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Abstract. Fault tolerance and load balancing middleware can increase the quality
of service seen by the users of distributed systems. Fault tolerance makes the
applications more robust, available and reliable, while load balancing provides
better scalability, response time and throughput. This paper describes a software
infrastructure that integrates fault tolerance and load balancing within a distributed
system based on CORBA. The software infrastructure employs Eternal’s FTORB,
which replicates CORBA applications and thus makes them fault tolerant, and
TAO’s Load Balancer, which balances the load of the clients’ connections across
multiple instances of a CORBA server.

1 Introduction

As distributed applications are deployed more widely, the need for improved scalability,
response time and throughput becomes more important. An effective way to address
this need is to employ a load balancer, based on distributed object middleware, such
as the Common Object Request Broker Architecture (CORBA). Also important is the
availability, reliability and robustness of the services that the applications provide and,
thus, fault tolerance is essential. Fault tolerance employs replication to mask faults and
provide continuous service to the users.

Fault tolerance and load balancing can be thought of as orthogonal aspects of quality
of service. Both fault tolerance and load balancing require the availability of multiple
computers, which distributed systems provide. Many industries with mission-critical
applications, such as telecommunications, financial, aerospace and defense, need both
fault tolerance and load balancing within a single integrated infrastructure.

The Object Management Group has developed specifications for fault tolerance [7]
and load balancing [8] based on CORBA. In this paper, we describe a software infras-
tructure that integrates fault tolerance and load balancing for CORBA-based distributed
systems. We discuss challenges that we had to address in the integration, and present
performance results that we obtained for the integrated infrastructure.
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2 The Fault Tolerance and Load Balancing Infrastructure

Our fault tolerance and load balancing infrastructure is based on Eternal Systems’
FTORB and TAO’s Load Balancer, both of which support the industry-standard CORBA
distributed object computing standard. First, we describe each of those middleware com-
ponents and, then, we describe our fault tolerance and load balancing infrastructure,
which integrates those components.

2.1 Eternal’s FTORB

Eternal’s FTORB [6] provides fault tolerance by replicating servers, clients and infras-
tructure components (e.g., the Load Balancer) that are implemented as CORBA objects,
using active or semi-active replication. FTORB replicates the state of an object in volatile
memory, rather than on stable storage, to eliminate the time required to write (read) that
state to (from) disk. Research on integrating replication with transactions and databases,
where state is persisted to disk, can be found in [13].

FTORB is not itself an ORB but is middleware that works with CORBA ORBs that
support the Internet Inter-ORB Protocol (IIOP) running over TCP/IP, with no modi-
fication to the ORB. IIOP allows clients and servers that run over different ORBs to
communicate with each other. Fig. 1 shows the components of Eternal’s FTORB mid-
dleware. The functionality of each component is described below:

– Interceptor: The Interceptor Library, coupled with each client or server in a fault
tolerance domain, intercepts messages and diverts them to the Eternal Replication
Engine and the Totem Multicast Protocol, instead of sending them over TCP/IP.

– Replication Engine: The Replication Engine maintains groups of client and server
replicas, and interacts with the Interceptor Library.

– Totem Multicast Protocol: The Totem Multicast Protocol [5] interacts with the
Replication Engine and multicasts the clients’ requests and servers’ replies to the
client and server groups, using a logical token-passing ring. Totem can be replaced
with any other reliable totally-ordered multicast protocol, such as the Rose rotating
sequencer protocol which is also deployed with FTORB.
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Fig. 1. The components of Eternal’s FTORB
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The FTORB components interwork as follows. A client group, inside the fault toler-
ance domain, issues a request to a server group inside the same fault tolerance domain.
The Interceptor Library intercepts the request and passes it to the Replication Engine.
The Replication Engine receives the request and, instead of forwarding it to the desig-
nated server via TCP/IP, forwards the request to Totem, which multicasts it to the server
group. The replicas in the server group process the client’s request and forward the reply
to Totem, which multicasts the reply to the client group. FTORB detects and suppresses
duplicate requests and replies from the replicas of the clients and the servers.

2.2 TAO’s Load Balancer

TAO’s Load Balancer uses a middleware load balancing approach that works with the
TAO CORBA ORB [11]. TAO uses the terms Replica Locator and Replica Proxy for two
of its modules. If the server that is being load balanced is stateless, those terms are fine.
If the server is stateful, the instances of the server that serve different clients are typically
not replicas and, thus, we refer to them as peers, instead of replicas. Correspondingly, we
use the terms Peer Group, Peer Locator and Peer Proxy for the instances of the server that
provide load balancing (see Fig. 2). Use of this terminology avoids confusion between
the instances (replicas) of an object that provide fault tolerance and the instances (peers)
of an object that provide load balancing.

– Peer Locator: The Peer Locator identifies which peer server will receive a client’s
request and binds the client to the identified peer server. The Peer Locator forwards
each request it receives to the peer server selected by the Load Analyzer.

– Load Analyzer: The Load Analyzer determines which peer server will receive a
client’s request and decides when to switch loads between peer servers.

– Load Monitor: For a given peer server, a Load Monitor monitors the load on that
peer, reports peer loads to the LoadAnalyzer and responds to load advisory messages
from the Load Analyzer.

– Peer Proxy: Each object managed by the Load Balancer communicates with the
Load Balancer via a Peer Proxy. The Load Balancer uses the Peer Proxies to distin-
guish between different peer servers.

– Load Balancer: A collective term for all of the above components.

Client

Load Balancer
POA

Peer Locator

Peer Proxy

Load Analyzer

Peer Server

POA Load Monitor

Fig. 2. The components of TAO’s Load Balancer
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The TAO Load Balancer components interwork as follows. A client obtains an object
reference to what appears to be a peer server and issues a request. In actuality, the client
invokes the request on the Load Balancer. The Portable Object Adapter (POA) of TAO
dispatches the request to the Peer Locator. The Peer Locator queries the Load Analyzer
for an appropriate peer server and sends back a LOCATION FORWARD to the client to
redirect the client to the selected peer server. From then on, the client sends its requests
directly to that peer server. The LoadAnalyzer continuously communicates with the Load
Monitor for the peer server. If the Load Analyzer finds the peer server to be overloaded,
it issues a load advisory to the Load Monitor for that peer server. On receiving the load
advisory from the Load Analyzer, the Load Monitor issues a message to the peer server,
telling it to accept or redirect the next request.

2.3 Integration of Eternal’s FTORB and TAO’s Load Balancer

Fault tolerance and load balancing are two orthogonal aspects of quality of service. We
consider the composition of these two non-functional properties and the product of peer
groups (used for load balancing) and replica groups (used for fault tolerance) in the
integrated infrastructure, as shown in Fig. 3.

A peer group, maintained by the Load Balancer, consists of one or more peer servers.
Different peer servers handle different clients’ requests. The Load Balancer distributes
the requests of the different clients across the peer servers in a peer group, in order to
balance the load across the peer servers. Each peer server in a peer group has one or
more replicas for fault tolerance.

A replica group, created by the FTORB fault tolerance infrastructure, consists of one
or more replicas that provide protection against faults. Each peer server is a member of
a distinct replica group. With active replication, the replicas of a particular peer server
handle the same clients’ requests and have the same load.
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Fig. 3. The product of the peer groups, used for load balancing, and the replica groups, used for
fault tolerance, in the integrated infrastructure
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Fig. 4. Interfaces of our Load Balancer

In the integrated infrastructure, not only the peer servers but also the Load Balancer
and the clients can be replicated using Eternal’s FTORB to provide fault tolerance, so
as to avoid a single point of failure. If, during the execution, one of the replicas fails,
another replica continues the operations. FTORB then obtains the application state from
an existing replica (i.e., takes a checkpoint), and supplies that state to a new or recovering
replica, in order to maintain the required level of redundancy.

When a stateful server serves multiple clients, and maintains different state or shared
state between them, static load balancing (i.e., directing a client’s requests to a particular
peer server for an entire session) is appropriate. Dynamic load balancing (i.e., transferring
a client’s connection from one peer server to another in the midst of a session) is more
challenging, because the state of the particular client held by the peer server (rather than
the entire state of the peer server) must be transferred from one peer server to another. Our
infrastructure provides fault tolerance for stateful servers and uses static load balancing.

In our infrastructure, the Load Balancer has two interfaces, the Server Interface and
the Client Interface, as shown in Fig. 4 and described below.

– Server Interface: The server interface exposes methods that are invoked by the
servers. These methods include create object group() and register servant(), which
enable the peer servers to create a peer group and register with the Load Balancer.
After the peer servers have created a peer group and registered with the Load Bal-
ancer, the Load Balancer has a clear view of the peer servers that are available. The
Load Balancer is then ready to balance the loads across the peer servers within the
peer group, on receiving requests from the clients.

– Client Interface: The client interface exposes methods that are invoked by the
clients. These methods include the return objectid() method, which enables a client
to obtain an object group reference for a peer server’s replica group. On receiving
a request from a client for an object group reference corresponding to a particular
object id, the Load Balancer looks in its table to find an appropriate reference,
using its particular load balancing policy to select a peer server, and then returns the
object group reference of the peer server’s replica group to the client. On obtaining
the reference, the client issues requests to the peer server, which are multicast to the
peer server’s replica group.
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Fig. 5 shows the use of our infrastructure in an example configuration consisting of
the Load Balancer with two replicas each, two peer servers with two replicas each, and
three clients with one replica each. The dashed boxes represent the replica groups. Each
request (reply), instead of being sent to a single server (client), is multicast to a server
(client) replica group. For each peer group, the load balancing takes place across the two
peer servers that constitute that peer group.

First, the replicas of the Load Balancer are brought up on different processors. The
first replica invokes FTORB to create a replica group with itself as a member, and then
the second replica adds itself to the replica group.

Next, the replicas of the peer servers are brought up on different processors. Each
peer server invokes FTORB to create a replica group with itself as a member and registers
with the Load Balancer, using a multicast request (arrows 1 and 2). The Load Balancer
creates a peer group, and adds each peer server to the peer group. The subsequent replicas
of each peer server add themselves to the replica group of that peer server.

Then, the clients are brought up on different processors. Each client invokes FTORB
to create a client replica group, consisting of one member each. In the example, client 2
invokes the Load Balancer’s return objectid() method to request a reference for a peer
server, using a multicast request (arrow 3). Depending on its load balancing policy, the
Load Balancer replies with the object group reference of the replica group of one of the
peer servers, using a multicast reply (arrow 4), in this case, peer server 1.
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Fig. 5. The Load Balancer and the two peer servers are actively replicated, with two replicas each,
using FTORB to provide fault tolerance. For each peer group, the load balancing takes place across
the two peer servers that constitute that peer group
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After receiving the peer server reference, client 2 invokes methods directly on peer
server 1, using the object group reference of that peer server’s replica group and a
multicast request (arrow 5). The replicas of peer server 1 generate the response and
multicast the reply to client 2, using a multicast reply (arrow 6).

3 Challenges and Their Solutions

Now we discuss the challenges that we faced in designing and implementing the inte-
grated infrastructure and our solutions to those challenges. The challenges can be divided
into two categories:

– Challenges faced in designing the Load Balancer
– Challenges faced in designing the client and server applications.

3.1 Challenges in Designing the Load Balancer

First we discuss challenges that we faced in designing the Load Balancer.

Challenge 1: TAO’s Load Balancer provides load balancing by intercepting the clients’
requests and returning a LOCATION FORWARD, which contains the reference to the
selected peer server. When the client receives the LOCATION FORWARD, it sends its
subsequent requests to that peer server.

To intercept requests, the Load Balancer uses the Servant Manager in a Portable Ob-
ject Adapter (POA) that has USE SERVANT MANAGER and NON RETAIN policies.
Servant Managers are used to activate servants dynamically. Servant Managers have two
interfaces, the ServantActivator and ServantLocator interfaces. TAO’s Load Balancer
uses the ServantLocator interface to intercept a client’s request and instantiate a servant
for it on the fly.

This approach works fine for load balancing, but does not work when integrated with
fault tolerance. The reason is that Eternal’s FTORB recognizes replicas only if they have
the same object ids. Because the POA’s policy is set to NON RETAIN, the object ids of
the activated server objects are not persistent and, hence, are not recognized as replicas
by FTORB.

Rejected Strategies: It was not possible to solve this problem by changing the POA’s
policies, because the USE SERVANT MANAGER and NON RETAIN policies were
required to use the ServantLocator interface.

First, we considered dividing the functionality of TAO’s Load Balancer into two
parts. One part would interact with the servers and the other part with the clients. This
solution was not feasible for the reason that it required that one POA exposes methods
for the servers and has the PortableServer::PERSISTENT and PortableServer::USED ID
policies, and the other POA exposes methods for the clients and has the USE SERVANT
MANAGER and NON RETAIN policies. However, the POA with the ServantLocator
interface is unaware of server objects that are active inside the other POA. Moreover,
this solution would misuse the ServantLocator, as servant objects are already active and,
thus, do not require the services of the ServantLocator.
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Another possible solution was to write our own interceptors using CORBA’s portable
interceptors, which replace the ServantLocator interface in the Servant Manager. Portable
interceptors expose pre-defined interception points, at both the client and the server,
which make the requests and replies accessible. In TAO’s Load Balancer, we intercepted
the client’s request, so the interception points are receive request service contexts() and
receive requests() on the server-side. The problem was that, when the request was in-
tercepted at the receive request service contexts() interception point, we did not have
access to the object id, as operation parameters were not available. Thus, it was impossi-
ble to determine the server group to which the request was addressed. Before the request
reached the receive requests() interception point, where the parameters were accessible,
it was too late. The reason is that, after receive request service contexts(), the servant
manager was invoked, but as the servant manager was not activated, a system exception
was raised. Thus, using CORBA’s portable interceptors did not work.

Solution: The solution to this problem is to have the clients and servers communicate
directly with the Load Balancer. The clients and servers are responsible for resolving
the reference to the Load Balancer, and issue explicit requests to it. By adopting this
solution, we avoided using both the ServantLocator and CORBA’s portable interceptors.

In this approach, the servers are activated inside a POA, having the PortableServer::
PERSISTENT and PortableServer:: USED ID policies. Because these policies are set,
the object group references, which are written to IOR files, are persistent. As their object
ids are persistent, FTORB can recognize the server replicas. The client does not send
its first request to the Load Balancer, but resolves the reference to the Load Balancer
and queries the Load Balancer for the peer server to which to connect. In the previous
approach, the Load Balancer returns the object group reference for the peer server’s
replica group to the client, which also happens with this approach. The difference is that
now the client explicitly requests the object group reference for the peer server’s replica
group from the Load Balancer.

Challenge 2: Eternal’s FTORB uses two methods, get state() and set state(), for check-
pointing and recovery. When a new replica is added to a group, FTORB invokes the
get state() method of an existing replica to obtain the state of that replica. It then in-
vokes the set state() method of the new replica to initialize its state and replays the
messages from the message log. The new replica begins processing requests, from that
point onwards in the message sequence.

The Load Balancer is a stateful server and, thus, the challenge is to identify the state
of the Load Balancer and to implement the get state() and set state() methods for it.

Solution: We identified the state of the Load Balancer, in particular the state that was
stored in its table when the peer servers registered with the Load Balancer and that
associate the object ids of the peer servers with their object group references. The Load
Balancer uses this state to identify different peer servers, select a peer server to process
a client’s request, and supply object group references to the clients.

We then coded the get state() and set state() methods for the Load Balancer, which
retrieve the state from one replica of the Load Balancer and set it within another replica
of the Load Balancer, respectively.



162 A.V. Singh, L.E. Moser, and P.M. Melliar-Smith

3.2 Challenges in Designing the Client and Server Applications

Next we discuss some of the challenges that we faced in designing the client and server
applications.

Challenge 3: The get state() and set state() methods must be coded for the client and
server applications to make them fault tolerant, as described above. The challenge is to
identify the state of the client and server applications.

Solution: For each client and server application in our examples, we identified the
state and coded the get state() and set state() methods for that client and server. Global
variables and data structures that are retained from one request to the next must be
recorded, but local variables, such as loop indices, need not be.

Challenge 4: Only one peer server per peer group invokes the create object group()
method of the Load Balancer to create a peer group. Once the Load Balancer has created
the peer group, the other peer servers first obtain the object group reference of the peer
group and then invoke the register servant() method to add themselves to the peer group.
TAO’s Load Balancer does not provide this functionally. The challenge is to incorporate
it within our integrated infrastructure.

Solution: One possible solution to this challenge was to recode the method create object
group() in the TAO Load Balancer. Another possible solution was to make the necessary
changes within the server to obtain the object group reference of the peer group that was
created.

Because create object group() is part of TAO’s Load Balancer, we adopted the second
solution. Thus, whenever we create a peer group, we write its object group reference to
an IOR file. Other peer servers that wish to add themselves to the peer group read the
object group reference from the IOR file.

4 Performance Measurements

We describe three of the experiments that we performed for the integrated infrastructure
and give the corresponding performance measurements.

The experiments were performed on up to nine Pentium III 1 GHz computers, con-
nected by a 100 Mbps Ethernet switch. The computers ran the Linux Red Hat 8.0
operating system and the TAO CORBA ORB [11].

The applications consisted of a client that invokes a server remotely across the net-
work. The client incurs a random delay (think time) between requests. The server per-
forms a nominal processing operation of 30000 microseconds before responding to the
client. Request and reply messages are 1kByte each.

We measured the response time seen by a client (i.e., the time interval in microseconds
betweenaclient’sissuingarequestandreceivingareplyfromtheserver)andthethroughput
of a peer server (i.e., the number of requests per second handled by the peer server).

4.1 Experiment 1: Decrease in Response Time with Load Balancing

Fig. 6 shows the testbed for this experiment, which consists of the Load Balancer, three
clients and three peer servers, each having one replica. Each of the objects ran on a
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different processor, with FTORB running on all of the processors. First, we performed
the experiment with one peer server serving the three clients. Next, we performed the
experiment with three peer servers serving the three clients.

The graph in Fig. 6 shows the two configuration setups on the horizontal axis and the
responsetimeforaclient’srequestontheverticalaxis.PointArepresents thesetupwithone
peerserverservingthe threeclients,andpointBrepresents thesetupwith threepeerservers
serving the three clients. The experimental results show that the response time improved
by 32%, when the clients’requests are load balanced across the three peer servers.
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Fig. 6. Experiment 1. Testbed setup and response time for a client’s request with load balancing:
(A) one peer server and (B) three peer servers

4.2 Experiment 2: Increase in Throughput with Load Balancing

Fig. 7 shows the testbed for this experiment, which consisted of the Load Balancer, five
clients and two peer servers, each having one replica. Each of the objects was hosted on
a different computer, and FTORB was running on all of the computers.

The graph in Fig. 7 shows the server throughput curves without load balancing
(bottom curve) and with load balancing (top curve). The vertical axis represents the
throughput in requests per second. The horizontal axis represents decreasing random
delays (think times) between requests at the clients. Initially, both of the throughput
curves increase and there is no queuing at the peer server. After the peer server reaches
its maximum processing capacity, the throughput curves flatten out and arriving requests
from the clients are queued.

With load balancing across the two peer servers, we observed that the clients are
distributed in groups of two and three between the two peer servers. This division resulted
in higher throughput and decreased load on the single peer server without load balancing.
When we decreased the number of clients communicating with the single server without
load balancing from five to three, the throughput of the server increased by 15%. Thus,
integrating load balancing resulted in a 15% increase in throughput.

4.3 Experiment 3: Increase in Response Time with Replication

Fig. 8 shows the testbed for this experiment, with the Load Balancer, one client and one
peer server, having one, two or three replicas. Each of the objects ran on a different pro-
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Load Balancer

Peer Server 2Peer Server 1

Client Client 2 Client 3 Client 4 Client 5

Fig. 7. Experiment 2. Testbed setup and throughput of a peer server: (A) bottom curve without
load balancing and (B) top curve with load balancing

Client

Load Balancer

Server Replica 1 Server Replica 2 Server Replica 3

46490.77

63605
76835.27

0

10000

20000

30000

40000

50000

60000

70000

80000

Microseconds

A B C

Fig. 8. Experiment 3. Testbed setup and response time: (A) one server replica, (B) two server
replicas and (C) three server replicas

cessor, with FTORB running on all of the processors. In this experiment, we investigated
the response time as the number of replicas of a peer server is increased.

The graph in Fig. 8 shows the results of the experiment. The vertical axis shows the
response time in microseconds. Points A, B and C on the horizontal axis represent the
three configurations when one, two and three server replicas are running. The results
show that there is a 37% overhead when the number of replicas is increased from one
to two and a 20% overhead when the number of replicas is increased from two to three.
The primary cause of the increased overhead is the Totem multicast protocol, the latency
of which increases linearly with the number of processors on the ring [12].

5 Related Work

Research on load balancing for distributed systems typically focuses on dynamic strate-
gies and algorithms that maximize throughput and minimize overhead, and does not also
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deal with fault tolerance. Likewise, research on fault tolerance for distributed systems
focuses primarily on strategies and mechanisms that achieve a high quality of fault tol-
erance, and does not also address load balancing or other quality of service issues. A
few infrastructures have been developed that provide both fault tolerance and load bal-
ancing. Generally, they do not provide fault tolerance transparently but, rather, depend
on modifications to the application programs.

Beowulf is a parallel processing environment that provides dynamic, on-board, adap-
tive distribution of processing tasks across a heterogeneous network of processors. It allo-
cates processing to off-board resources as appropriate and as resources become available.
In [2] Bennett, Davis and Kunau describe ParaSort, a distributed parallel data allocation
sorting algorithm with automatic load balancing and fault tolerance that operates in the
Beowulf environment. The fault tolerance is explicitly programmed into the application,
in contrast to our more transparent fault tolerance approach.

AQuA [10] is a dependability framework that provides object replication and fault
tolerance for CORBA applications. AQuA exploits the group communication facilities
and message ordering guarantees of the Ensemble and Maestro toolkits to ensure replica
consistency. AQuA supports both active and passive replication, with state transfer to
synchronize the states of the backup and primary replicas for passive replication. AQuA
also addresses resource management and other quality of services issues, but not load
balancing based on the CORBA standard like our infrastructure does.

Ho and Leong [3] have extended the CORBA Event Service with load balancing
and fault tolerance in a transparent manner. Their framework replicates event channels
and shares the load among the replicas, using both static and dynamic load balancing,
to improve scalability. It monitors the event channel replicas and, if an event channel
replica becomes faulty, it transfers the consumers of the faulty event channel replica to
another event channel replica and restarts the faulty event channel replica. Unlike our
infrastructure which replicates stateful application objects, their framework replicates
stateless event channels.

JBoss [4] is an open-source Java EJB/J2EE application server and, as such, it uses
CORBA’s IIOP protocol. JBoss has been extended with the JavaGroups group commu-
nication toolkit [1], a Java implementation of the Ensemble toolkit, to provide clustering,
including load balancing, session state replication, and failover. JBoss uses an abstraction
framework to isolate communication layers and, thus, like our infrastructure, achieves
transparency to the applications and other middleware.

Petri, Bolz and Langendorfer [9] have developed a system that provides load balanc-
ing and fault tolerance for compute-intensive scientific applications. Their system uses a
global virtual name space for groups of processes distributed across a workstation clus-
ter. Applications use the same virtual names for operating system objects, independent
of their location. System calls are interposed via the debugging interface, and parame-
ters are translated between name spaces. Thus, like our infrastructure, their system uses
library interpositioning to achieve transparency to the applications.

6 Conclusion

We have presented an integrated software infrastructure, based on Eternal’s FTORB and
TAO’s Load Balancer, that renders distributed applications, based on CORBA, both fault
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tolerant and load balanced. We have discussed challenges that we faced in the integration
and solutions to those challenges. We have also presented performance measurements,
which show that the integrated infrastructure resulted in some overhead, as one would
expect. However, the integrated infrastructure increases the robustness of the services
that the applications provide to the clients and results in improved response time for the
clients and throughput of the servers. Our work has shown that integrating middleware
components, such as TAO’s Load Balancer and Eternal’s FTORB, that provide orthog-
onal non-functional properties might require modifications to one or both components,
because each makes assumptions that the other might not satisfy.
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