
Nearest Neighbours Search Using the PM-Tree

Tomáš Skopal1, Jaroslav Pokorný1, and Václav Snášel2

1 Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic, EU

tomas@skopal.net, jaroslav.pokorny@mff.cuni.cz
2 VŠB–Technical University of Ostrava, FECS, Dept. of Computer Science,

tř. 17. listopadu 15, 708 33 Ostrava, Czech Republic, EU
vaclav.snasel@vsb.cz

Abstract. We introduce a method of searching the k nearest neighbours
(k-NN) using PM-tree. The PM-tree is a metric access method for sim-
ilarity search in large multimedia databases. As an extension of M-tree,
the structure of PM-tree exploits local dynamic pivots (like M-tree does
it) as well as global static pivots (used by LAESA-like methods). While
in M-tree a metric region is represented by a hyper-sphere, in PM-tree
the ”volume” of metric region is further reduced by a set of hyper-rings.
As a consequence, the shape of PM-tree’s metric region bounds the in-
dexed objects more tightly which, in turn, improves the overall search
efficiency. Besides the description of PM-tree, we propose an optimal
k-NN search algorithm. Finally, the efficiency of k-NN search is experi-
mentally evaluated on large synthetic as well as real-world datasets.

1 Introduction

The volume of multimedia databases rapidly increases and the need for efficient
content-based search in large multimedia databases becomes stronger. In partic-
ular, there is a need for searching for the k most similar documents (called the
k nearest neighbours – k-NN) to a given query document.

Since multimedia documents are modelled by objects (usually vectors) in
a feature space U, the multimedia database can be represented by a dataset
S ⊂ U, where n = |S| is size of the dataset. The search in S is accomplished by
an access method, which retrieves objects relevant to a given similarity query.
The similarity measure is often modelled by a metric, i.e. a distance d satisfying
properties of reflexivity, positivity, symmetry, and triangular inequality. Given
a metric space M = (U, d), the metric access methods (MAMs) [4] organize
objects in S such that a structure in S is recognized (i.e. a kind of metric index
is constructed) and exploited for efficient (i.e. quick) search in S. To keep the
search as efficient as possible, the MAMs should minimize the computation costs
(CC) and the I/O costs. The computation costs represent the number of (com-
putationally expensive) distance computations spent by the query evaluation.
The I/O costs are related to the volume of data needed to be transfered from
secondary memory (also referred to as the disk access costs).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 803–815, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

804 T. Skopal, J. Pokorný, and V. Snášel

In this paper we propose a method of k-NN searching using PM-tree, which
is a metric access method for similarity search in large multimedia databases.

2 M-Tree

Among the MAMs developed so far, the M-tree [5, 7] (and its modifications) is
still the only dynamic MAM suitable for efficient similarity search in large mul-
timedia databases. Like other dynamic and paged trees, the M-tree is a balanced
hierarchy of nodes. Given a metric d, the data objects Oi ∈ S are organized in a
hierarchy of nested clusters, called metric regions. The leaf nodes contain ground
entries of the indexed data objects, while the routing entries (stored in the inner
nodes) describe the metric regions. A ground entry is denoted as:

grnd(Oi) = [Oi, oid(Oi), d(Oi, Par(Oi))]

where Oi ∈ S is the data object, oid(Oi) is identifier of the original DB object
(stored externally), and d(Oi, Par(Oi)) is precomputed distance between Oi and
the data object of its parent routing entry. A routing entry is denoted as:

rout(Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi, Par(Oi))]

where Oi ∈ S is a routing object (local pivot), ptr(T (Oi)) is pointer to the
covering subtree, and rOi

is the covering radius. The routing entry determines a
hyper-spherical metric region (Oi, rOi) in M, for which routing object Oi is the
center and rOi is the radius bounding the region. In Figure 1 see several data
objects partitioned among (possibly overlapping) metric regions of M-tree.

Fig. 1. Hierarchy of metric regions and the appropriate M-tree

2.1 Similarity Queries in M-Tree

The structure of M-tree was designed to support similarity queries (proximity
queries actually). We distinguish two basic kinds of queries. The range query is
specified as a hyper-spherical query region (Q, rQ), defined by a query object
Q and a covering query radius rQ. The purpose of range query is to select all
objects Oi ∈ S satisfying d(Q, Oi) ≤ rQ (i.e. located inside the query region). The

Nearest Neighbours Search Using the PM-Tree 805

k nearest neighbours query (k-NN query) is specified by a query object Q and a
number k. A k-NN query selects the first k nearest (most similar) objects to Q.
Technically, the k-NN query can be formulated as a range query (Q, d(Q, Ok)),
where Ok is the k-th nearest neighbour. During query processing, the M-tree
hierarchy is traversed down. Given a routing entry rout(Oi), the subtree T (Oi)
is processed only if the region defined by rout(Oi) overlaps the query region.

Range Search. The range query algorithm [5, 7] has to follow all M-tree paths
leading to data objects Oj inside the query region, i.e. satisfying d(Q, Oj) ≤ rQ.
In fact, the range query algorithm recursively accesses nodes the metric regions
of which (described by the parent routing entries rout(Oi)) overlap the query
region, i.e. such that d(Oi, Q) ≤ rOi + rQ is satisfied.

2.2 Nearest Neighbours Search

In fact, the k-NN query algorithm for M-tree is a more complicated range query
algorithm. Since the query radius rQ is not known in advance, it must be de-
termined dynamically (during the query processing). For this purpose a branch-
and-bound heuristic algorithm has been introduced [5], quite similar to that one
for R-trees [8]. The k-NN query algorithm utilizes a priority queue PR of pend-
ing requests, and a k-elements array NN used to store the k-NN candidates and
which, at the end of the processing, contains the result. At the beginning, the
dynamic radius rQ is set to ∞, while during query processing rQ is consecutively
reduced down to the ”true” distance between Q and the k-th nearest neighbour.

PR Queue. The priority queue PR of pending requests[ptr(T (Oi)),dmin(T (Oi))]
is used to keep (pointers to) such subtrees T (Oi), which (still) cannot be ex-
cluded from the search, due to overlap of their metric regions (Oi, rOi) with
the dynamic query region (Q, rQ). The priority order of each such request is
given by dmin(T (Oi)), which is the smallest possible distance between an object
stored in T (Oi) and the query object Q. The smallest distance is denoted as the
lower-bound distance between Q and the metric region (Oi, rOi):

dmin(T (Oi)) = max{0, d(Oi, Q) − rOi}
During k-NN query execution, requests from PR are being processed in the
priority order, i.e. the request with smallest lower-bound distance goes first.

NN Array. The NN array contains k entries of form either [oid(Oi), d(Q, Oi)]
or [−, dmax(T (Oi))]. The array is sorted according to ascending distance values.
Entry of form [oid(Oi), d(Q, Oi)] on the j-th position in NN represents a candi-
date object Oi for the j-th nearest neighbour. In the second case (i.e. entry of
form [−, dmax(T (Oi))]), the value dmax(T (Oi)) represents upper-bound distance
between Q and objects in subtree T (Oi) (in which some k-NN candidates could
be stored). The upper-bound distance dmax(T (Oi)) is defined as:

dmax(T (Oi)) = d(Oi, Q) + rOi

806 T. Skopal, J. Pokorný, and V. Snášel

Since NN is a sorted array containing the k nearest neighbours candidates (or
at least upper-bound distances of the still relevant subtrees), the dynamic query
radius rQ can be determined as the current distance stored in the last entry
NN[k]. During the query processing, only the closer candidates (or smaller upper-
bound distances) are inserted into NN array, i.e. such candidates, which are
currently located inside the dynamic query region (Q, rQ).

After insertion into NN, the query radius rQ is decreased (because NN[k]
entry was replaced). The priority queue PR must contain only the (still) relevant
subtrees, i.e. such subtrees the regions of which overlap the dynamic query region
(Q, rQ). Hence, after the dynamic radius rQ is decreased, all irrelevant requests
(for which dmin(T (Oi)) > rQ) must be deleted from PR.

At the beginning of k-NN search, the NN candidates are unknown, thus all
entries in the NN array are set to [−,∞]. The query processing starts at the
root level, so that [ptr(root),∞] is the first and only request in PR. For a more
detailed description of the k-NN query algorithm we refer to [7, 10].

Note: The k-NN query algorithm is optimal in I/O costs, since it only accesses
nodes, the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)).
In other words, the I/O costs of a k-NN query (Q, k) and I/O costs of the equiv-
alent range query (Q, d(Q,NN[k].dmax)) are equal.

Fig. 2. An example of 2-NN search in M-tree

Example 1

In Figure 2 see an example of 2-NN query processing. Each of the depicted phases
shows the content of PR queue and NN array, right before processing a request

Nearest Neighbours Search Using the PM-Tree 807

from PR. Due to the decreasing query radius rQ, the dynamic query region
(Q, rQ) (represented by bold-dashed line) is reduced down to (Q, d(Q, O5)). Note
the algorithm accesses 5 nodes (processing of single request in PR involves a
single node access), while the equivalent range query takes also 5 node accesses.

3 PM-Tree

Each metric region in M-tree is described by a bounding hyper-sphere. How-
ever, the shape of hyper-sphere is far from optimal, since it does not bound
the data objects tightly together and the region ”volume” is too large. Rela-
tively to the hyper-sphere volume, there are only ”few” objects spread inside
the hyper-sphere – a huge proportion of dead space [1] is covered. Consequently,
for hyper-spherical regions the probability of overlap with query region grows,
thus query processing becomes less efficient. This observation was the major mo-
tivation for introduction of the Pivoting M-tree (PM-tree) [12, 10], an extension
of M-tree.

3.1 Structure of PM-Tree

Some metric access methods (e.g. AESA, LAESA [4, 6]) exploit global static piv-
ots, i.e. objects to which all objects of the dataset S (all parts of the index struc-
ture respectively) are related. The global pivots actually represent ”anchors” or
”viewpoints”, due to which better filtering of irrelevant data objects is possible.

In PM-tree, the original M-tree hierarchy of hyper-spherical regions (driven
by local pivots) is combined with so-called hyper-ring regions, centered in global
pivots. Since PM-tree is a generalization of M-tree, we just describe the new facts
instead of a comprehensive definition. First of all, a set of p global pivots Pt ∈ S

must be chosen. This set is fixed for all the lifetime of a particular PM-tree
index. A routing entry in PM-tree inner node is defined as:

routPM (Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi, Par(Oi)), HR]

The new HR attribute is an array of phr intervals (phr ≤ p), where the t-th
interval HR[t] is the smallest interval covering distances between the pivot Pt and
each of the objects stored in leaves of T (Oi), i.e. HR[t] = 〈HR[t].min, HR[t].max〉,
HR[t].min = min{d(Oj , Pt)}, HR[t].max = max{d(Oj , Pt)}, ∀Oj ∈ T (Oi). The
interval HR[t] together with pivot Pt define a hyper-ring region (Pt,HR[t]); a
hyper-spherical region (Pt,HR[t].max) reduced by a ”hole” (Pt,HR[t].min).

Since each hyper-ring region (Pt, HR[t]) defines a metric region bounding all
the objects stored in T (Oi), the intersection of all the hyper-rings and the hyper-
sphere forms a metric region bounding all the objects in T (Oi) as well. Due to the
intersection with hyper-sphere, the PM-tree metric region is always smaller than
the original hyper-spherical region. The probability of overlap between PM-tree
region and query region is smaller, thus the search becomes more efficient (see
Figure 3). A ground entry in PM-tree leaf is defined as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi, Par(Oi)), PD]

808 T. Skopal, J. Pokorný, and V. Snášel

Fig. 3. (a) Region of M-tree. (b) Region of PM-tree (sphere reduced by 3 hyper-rings)

The new PD attribute stands for an array of ppd pivot distances (ppd ≤ p)
where the t-th distance PD[t] = d(Oi, Pt). The distances PD[t] between data
objects and the global pivots are used for simple sequential filtering in leaves,
as it is accomplished in LAESA-like methods. For details concerning PM-tree
construction as well as representation and storage of the hyper-ring intervals
(HR and PD arrays) we refer to [12, 10].

3.2 Choosing the Global Pivots

Problems about choosing the global pivots have been intensively studied for a
long time [9, 3, 2]. In general, we can say that pivots should be far from each
other (close pivots give almost the same information) and outside data clusters.
Distant pivots cause increased variance in distance distribution [4] (the dataset is
”viewed” from different ”sides”), which is reflected in better filtering properties.

We use a cheap but effective method of pivots choice, described as follows.
First, m groups of p objects are randomly sampled from the dataset S, each
group representing a candidate set of pivots. Second, such group of pivots is
chosen, for which the sum of distances between objects is maximal.

3.3 Similarity Queries in PM-Tree

The distances d(Q, Pt), ∀t ≤ max(phr, ppd) have to be computed before the query
processing itself is started. The query is processed by accessing nodes, the regions
of which are overlapped by the query region (similarly as M-tree is queried, see
Section 2.1). A PM-tree node is accessed if the query region overlaps all the
hyper-rings stored in the parent routing entry. Hence, prior to the standard
hyper-sphere overlap check (used by M-tree), the overlap of hyper-rings HR[t]
against the query region is tested as follows (no additional distance is computed):

phr∧

t=1

d(Q, Pt) − rQ ≤ HR[t].max ∧ d(Q, Pt) + rQ ≥ HR[t].min (1)

Nearest Neighbours Search Using the PM-Tree 809

If the above condition is false, the subtree T (Oi) is not relevant to the query,
and can be excluded from further processing. At the leaf level, an irrelevant
ground entry is determined such that the following condition is not satisfied:

ppd∧

t=1

|d(Q, Pt) − PD[t]| ≤ rQ (2)

In Figure 3 see that M-tree region cannot be filtered out, but PM-tree region
can be excluded from the search, since the hyper-ring HR[2] is not overlapped.

4 Nearest Neighbours Search in PM-Tree

The hyper-ring overlap condition (1) can be integrated into the original M-tree’s
range query as well as into k-NN query algorithms. In case of range query the
adjustment is straightforward – the hyper-ring overlap condition is combined
with the original hyper-sphere overlap condition (we refer to [12]).

The M-tree’s k-NN algorithm can be modified for the PM-tree, we only need
to respect the changed region shape. As in the range query algorithm, the check
for overlap between the query region and a PM-tree region is combined with
the hyper-ring overlap condition (1). Furthermore, to obtain an optimal k-NN
algorithm, there must be adjusted the lower-bound distance dmin (used by PR
queue) and the upper-bound distance dmax (used by NN array), as follows.

The requests [ptr(T (Oi)), dmin(T (Oi))] in PR represent the relevant subtrees
T (Oi) to be examined, i.e. such subtrees, the parent metric regions of which
overlap the dynamic query region (Q, rQ). Taking the hyper-rings HR[t] of a
PM-tree region into account, the lower-bound distance is possibly increased, as:

dmin(T (Oi)) = max{0, d(Oi, Q) − rOi , d
low
HRmax, dlow

HRmin}

dlow
HRmax= max

phr⋃

t=1

{d(Pt, Q)−HR[t].max} dlow
HRmin= max

phr⋃

t=1

{HR[t].min−d(Pt, Q)}

where max{dlow
HRmax, dlow

HRmin} determines the lower-bound distance between the
query object Q and objects located in the farthest hyper-ring. Comparing to
M-tree’s k-NN algorithm, the lower-bound distance dmin(T (Oi)) for a PM-tree
region can be additionally increased, since the farthest hyper-ring contains all
the objects stored in T (Oi).

The entries [oid(Oi), d(Q, Oi)] or [−, dmax(T (Oi))] in NN represent the cur-
rent k candidates for nearest neighbours (or at least the still relevant sub-
trees). Taking the hyper-rings HR[t] into account, the upper-bound distance
dmax(T (Oi)) is possibly decreased, as:

dmax(T (Oi)) = min{d(Oi, Q)+rOi , d
up
HR} dup

HR = min

phr⋃

t=1

{d(Pt, Q)+HR[t].max}

810 T. Skopal, J. Pokorný, and V. Snášel

where dup
HR determines the upper-bound distance between the query object Q

and objects located in the nearest hyper-ring.
In summary, the modification of M-tree’s k-NN algorithm for the PM-tree

differs in the overlap condition, which has to be additionally combined with the
hyper-ring overlap check (1) and (2), respectively. Another difference is in the
construction of dmax(T (Oi)) and dmin(T (Oi)) bounds.

Fig. 4. An example of 2-NN search in PM-tree

Example 2

In Figure 4 see an example of 2-NN query processing. The PM-tree hierarchy
is the same as the M-tree hierarchy presented in Example 1, but the query
processing runs a bit differently. Although in this particular example both the
M-tree’s and the PM-tree’s k-NN query algorithms access 4 nodes, searching the
PM-tree saves one insertion into the PR queue.

Note: Like the M-tree’s k-NN query algorithm, also the PM-tree’s k-NN query
algorithm is optimal in I/O costs, since it only accesses those PM-tree nodes,
the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)). This
is guaranteed (besides usage of the hyper-ring overlap check) by correct modifi-
cation of lower/upper distance bounds stored in PR queue and NN array.

Nearest Neighbours Search Using the PM-Tree 811

5 Experimental Results

In order to evaluate the performance of k-NN search, we present some experi-
ments made on large synthetic as well as real-world vector datasets. The query
objects were selected randomly from each respective dataset, while each partic-
ular test consisted of 1000 queries (the results were averaged). Euclidean (L2)
metric was used in all tests. The I/O costs were measured as the number of
logic disk page retrievals. The experiments were aimed to compare PM-tree with
M-tree – a comparison with other MAMs was out of scope of this paper.

Abbreviations in Figures. Each label of form ”PM-tree(x,y)” stands for a
PM-tree index where phr = x and ppd = y. A label ”<index> + SlimDown” de-
notes an index subsequently post-processed by the slim-down algorithm [11, 10].

5.1 Synthetic Datasets

For the first set of experiments, a collection of 8 synthetic vector datasets of
increasing dimensionality (from D = 4 to D = 60) was generated. Each dataset
(embedded inside unitary hyper-cube) consisted of 100,000 D-dimensional tuples

Table 1. PM-tree index statistics (synthetic datasets)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionalities: 4,8,16,20,30,40,50,60 Inner node capacities: 10 – 28

Index file sizes: 4.5 MB – 55 MB Leaf node capacities: 16 – 36
Pivot file sizes: 2 KB – 17 KB Avg. node utilization: 66%

Node (disk page) sizes: 1 KB (D = 4, 8), 2 KB (D = 16, 20), 4 KB (D ≥ 30)

Fig. 5. Number of pivots: (a) I/O costs. (b) Computation costs

812 T. Skopal, J. Pokorný, and V. Snášel

Fig. 6. Number of pivots: (a) I/O costs. (b) Computation costs

Fig. 7. Dimensionality: (a) I/O costs. (b) Computation costs

distributed uniformly among 1000 L2-spherical uniformly distributed clusters.
The diameter of each cluster was d+

10 (where d+ =
√

D). These datasets were in-
dexed by PM-tree (for various phr and ppd) as well as by M-tree. Some statistics
about the created indices are shown in Table 1 (for details see [11]). Prior to k-NN
experiments, in Figure 5 we present index construction costs (for 30-dimensional
indices), according to the increasing number of pivots. The increasing I/O costs
depend on the hyper-ring storage overhead (the storage ratio of PD or HR arrays
to the data vectors becomes higher), while the increasing computation costs de-
pend on the object-to-pivot distance computations performed before each object
insertion.

In Figure 6 the 20-NN search costs (for 30-dimensional indices) according
to the number of pivots are presented. The I/O costs rapidly decrease with the
increasing number of pivots. Moreover, the PM-tree is superior even after post-

Nearest Neighbours Search Using the PM-Tree 813

processing by the slim-down algorithm. The decreasing trend of computation
costs is even quicker than of I/O costs, see Figure 6b.

The influence of increasing dimensionality D is depicted in Figure 7. Since
the disk pages for different (P)M-tree indices were not of the same size, the I/O
costs as well as the computation costs are related (in percent) to the I/O costs
(CC resp.) of M-tree indices. For 8 ≤ D ≤ 40 the I/O costs stay approximately
fixed, for D > 40 they slightly increase. In case of D = 4, the higher PM-tree
I/O costs are caused by higher hyper-ring storage overhead.

5.2 Image Database

For the second set of experiments, a collection of approx. 10,000 web-crawled
images [13] was used. Each image was converted into 256-level gray scale and
a frequency histogram was extracted. As indexed objects the histograms (256-
dimensional vectors) were used. The index statistics are presented in Table 2.

Table 2. PM-tree index statistics (image database)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionality: 256 Inner node capacities: 10 – 31
Index file sizes: 16 MB – 20 MB Leaf node capacities: 29 – 31
Pivot file sizes: 4 KB – 1 MB Avg. node utilization: 67%

Node (disk page) size: 32 KB

Fig. 8. Number of pivots: (a) I/O costs. (b) Computation costs

In Figure 8a the I/O search costs for increasing number of pivots are pre-
sented. The computation costs (see Figure 8b) for p ≤ 64 decrease. However,
for p > 64 the overall computation costs grow, since the number of necessarily
computed query-to-pivot distances (i.e. p distance computations for each query)
is proportionally too large. Nevertheless, this observation is dependent on the

814 T. Skopal, J. Pokorný, and V. Snášel

Fig. 9. Number of neighbours: (a) I/O costs. (b) Computation costs

database size – obviously, for million of images the proportion of p query-to-pivot
distance computations would be smaller, when compared with the overall com-
putation costs. Finally, the costs according to the increasing number of nearest
neighbours are presented in Figure 9.

6 Conclusions

We have proposed an optimal k-NN search algorithm for the PM-tree. Experi-
mental results on synthetic and real-world datasets have shown that searching
in PM-tree is significantly more efficient, when compared with the M-tree.

Acknowledgements. This research has been partially supported by grant 201/
05/P036 of the Czech Science Foundation (GAČR) and the National programme
of research (Information society project 1ET100300419).

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proximity
searching in metric spaces. Pattern Recognition Letters, 24(14):2357–2366, 2003.

3. E. Chávez. Optimal discretization for pivot based algorithms. Manuscript.
ftp://garota.fismat.umich.mx/pub/users/elchavez/minimax.ps.gz, 1999.

4. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúin. Searching in Metric
Spaces. ACM Computing Surveys, 33(3):273–321, 2001.

5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern.
Conf. on VLDB, pages 426–435. Morgan Kaufmann, 1997.

Nearest Neighbours Search Using the PM-Tree 815

6. M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (aesa) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15(1):9–17, 1994.

7. M. Patella. Similarity Search in Multimedia Databases. PhD thesis, University of
Bologna, 1999.

8. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, CA, pages 71–79, 1995.

9. M. Shapiro. The choice of reference points in best-match file searching. Commun.
ACM, 20(5):339–343, 1977.

10. T. Skopal. Metric Indexing in Information Retrieval. PhD thesis, Technical Univer-
sity of Ostrava, http://urtax.ms.mff.cuni.cz/~skopal/phd/thesis.pdf, 2004.

11. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building
Principles. In Proceedings of the 7th East-European Conference on Advances in
Databases and Information Systems (ADBIS), Dresden, Germany, LNCS 2798,
Springer-Verlag, pages 148–162, 2003.

12. T. Skopal, J. Pokorný, and V. Snášel. PM-tree: Pivoting Metric Tree for Similar-
ity Search in Multimedia Databases. In Local proceedings of the 8th East-European
Conference on Advances in Databases and Information Systems (ADBIS), Bu-
dapest, Hungary, pages 99–114, 2004.

13. WBIIS project: Wavelet-based Image Indexing and Searching, Stanford University,
http://wang.ist.psu.edu/.

	Introduction
	M-Tree
	Similarity Queries in M-Tree
	Nearest Neighbours Search

	PM-Tree
	Structure of PM-Tree
	Choosing the Global Pivots
	Similarity Queries in PM-Tree

	Nearest Neighbours Search in PM-Tree
	Experimental Results
	Synthetic Datasets
	Image Database

	Conclusions

