequence length is the number of these steps to arrive at a result of 1.
Determine the maximum sequence length for the numbers between two given
integers 0 < i; j • 100; 000.
The �Factovisors�-Problem.For two given integers 0 • i; j • 231, determine
whether j divides factorial i.
The �Prime Time�-Problem.Euler discovered that the formula n2 + n + 41
produces a prime for 0 • n • 40; it does however not always produce a prime.
Write a program that calculates the percentage of primes the formula generates
for n between two integers i and j with 0 • i • j • 10; 000.

2.3 Running the Programs
For all problems chosen, a �demand� is a set of two integer inputs. Every program
is restarted for every demand; this is to ensure the experiment is not in�uenced
by history, e.g. when a program crashes for certain demands. We set a time limit
on each demand of 200 ms. This time limit is chosen to terminate programs that
are very slow, stall, or have other problems.



202 M.J.P. van der Meulen and M. Revilla

Table 1. Some statistics on the three problems

3n+1 Factovisors Prime Time
C C++ Pas C C++ Pas C C++ Pas

Number of authors 5897 6097 1581 212 582 71 467 884 183
First attempt correct 2483 2442 593 113 308 42 356 653 127
First version completely incorrect 723 761 326 27 97 9 93 194 49

Every program is submitted to a series of demands. The outputs generated
by the programs are compared to each other. Programs that produce exactly
the same outputs form an �equivalence class�. These equivalence classes are then
converted into score functions. A score function indicates which demands will
result in failure. The di�erence between an equivalence class and its score func-
tion is that programs that fail in di�erent ways (i.e. di�erent, incorrect outputs
for the same demands) are part of di�erent equivalence classes; their score func-
tions may however be the same. The score functions are used for the calculations
below.

For all three problems, we chose the equivalence class with the highest fre-
quency of occurrence as the oracle, i.e. the version giving all the correct answers.

�3n+1� and �Factovisors� were run using the same set of demands: two num-
bers between 1 and 50, i.e. a total of 2500 demands. In both cases the outputs
of the programs were deemed correct if they exactly match those of the oracle.

�Prime Time� was run using a �rst number between 0 and 79, and a second
number between the �rst and 79, i.e. a total of 3240 demands. The outputs of
the programs were deemed correct if they were within 0.01 of the output of the
oracle, thus allowing for errors in round o� (the answer is to be given in two
decimal places).

Table 1 gives some statistics on the problems.

3 E�ectiveness of Diversity
Two of the most well known probability models in this domain are the Eckhardt
and Lee model [3] and the Littlewood and Miller extended model [7]. Both models
assume that:

1. Failures of an individual program are deterministic and a program version
either fails or succeeds for each input value x. The failure set of a program
… can be represented by a �score function� !(…; x) which produces a zero if
the program succeeds for a given x or a one if it fails.

2. There is randomness due to the development process. This is represented as
the random selection of a program, ƒ, from the set of all possible program
versions that can feasibly be developed and/or envisaged. The probability
that a particular version… will be produced isP (ƒ = …). This can be related
to the relative numbers of programs in the pools.

3. There is randomness due to the demands in operation. This is represented
by the random occcurrence of a demand, X, from the set of all possible



The E�ectiveness of the Choice of Programming Language 203

demands. The probability that a particular demand will occur isP (X = x),
the demand pro�le. In this experiment we assume a contiguous demand space
in which every demand has the same probability of occurring.

Using these model assumptions, the average probability of a program version
failing on a given demand x is given by the di�culty function, µ(x), where:

µ(x) =
X

…

!(…; x)P (ƒ = …) (1)

The average probability of failure on demand (pfd) of a randomly chosen
single program version, can be computed using the di�culty function and the
demand pro�le, in our case for two program versions,ƒA and ƒB:

pfdA :=
X

x

µA(x)P (X = x); pfdB :=
X

x

µB(x)P (X = x) (2)

The Eckhardt and Lee model assumes similar development processes for the
two programs A and B and hence identical di�culty functions:µA(x) = µB(x).
So the average pfd for a pair of diverse programs (assuming the system only fails
when both versions fail, i.e. a 1-out-of-2 system) would be:

pfdAB :=
X

x

µA(x)µB(x)P (X = x) =
X

x

µA(x)2P (X = x) (3)

And:

pfdAB = pfd2
A + varX(µA(X)) (4)

The Littlewood and Miller model does not assume that the development
processes are similar, and thus allows the di�culty functions for the two versions,
µA(x) and µB(x), to be di�erent. Therefore, the probability of failure of a pair
remains:

pfdAB :=
X

x

µA(x)µB(x)P (X = x) (5)

And:

pfdAB = pfdA:pfdB + covX(µA(X); µB(X)) (6)

In this experiment, we wish to investigate the reliability improvement gained
by choosing di�erent programming languages for the programs in the pair, and
we therefore need to use the Littlewood and Miller model.

First, we establish pools of programs, each pool containing programs in C,
C++ or Pascal. For comparison of the individual programs and pairs, we need
pools with the same pfd. To manipulate the pfd of the pools, we remove programs
from them, starting with those with the highest pfd, until the average pfd of the
pool has the desired value. This is a possible way of simulating testing of the



204 M.J.P. van der Meulen and M. Revilla

programs; the tests remove the programs with the highest pfd �rst. Pools with
the same pfd could then be assumed to have undergone the same scrutiny of
testing.

We select a �rst program from one of the pools. Then we select a second
program from a pool, and calculate the ratio of the pfd of the �rst program and
the pfd of the pair:

R =
pfdA

pfdAB

=

P
x µA(x)P (X = x)P

x µA(x)µB(x)P (X = x)
(7)

We do so for varying values of the pfd of the pools. The varying pfd is shown
on the horizontal axis in the graphs.

Figures 1, 2 and 3 show these ratios for the three problems for di�erent choices
of the programming language of the �rst program. The graphs showR on the
vertical axes on a logarithmic scale, because we are interested in the reliability
improvement; with a logarithmic scale, equal improvements have equal vertical
distance.

4 Analysis and Discussion
All graphs clearly show that for pairs of programs with higher pfds (pfd> 10−1:5)
the choice of programming language does not make any di�erence. The pfd of
the pair is fairly close to the product of the pfds of the individual programs.
This indicates that the programs fail almost independently.

For the lower pfds (pfd < 10−2) the pfd of the pair deviates more and more
from the product of the pfds of the individual programs, the programs fail de-
pendently. The reliability improvement reaches a �plateau� at between one to
two orders of magnitude better than a single version. This is in accordance with
the generally accepted assumption that the gain from redundancy is limited,
and is certainly not simply the product of the pfds of the individual programs
(e.g. in IEC61508 [13] the reliability improvement one can claim for applying
redundancy is one SIL, i.e. a factor of 10; Eckhardt and Lee reach a comparable
conclusion in [4]).

If we now compare the e�ect of choice of programming language in the pairs,
we can observe that the C/Pascal and the C++/Pascal pairs almost always
outperform the other pairs, most notably also the C/C++ pairs. The e�ect
is most clearly visible in the �Factovisors�-problem, and in the middle region
(10−3 < pdf < 10−2) of the �3n+1�-problem. It is also visible in the �Prime
Time�-problem, but in this case it is only visible in a small, unreliable, region of
the graph. This graph is unreliable for pfd< 10−2:5, because the pool of Pascal
programs is almost empty.

The Littlewood and Miller model provides a description of diversity, in which
the reliability change compared to the independence assumption is given by a
covariance term, see Equation 6. Since the model cannot predict the shapes of
the di�culty functions in C, C++ or Pascal, the model can not predict how
large this change will be. The model however provides an intuition that when



The E�ectiveness of the Choice of Programming Language 205

programmers make di�erent faults in di�erent programming languages their re-
spective di�culty functions will be di�erent. These di�erences could then lead
to a better performance of diverse language pairs.

Analysis of the di�erences in programming faults of the �3n+1�-problem
shows that faults in programming �for�-loops in Pascal are rare compared to
C and C++. This accounts for the reliability improvement of Pascal/C and
Pascal/C++ pairs in the middle pfd-region.

In the low-pfd region, pfd < 10−4, we observe for �3n+1� that the relia-
bility improvements of the pairs become approximately the same, whereas for
�Factovisors� the diverse language pairs (C/Pascal and C++/Pascal) show an
enormous improvement, even approaching in�nity for the lowest pfd-values. This
observation gives rise to some thoughts1

First, these observations in the low-pfd region con�rm the theoretical result
of the Littlewood and Miller model that the reliability of a diverse pair can be
better than under the independence assumption.

Second, why do we observe this e�ect? As explained above, the pfd of a pool is
established by subsequently removing the most unreliable programs. For low pfd-
values this approach leads to a monoculture, and in the end only few di�erent
program behaviours will be present in the pool. In the case of �3n+1� these
program behaviours happen to be roughly the same. In the case of �Factovisors�
however, the last programs in the Pascal pool fail on di�erent demands than
those left in the C and C++ pools, thus leading to an enormous improvement
in the reliability of the pair.

This result should be considered with care, because it could be an artefact
of our experiment, caused by the way in which we establish a given pfd for
a pool. On the other hand, a normal debugging process will have a similar
e�ect: eliminating some behaviours, starting with the most unreliable ones, thus
eventually also leading to a monoculture of behaviours.

5 Conclusion
We analysed the e�ect of the choice of programming language in diverse pairs
using three di�erent problems from the �UVa Online Judge�. The results seem
to indicate that diverse language pairs outperform other pairs, but the evidence
is certainly not strong enough for a de�nite conclusion. Analysis of more prob-
lems could help to strengthen the evidence and also to identify the factors that
in�uence the gain possibly achieved by diversity of programming language.

Acknowledgement
This work is supported by EPSRC/UK in the framework of theInterdisciplinary
Research Collaboration in Dependability-Project (DIRC).

1 It has to be noted here that the amount of Pascal programs in this pfd-region for
�Factovisors� is rather low, and the graph has to taken cum grano salis.



206 M.J.P. van der Meulen and M. Revilla

References
1. Brilliant, S.S., J.C. Knight, N.G. Leveson, Analysis of Faults in an N-Version

Software Experiment, IEEE Transactions on Software Engineering, SE-16(2), pp.
238-47, February 1990.

2. Voges, U., Software diversity, Reliability Engineering and System Safety, Vol. 43(2),
pp. 103-10, 1994.

3. Eckhardt, D.E., L.D. Lee, A Theoretical Basis for the Analysis of Multi-Version
Software Subject to Coincident Errors, IEEE Transactions on Software Engineer-
ing, Vol. SE-11(12), pp. 1511-1517, December 1985.

4. Eckhardt, D.E., A.K. Caglayan, J.C. Knight, L.D. Lee, D.F. McAllister, M.A.
Vouk, J.P.J. Kelly,An Experimental Evaluation of Software Redundancy as a Strat-
egy for Improving Reliability, IEEE Transaction on Software Engineering, Vol. 17,
No. 7, July 1991.

5. Knight, J.C., N.G. Leveson, An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming, IEEE Transaction on Software Engi-
neering, Vol. SE-12(1), pp. 96-109, 1986.

6. Hatton, L., N-Version Design Versus One Good Version, IEEE Software, 14, pp.
71-6, 1997.

7. Littlewood, B., D.R. Miller, Conceptual Modelling of Coincident Failures in Mul-
tiversion Software IEEE Transactions on Software Engineering, Vol. 15, No. 2, pp.
1596-1614, December 1989.

8. Lyu, M.R., Software Reliability Eningeering, McGraw Hill, 1995.
9. Popov, P., L. Strigini, A. Romanovsky, Choosing E�ective Methods for Design

Diversity - How to Progress from Intuition to Science, In: Proceedings of the 18th
International Conference, SAFECOMP '99, Lecture Notes in Computer Science
1698, Toulouse, 1999.

10. Skiena, S., M. Revilla, Programming Challenges, Springer Verlag, March 2003.
11. Lee, P.A., T. Anderson,Fault Tolerance; Principles and Practice, Dependable Com-

puting and Fault-Tolerant Systems, Vol. 3, Second, Revised Edition, 1981.
12. Chen, L., A. Avizienis, N-Version Programming: A Fault Tolerance Approach to

Reliability of Software Operation, Digest of 8th Annual International Symposium
on Fault Tolerant Computing, Toulouse, France, pp. 3-9, June 1978.

13. IEC, IEC61508, Functional Safety of E/E/PE safety-related systems, Geneva,
2001-2.



The E�ectiveness of the Choice of Programming Language 207

Fig. 1. These graphs show the reliability improvement of a pair of programs over a
single version for the �3n+1�-problem. The horizontal axis gives the average pfd of
the pools of programs involved in the calculation. In every graph, the programming
language of the �rst program is given. The curves show the reliability improvement for
the di�erent possible choices of the programming language for the second program as
function of the average pfd of the pools. The diagonal in the graphs shows the reliability
achievement if the programs' behaviours were independent



208 M.J.P. van der Meulen and M. Revilla

Fig. 2. The same graphs, for the �Factovisors�-problem



The E�ectiveness of the Choice of Programming Language 209

Fig. 3. The same graphs, for the �Prime Time�-problem. These graphs do not show
the results for pfds below 10¡2:5 = 3:2 £ 10¡3, because the pool of Pascal programs is
almost empty


	Introduction
	The Experiment
	The UVa Online Judge
	Problems Selected
	Running the Programs

	Effectiveness of Diversity
	Analysis and Discussion
	Conclusion
	Acknowledgement
	References



