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Abstract. In this paper we propose a new operator which combines
advantages of monogenic scale-space and Gaussian scale-space, of the
monogenic signal and the structure tensor. The gradient energy tensor
(GET) defined in this paper is based on Gaussian derivatives up to third
order using different scales. These filters are commonly available, separa-
ble, and have an optimal uncertainty. The response of this new operator
can be used like the monogenic signal to estimate the local amplitude,
the local phase, and the local orientation of an image, but it also allows
to measure the coherence of image regions as in the case of the struc-
ture tensor. Both theoretically and in experiments the new approach
compares favourably with existing methods.

1 Introduction

In this paper we derive a connection between features of the monogenic scale-
space [I] of an image and its Gaussian scale-space [2], respectively the derivatives
of the latter. Thus, it becomes possible to compute monogenic features from
Gaussian derivatives. The advantages of the proposed method are:

— Many people have implementations of Gaussian derivatives available so that
they can use monogenic features without implementing new basis filters.

— The Gaussian derivatives are separable and decay faster than the Poisson fil-
ter and its Riesz transform resulting in more efficient computational schemes.

— The additional feature (coherence) of the derivative-based method directly
indicates the validity of the monogenic phase model which is based on the
assumption of locally 1D signals.
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A key assumption of this paper is of course that the local phase is useful for
the processing and analysis of images. Therefore, we give a short motivation of
phase-based image processing in the subsequent section. Although most of the
discussions focus on images, the reflections about phase based signal processing
generalize to signals of arbitrary dimension.

1.1 Phase-Based Image Processing

First of all, there is some evidence that the human visual system makes use
of local phase to analyze the image contents [3]. Since the human visual system
performs remarkably well in analyzing images, it is reasonable to design technical
systems accordingly. However, there are also purely technical observations which
motivate the use phase. In [4] the authors present several experiments which show
that the Fourier phase contains the major part of the signal information. The
same applies to the local phase. For the definition of local phase, we assume an
image (patch) model according to

I(x) = A(x) cos(p(x)) + I (1)
where x = (x,y)7 indicates the spatial coordinate vector, I(x) the image (patch),
I the average intensity (DC level), A(x) the local amplitude (non-negative), and
©(x) the local phase. The average intensity is irrelevant for the analysis of the
image contents and is largely compensated already during the image acquisition
in the human visual system. What remains is to analyze the relation of local
amplitude and local phase. Although the decomposition in (IJ) seems to be am-
biguous, this is not the case due to the non-negativity of the amplitude. Due to
the latter, zero crossings in I(x) — I must be covered by zeros of cos(¢(x)) and
zero crossings are in direct correspondence to the full phase [5]. Therefore, the
local phase becomes a uniquely defined feature.

If the image is decomposed into its amplitude and phase information, it be-
comes evident that the local amplitude is basically a measure for the confidence
of the extracted phase, i.e., in technical terms it represents the signal-to-noise
ratio (SNR), cf. Fig. [Il center. The local phase represents most of the image
structure, cf. Fig. [Il left. In the areas where the amplitude is close to zero, thus
meaning 'no confidence’, the local phase contains mainly noise. In the regions of
non-zero confidence, the cosine of the local phase results in a visual impression
which comes very close to the original, bandpass-filtered image, cf. Fig. [0l right.

1.2 The Monogenic Scale-Space: A Brief Survey

The monognic scale-space is a framework to estimate the local phase, the local
orientation, and the local amplitude from an image at different scales [I]. The
starting point is to compute the Poisson scale-space p(x,s) of the image. The
corresponding figure flow is obtained as the Riesz transform q = (q1, ¢2)7
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Fig. 1. Decomposing a bandpass image into its local phase and its local amplitude.
From left to right: cos(p(x)), A(x), and I(x), where the intensities where adjusted
to obtain similar intensity ranges. Grey means zero, white means positive values, and
black means negative values. I(x) is obtained from a bandpass-filters with center fre-
quency 7/6

of the image at each scale s. Together, the blurred image and its Riesz transform
form a monogenic signal [6] at the respective scale.

The monogenic signal contains of three components at each position, i.e., for
a fixed scale sq it is a function R2 — R3 : x +— (q1(x, 80), ¢2(X, 80), p(x,50))T
For convenience, we sometimes omit the arguments x and s in the following.
The 3D co-domain is then transformed into polar coordinates, cf. Fig. 2 left,

resulting in a triplet (A, ¢,0) € Rt x[0,27) x [0, 7) where A = \/¢? + ¢35 + p? is
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Fig. 2. Phase models used in context of the monogenic signal. Left: the 3D vector is
derotated by the local orientation 6, such that it lies in the (g1, p)-plane. The amplitude
and phase are then extracted like in the 1D case as vector length and argument. Right:
the 3D vector together with the p-axis define a plane in which the rotation takes place.
The normal of this plane multiplied by the (directed) rotation angle ¢ results in the
rotation vector r
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an estimate for the local amplitude, ¢ = arg(p-+isign (¢1)|g|) for the local phase,
and @ = tan~1(ga/q1) for the local orientation of the image if the image varies
locally only in the orientation # (intrinsic dimensionality of one [7]). Since the
direction of an image does not follow from its local orientation [§], an ambiguity
concerning the sign of the phase is obtained. In order to obtain a continuous
representation of orientation and phase, they can be combined to form a 2D
phase vector r = ¢(—sin, cos0)T = q*/|q|tan"1(|q|/p), cf. Fig. B right.

Further features can be derived from the local features of the monogenic signal
respectively the monogenic scale-space, e.g., local frequency and phase congru-
ency as the spatial and scale derivatives of the local phase. The consideration of
these features is however out of the scope of this paper.

In order to estimate the local features, implementations of the monogenic
signal and the monogenic scale-space are required. This can either be done by
local operators, which combine a radial bandpass filter with its Riesz transform
[9,10], or by a global eigentransform solution [II]. The problem is, however,
that the involved Poisson kernel decays quite slowly, resulting in either large
truncation errors of the filter masks or non-locality of the output.

Even and odd filters based on, e.g., Gaussian derivatives, are preferable con-
cerning locality, but these filters do not allow to estimate the local phase or
phase invariant features in a linear framework, since their respective amplitude
responses differ. To combine the locality of Gaussian derivatives with phase in-
variant feature extraction and phase estimation is the main topic of the present
paper. The key idea is to use a quadratic operator in order to avoid using the
Riesz transform. This idea is based on the concept of the 1D energy operator,
which is briefly introduced in the subsequent section.

1.3 The 1D Energy Operator

This brief review of the 1D energy operator is based on [I2]. The purpose of the
energy operator is to compute directly the squared local amplitude of a signal
without using the Hilbert transform, since the Hilbert transform based methods
suffer from the same phenomena as the implementations of the monogenic scale-
space. The energy operator is defined for continuous 1D signals s(t) as

e[s(t)] = [3(t)]* = s(1)3(2) - (3)

It is obviously not positive semi-definite, but it tracks the energy of simple
harmonic oscillators. Moreover, for constants A, r, and wg and for any s1, so

@ [Art cos(wot + @o)] = A?r?tw? (4)
We[s1(t)s2(8)] = s1(8)*We[sa(t)] + s2(t)*We[s1(t)] - (5)

If we instead just consider [$(¢)]?, likewise the orientation tensor in higher di-
mensions, we obtain

d 1
[%A cos(wot + ¢o))* = §A2wg(1 — cos(2wot + 2¢9))
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which is obviously not phase invariant and might even suffer from aliasing if wg
is larger than half the Nyquist frequency. Apparently, the second part s(¢)§(t) of
the energy operator exactly compensates the spurious modulation components
at 2wg. A possible 2D generalization of the energy operator is the energy tensor
[13], which we introduce in the subsequent section.

1.4  The 2D Energy Tensor
For continuous, 2D bandpass signals b(x), the 2D energy tensor is defined as [13]

. [b(x)] = [Vb(x)][Vb(x)]" — b(x)[Hb(x)] , (6)
where V = (9,, d,)T indicates the gradient and H = VV7 indicates the Hessian.
Likewise in the 1D case, this operator is not positive semi-definite in general,
but for a simple harmonic oscillator it results in a energy-frequency-weighted
orientation tensor. Moreover, we obtain

W [Ar™TY cos(ud x + ¢g)] = A2r2* T2V ugul (7)
We[s1(x)s2(x)] = 51(%)*Te[s2(x)] + s2(x) " Pe[s1(x)] . (8)

If we just consider the first part of (@), i.e., the structure / orientation tensor
according to [T4L15] (but without spatial averaging), we obtain

[V Acos(udx + ¢0)][VAcos(ul x + ¢o)]" = %Azuoug(l — cos(2ul x + 2¢0))

which is likewise in the 1D case not phase invariant and might show aliasing
artifacts.

The energy tensor is a second order symmetric tensor like the structure tensor.
The latter is included in the energy tensor, but it is combined with a product of
even filters, which provides phase invariance for simple harmonic oscillators and
products thereof. The energy tensor can hence be classified as a phase invariant,
orientation equivariant second order tensor [16]. Same as the 2D structure tensor,
the energy operator can be converted into a complex double angle orientation
descriptor [I7]:

0(x) = Ve [b(x)]11 — Pe[b(x)22 + i20c[b(x)]12 (9)

which is equivalent to the 2D energy operator defined in [I8]. As one can easily
show, |o(x)| = |A\1(x) — A2(x)|, where A;(x), A\2(x) are the eigenvalues of the
energy tensor. Since the trace of the tensor is given by the sum of eigenvalues,
we obtain 2\ o = tr(¥.[b(x)]) £ |o(x)|, which can be subject to the same analysis
in terms of coherence as suggested in [I9,8] or for the Harris detector [20].

If the signal is not a (product of) simple harmonic oscillations, the opera-
tor (@) does not result in a positive response in general. However, if the local
signal region adheres to the model () with slowly varying amplitude and fre-
quency, the response is positive. This is the case if we prefilter the signal with
a bandpass, which avoids low frequencies (DC component and changes of local
amplitude) and high frequencies. Removing high frequencies can be considered
as a regularization that allows the computation of derivatives for discrete data.
The prefiltering is necessary in most practical situations, since natural images
I(x) are typically no bandpass signals b(x).
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2 The GET Operator

As pointed out above, the signal needs to be bandpass filtered in order to obtain
small frequency ranges, and hence, positive responses. For the high frequency
regularization, we prefer Gaussian functions due to their high localization in
both domains. However, Gaussian filters are not DC-free, which is a central re-
quirement in context of the energy tensor. If we consider a difference of Gaussian
filters as in [I3], we implicitly lift the level of spatial differentiation by two. Ac-
cording to the equation of linear diffusion [2], the scale derivative of a Gaussian
filter is equivalent to the Laplacian of the Gaussian, i.e., a combination of second
order derivatives. Hence, applying the Hessian to the Laplacian of the Gaussian
means to consider fourth order derivatives instead of second order derivatives.
Due to angular aliasing however, one cannot compute fourth order derivatives on
a local support [I0]. Therefore, we propose an operator below which makes use
of Gaussian derivatives up to order three, but avoids the zeroth order Gaussian,
i.e., the DC-component is removed.

2.1 The Gradient Energy Tensor

The idea to define the gradient energy tensor (GET) follows from the previous
considerations. We introduce the tensor in three steps. First, we plug the gradient
of the image into (@) and use tensor notation instead of matrix notation:

GET{I(x)} = %e[VI(x)]
= [Ve VIx)]®[Ve VI(x) (10)

—%([VI(X)] RIVeVeVIx)|+[VeVeVIx)] e [VI(x)])

where we symmetrized the tensor by replacing the second term with the corre-
sponding anticommutator term. The obtained operator has 16 coefficients, where
6 can be omitted due to symmetry and one further coefficient is a linear com-
bination of two others. Hence, 9 independent coefficients are left. However, all
components are formed from sums of even derivative products and odd derivative
products. Considering these separately, it turns out that the even part results in
just 3 degrees of freedom (the Hessian) and the odd part results in 6 d.o.f. .

In a second step, we contract the tensor. This becomes possible, since there
is no practical gain from the coefficients that are omitted in the contraction:

GET{I(x)} = [V® VI(x)]- [V® VI(x)]

—%([VI(X)] ®[V-VeVIX)]+[Ve V- -VIx)]®[VIX)])

[VIX)[VAI(x)]" + [VAI(x)][VI(x)]"
2

In this formula A = V7'V denotes the Laplacian. Due to the non-linearity of the
operator, it is difficult to show which degrees of freedom are lost in the contrac-
tion, but we can consider certain different cases. Assuming a simple harmonic
oscillation I(x) = cos(ux + vy + ¢), we obtain for the full tensor

= [HI(x)][HI(x)] -

(11)
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and for the contracted tensor

2 (u2—|—v2) uv (u2+v2)

v (u2—|—v2) 1)2 (u2—|—v2) (12)

GET{I(x)} = |
Hence, no information is lost by the contraction under the assumed signal model.
If we extend the model to two different frequencies in the same direction, the
tensor coefficients are multiplied by a spurious modulation factor [l However, this
modulation is the same for all coefficients, and therefore, the full tensor does not
provide additional information. By repeating this procedure for more frequencies
in the same direction, the result will always be the same, and hence, of locally
1D signals there is no gain from the full tensor.

Due to the non-linear behavior of the tensor it is impossible to calculate the
response for a general 2D signal. However, one can analyze it in terms of null-
spaces and it turns out that the contraction does not change the null-space of
the operator. The GET becomes zero for

I(x) = Aexp(ax +by) + D (13)

where A, a, b, D are complex constants. Hence, the three degrees of freedom
which are lost in the contraction of the odd part of the tensor do not reduce
the null-space and are therefore of minor importance. Deeper investigations of
the null-spaces and the number of independent components will be subject to a
future publication.

Finally, we would like to point out here that the contraction can be done in
an alternative way by taking the inner product at a different grade of the odd
tensor:

(VI()] - [V & HI()] = 0[0,1(x)] + [0, 1(x)] - (14)

The behavior for locally 1D signals is the same, but for 2D signals we get different
results.

2.2 Regularization and Gaussian Derivatives

The results from the previous section are obtained for idealized, continuous sig-
nals. In practice, however, we have to deal with non-ideal, noisy, and discrete
signals. The most common thing to do is therefore to regularize the derivative
operators from (IJ]) with Gaussian kernels. A Gaussian regularization is the op-
timal choice if nothing is known about the signal and its noise characteristic.
Therefore, we replace the derivatives in ([I]) with Gaussian derivatives of order
one to three.

! The spatial modulation is undesired. The response should have constant amplitude.
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The scales for the regularization are chosen such that the variance increases
linearly with the order of the derivative, cf. (13) in [2I]. In [22] we discuss the
choice of scales and different regularizations more in detail.

2.3 Extraction of Monogenic Features

The monogenic signal provides three features: local amplitude, local phase, and
local orientation [6]. In case of signals with intrinsic dimensionality one, i.e.,
I(x) = s(nTx) (s : R — R, |n| = 1), the GET is of rank one:

GET{I(x)} = [nn”3(n”x)][nn” 5(n"x))

_[m3(nTx)][n’5 (n"x)]" + [ (n"x)|ns(n"x)]"
2
(n”

=nn’[5(nTx)? - §(nTx)s

x)] -

The first eigenvector of this expression is +n, i.e., the local orientation of the
signal. The first eigenvalue (or its trace, aka the second eigenvalue is zero) of the
GET is more difficult to analyze, except for the single-frequency case, where we
obtain according to ([Z) |u|*A? for an oscillation with amplitude A.

Much more interesting is the extraction of the local phase, which is obtained
in two steps. First, we consider the two addends of the GET separately. The first
one represents the symmetric (even) parts of the signal, whereas the second one
represents the antisymmetric (odd) parts of the signal. However, both parts are
quadratic expressions, such that we have to consider their square-roots:

Goven = E£r/trace(Teven) and Goda = T/ trace(Toaq)

where

Teven = [HI(x)][HI(x)] and (15)
T T

Typg = - (VLTI + [TALG)91() "

In a second step, the correct signs for the even and the odd parts are selected,
such that arg(geven + 1goad) gives the local phase of the signal. Comparing the
signs in different quadrants of a harmonic oscillation results in the following
procedure.

Let T = Teven + Toaa denote the GET response, o = T11 — Tay + 2T its
complex double angle representation [I7], and o = (real(,/0), imag(1/0))T the
orientation vector. We then define the two signs as

Seven = —sign (o? [HI(x)]o) and Sodd = —sign (o’ VI(x)) (17)
such that

w = arg(QCvcn + Z‘qodd) = arg(scvcn V trace(chcn) + Z‘sodd V tradce(']:‘odd)) (18)

is consistent with the definition of the monogenic phase. This can easily be
verified by inserting cos(ux + vy) into the previous four expressions, resulting
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in ¢ = ur + vy if (u, v)T lies in the upper half-plane and ¢ = —uz — vy
otherwise. This behavior is correct since we obtain the same sign ambiguity for
the monogenic phase [6].

If the underlying signal is non-simple, i.e., it has intrinsic dimensionality
two, the analysis becomes more difficult. Following the strategy of the structure
multivector in [10], the first eigenvector is extracted from T. Then, the even
tensor and the odd tensor are projected onto the first eigenvector and onto the
orthogonal vector (aka the second eigenvector). This gives two even components
and two odd components, which are then combined with appropriate signs to
extract two phases for the two perpendicular orientations.

Note also that in the latter case not a single amplitude is obtained, but two
eigenvalues, which correspond to the local amplitudes of the two perpendicular
components. These eigenvalues can then be used for coherence analysis or corner
detection likewise the eigenvalues of the structure tensor.

3 Comparisons

In this section we compare the results of the GET operator with those of the
DCT-based implementation [I1], the spherical quadrature filters [I0], and the
structure tensor (ST) by outer products of gradients (see e.g. [19]). The latter
approach is not suited for phase-estimation per se, but one can easily extend
it for this purpose in the following way. Assuming that the outer product of
gradients of a cosine oscillation results in a trace which is Asin®(p) and assume
further that local averaging can be replaced with integration over entire periods,
the trace of the (averaged) tensor becomes %. Hence, the sine and the cosine are
obtained up to a sign-ambiguity by

Qoad = VEX)  and  oven = 1/ —1(x) +2)_1(x) |

where t(x) = trace([VI(x)][VI(x)]?). For the subsequent comparison only the
second sign needs to be recovered. If we have locally vanishing DC components
and single frequency, it is obtained by the sign of I(x), otherwise we use the sign
of —AI. In order to remove some outliers, the signs are median-filtered.

3.1 Experiment: Extraction of Phase and Orientation

In this experiment, we applied all three methods to a synthetic pattern, cf. Fig.[3]
top left, and a real image, cf. Fig. Bl bottom row. We added Gaussian noise to
the pattern (SNR, 3.0dB) and selected a mask for the feature comparison. The
scales of all methods were chosen such that the local amplitude estimates were
comparably similar, although the higher spatial-frequency localization of the
GET and the ST leads to a narrower ridge then for the other two methods, cf.
Fig. Bl second row. Instead of showing the phase estimates, we reconstructed the
signal from the phase estimates (cf. Fig.[Bl third row) and computed their SNRs.
Furthermore, we computed the orientation error according to [23]. The results
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Fig. 3. Top row from left to right: test-pattern, test-pattern with noise (SNR 3.0dB),
mask for error evaluation, and sign extraction for ST. Second row: amplitudes of DCT,
SQF, GET, and ST (from left to right). Third row: respective reconstructions. Bottom
row: respective amplitude-weighted reconstructions of a real image

Table 1. SNR of reconstruction and orientation error from estimates, cf. Fig.

method| DCT | SQF | GET | ST
SNR 12.8dB|13.7dB|13.5dB|11.1dB
Al 19.6° | 18.5° | 7.0° | 3.6°

are summarized in Tab.[Il which shows that if we are interested in simultaneously
estimating orientation and phase, the GET gives the best results.
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3.2 Complexity Analysis

The computational complexity might also be an important aspect when it comes
to the selection of suitable methods. Since the extraction of phase and orientation
has to be done in all cases, we only compare the complexities up to that point.

The complexity of the DCT-based method is given by ten 2D FFTs [I1], since
we have to compute three scales. Hence, we obtain 30N?log, N floating point
operations (FLOPs) for an image of size N x N if N is a power of two. For our
test image we have N = 128, such that we applied about 3.4 - 106 FLOPs.

For the SQF filter set, the complexity depends on the filter size. In our ex-
periment, we used three 23 x 23 filters. The filters are not separable, but we can
exploit a four-fold symmetry for the even filter and an eight-fold symmetry for
the odd filter pair. Hence, we end up with 1850N2 FLOPs, which is about 3-10”
FLOPs in our test.

For the GET operator, the complexity also depends on the filter size. In
our experiment, we used 2o-truncation (for the largest scale) resulting in seven
17 x 17 filters. These filters are separable and each of the 1D filters can exploit a
two-fold symmetry. Hence, we get 357N2 FLOPs, i.e., 6-:10° FLOPs in our special
case. For the structure tensor, the computational effort is about the same if we
take into account the calculation of the sign (bandpass filter and median filter).

One problem with these complexity estimates are the missing complexities
for memory accesses, which become more and more important nowadays. As
an side-effect of this, the SQF filters are 1.5 times faster than the DCT based
method and the GET operator is 2 times faster than the SQF filters.

4 Conclusion

In this paper we have described an alternative way of extracting the image
features of the monogenic signal, i.e., local amplitude, local phase, and local
orientation, by using a quadratic form. The proposed method of the gradient
energy tensor is the contraction of a fourth order tensor built from image deriva-
tives of order one to three. The new tensor is compatible to the structure tensor
concerning eigensystem analysis, but it is phase-invariant without spatial aver-
aging. Using Gaussian regularization of the derivatives leads to a connection of
monogenic scale-space and Gaussian scale-space via the quadratic form.

We provided formulas to extract the local phase from the two different parts of
the GET, and compared the extracted features phase and orientation to those of
previous approaches. Considering both estimates at once, the GET provides the
best estimates and it is also among the fastest operators. For non-simple signals,
it even provides the two additional features of second eigenvalue and second
phase, which makes it comparable to the much slower structure multivector.
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