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Abstract. Segmentation of the left ventricle in echocardiographic images is a task
with important diagnostic power. We propose a model-based approach that aims
at extracting the left ventricle for each frame of the cardiac cycle. Our approach
exhibits several novel elements. Modelling consists of two separate components,
one for the systolic and one for the diastolic moment. Segmentation is considered in
two steps. During the first step a linear combination of the systolic and the diastolic
model is to be recovered - that dictates the new model - along with a similarity
transformation that projects this model to the desired image features. During the
second step, a linear combination of the modes of variation for the systolic and
diastolic models is recovered for precise extraction of the endocardium boundaries.
The process is considered in the temporal domain where constraints are introduced
to couple information across frames and to lead to a smooth solution. Promising
results demonstrate the potentials of the presented framework.

1 Introduction

Cardiovascular diseases are a major health concern world-wide. The left ventricle and
in particular the endocardium is a structure of particular interest since it performs the
task of pumping oxygenated blood to the entire body. Echocardiographic apical views
when processed can determine the ejection fraction, a critical measure of the heart cycle.
While segmenting the ventricle in the systolic and diastolic frame could be sufficient to
provide such a measure, continuous tracking of the endocardium could further improve
diagnosis.

Portability and low acquisition cost are the most attractive elements of echocardio-
graphic imaging [14] while the presence of low signal-to-noise (SNR) ratio is an im-
portant limitation. Model-free segmentation techniques aim at separating the intensity
properties of the image entities and fail to cope with noise and speckle in echocardiog-
raphy. The use of prior knowledge that encodes the geometric form of the structure of
interest is a reasonable way to deal with corrupted data.

Prior art in echocardiography consists of data-driven [6] and model-based segmenta-
tion approaches [9, 1]. One can also separate the techniques that perform segmentation
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in the polar [6] or in the raw space. Statistical/Bayesian formulations [6], active shape
and appearance models [4, 1, 17], snakes and active contours [9], deformable models and
templates [8] and level set techniques [2, 11] are well established techniques considered
to address the segmentation of the left ventricle in echocardiographic images.

In this paper, we propose an active shape-inspired variational framework for fast,
reliable and automatic segmentation of the endocardium for ultrasonic images. Our
approach involves modelling, extraction of primitives, rough segmentation and border
detection. We consider two separate model spaces, one for the diastolic and one for the
systolic case. We recover the average shape and the modes of variations for each model
through a Principal Component Analysis using a set of registered training examples.

Extraction of important primitives (ventricular walls, valve plane) that are used to
initiate the segmentation process is the first step towards automatic 2D+time segmenta-
tion. Then, a linear combination of the two average models (systolic & diastolic) and the
parameters of a similarity transformation between this new model and the image are in-
crementally recovered through a robust minimization. One should note that such a model
space is dynamic. The parameters of this transformation are constrained to be smooth in
the temporal domain. Precise endocardium segmentation is determined through a linear
combination of the moments of variation that describe training sets, the systolic and the
diastolic one. Such combination is constrained over time.

The remainder of this paper is organized as follows. In the next section, we address
shape registration and modelling of the left ventricle. Global segmentation that involves
a global transformation between the model-space and the image is presented in section
3 while local refinements are considered in section 4. Discussion and perspectives are
addressed in section 5.

2 Modelling the Geometric Structure of the Endocardium

Building compact representations from a set of examples is a well studied problem in
imaging and vision. The selection of appropriate models to represent all examples of the
training set within a common pose is a critical component of such a process. Once such
selection has been established, one would like to align all training examples to the same
pose. Then modelling can then be performed using well known statistical techniques.

2.1 Global Registration, Mutual Information and Implicit Representations

Registration of shapes [15] is an open, interesting and challenging problem in imaging,
vision and in particular in medical image analysis. Such application is not within the
scope of the report, and therefore the prior art will be omitted and the adopted technique to
address the problem will be briefly presented. Overviews of shape and image registration
techniques are available at [10, 15]. Details on the considered approach to align the
training examples can be found at [7]. Modelling requires global registration between
the samples in the training set and establishment of local correspondences between
them. Let us assume that a set of ground truth that consist of n components is available
[s1, s2, ..., sn]. Global alignment is equivalent with finding parametric transformations
Ai between the training set examples and a target shape s such that
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i ∈ [1, ...n] : Ai(s) = si

where s is the common pose to be recovered. An emerging way to represent shapes is
through the use of implicit representations. Such approaches are quite popular when the
task involves tracking moving interfaces [11]. Inspired by the work proposed in [12] we
represent shapes using distance transforms and implicit representations;

φi(ω) =
{

0, ω ∈ si

d(ω, si), otherwise

where ω is the pixel location and d(ω, si) the minimum Euclidean distance between this
pixel and the shape si.

The selected representation is translation/rotation invariant. Scale variations can be
considered to be global illumination changes in the space of distance transforms. There-
fore, registration under scale variations is equivalent with matching different modalities
that refer to the same structure of interest. Mutual information [3, 16] is an invariant
technique according to a monotonic transformation of the two input random variables.
The use of such criterion to perform shape registration within the space of distance
transforms was proposed in [7]. Such criterion is based on the global characteristics of
the structures of interest. In order to facilitate the notation let us denote: (i) the source
representation φi as f , and (ii) the target representation φ as g.

In the most general case, registration is equivalent with recovering the parameters
Θ = (θ1, θ2, ..., θN ) of a parametric transformation A such that the mutual information
between fΩ = f(Ω) and gA

Ω = g
(
A(Θ;Ω)

)
is maximized for a given sample domain

Ω;
MI(XfΩ , XgA

Ω ) = H
[
XfΩ

]
+ H

[
XgA

Ω

]
− H

[
XfΩ ,gA

Ω

]
where H represents the differential entropy. Such quantity represents a measure of uncer-
tainty, variability or complexity and consists of three components: (i) the entropy of the
model, (ii) the entropy of the projection of the model given the transformation, and (iii)
the joint entropy between the model and the projection that encourages transformations
where f explains g. One can use the above criterion and an arbitrary transformation
(rigid, affine, homographic, quadratic) to perform global registration that is equivalent
with minimizing:

E(A(Θ)) = −MI(XfΩ , XgA
Ω ) = −

∫ ∫
R2
pfΩ ,gA

Ω (l1, l2)log
pfΩ ,gA

Ω (l1, l2)
pfΩ (l1)pgA

Ω (l2)
dl1dl2

where (i) pfΩ corresponds to the probability density in fΩ

(
[ΦD(Ω)]

)
, (ii) pgA

Ω cor-

responds to density in gA
Ω

(
[ΦS(A(Θ;Ω))]

)
, and (iii) pfΩ ,gA

Ω is the joint density.
Such framework can account for various global motion models. We consider similarity
registration between the training examples for the endocardium shapes.

Registration examples for the particular class of endocardium shapes are shown in
[Fig. (1)]. Once training examples have been aligned, one should address the problem of
recovering point(element)-wise correspondences. Such a deformation fieldL(Θ;x) can
be recovered either using standard optical flow constraints or through the use of warping
techniques like the free form deformations method [13], which is a popular approach in
graphics, animation and rendering [5].



134 N. Paragios et al.

Fig. 1. Global Registration on the Space of Implicit Representations Using Mutual Information

2.2 Local Registration, Free Form Deformations and Implicit Representations

The essence of FFD is to deform an object by manipulating a regular control lattice P
overlaid on its volumetric embedding space. Opposite to optical flow techniques, FFD
techniques support smoothness constraints, exhibit robustness to noise and are suitable
for modelling large and small non-rigid deformations. Furthermore, under certain con-
ditions, it can support a dense registration paradigm that is continuous and guarantees a
one-to-one mapping.

We consider an Incremental Cubic B-spline Free Form Deformation (FFD) to model
the local transformation L. To this end, dense registration is achieved by evolving a
control lattice P according to a deformation improvement [δP ]. The inference problem
is solved with respect to - the parameters of FFD - the control lattice coordinates.

Let us consider a regular lattice of control points

Pm,n = (P x
m,n, P

y
m,n); m = 1, ...,M, n = 1, ..., N

overlaid to a structure

Γc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }

in the embedding space that encloses the source structure. Let us denote the initial
configuration of the control lattice as P 0, and the deforming control lattice as P =
P 0+δP . Under these assumptions, the incremental FFD parameters are the deformations
of the control points in both directions (x, y);

Θ = {(δP x
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ] × [1, N ]
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Fig. 2. Local Registration on the Space of Implicit Representations Using Free Form Deformations

The motion of a pixel x = (x, y) given the deformation of the control lattice from P 0

to P , is defined in terms of a tensor product of Cubic B-spline:

L(Θ;x) = x + δL(Θ;x) =
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(P 0
i+k,j+l + δPi+k,j+l)

where i = � x
X ·M�+1, j = � y

Y ·(N�+1, u = x
XM−� x

X ·M� and v = y
Y N−� y

Y ·N�.
The terms of the deformation component refer to (i) δPi+l,j+l, (k, l) ∈ [0, 3]× [0, 3]

consists of the deformations of pixel x’s (sixteen) adjacent control points, (ii) δL(x) is
the incremental deformation at pixel x, and (iii) Bk(u) is the kth basis function of a
Cubic B-spline (Bl(v) is similarly defined).

Local registration now is equivalent with finding the best latticeP configuration such
that the overlaid structures coincide. Since structures correspond to distance transforms
of globally aligned shapes, the Sum of Squared Differences (SSD) can be considered as
the data-driven term to recover the deformation field L(Θ;x));

Edata(Θ) =
∫∫

Ω

(
ΦD̂(x) − ΦS(L(Θ;x))

)2
dx

The use of such technique to model the local deformation registration component
introduces in an implicit form some smoothness constraint that can deal with a limited
level of deformation. In order to further preserve the regularity of the recovered regis-
tration flow, one can consider an additional smoothness term on the deformation field
δL. We consider a computationally efficient smoothness term:

Esmoothness(Θ) =
∫∫

Ω

(∣∣∣∣
∣∣∣∣∂δL(Θ;x)

∂x

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣∂δL(Θ;x)

∂y

∣∣∣∣
∣∣∣∣
2
)
dx
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Such smoothness term is based on a classic error norm that has certain known limitations.
One can replace this smoothness component with more elaborated norms. Within the
proposed framework, an implicit smoothness constraint is also imposed by the Spline
FFD. Therefore there is not need for introducing complex and computationally expensive
regularization components.

The Data-driven term and the smoothness constraints term can now be integrated
to recover the local deformation component of the registration and solving the corre-
spondence problem: E(Θ) = Edata(Θ) + αEsmoothness(Θ), where α is the constant
balancing the contribution of the two terms. The calculus of variations and a gradient
descent method can be used to optimize such objective function [7]. The performance
of the proposed framework on the Systolic Left Ventricle dataset is demonstrated in
[Fig. (2)].

2.3 Composite Model Building

Let us assume that two sets of ground truth that consist ofn components are available, one
for the diastolic [d1,d2, ...,dn] and one for the systolic case [s1, s2, ..., sn]. Without loss
of generality, one can assume that the elements of each set consists of m points defined
on the Euclidean plane

(
di = (xi

1,x
i
2, ...,x

i
m)
)

and are registered to a common pose.
Principle Component Analysis (PCA) can be applied to capture the statistics of the

corresponding elements across the training examples. PCA refers to a linear transforma-
tion of variables that retains - for a given number o1, o2 of operators - the largest amount
of variation within the training data, according to:

d = d +
o1∑

k=1

λd
k (ud

k,v
d
k), s = s +

o2∑
k=1

λs
k (us

k,v
s
k)

where d (resp. s) is the mean diastolic shape, o1 (resp. o2) is the number of retained
modes of variation, (ud

k,v
d
k) (resp. (us

k,v
s
k)) are these modes (eigenvectors), and λd

j

(resp. λs
j) are linear factors within the allowable range defined by the eigenvalues.

Once average models for the systolic and diastolic cases are considered, one can
further assume that these models are registered, therefore there is an one-to-one corre-
spondence between the points that define these shapes. Let

(
d = (xd

1,x
d
2, ...,x

d
m)
)

be
the diastolic average model and (s = (xs

1,x
s
2, ...,x

s
m)) the systolic one. Then one can

define a linear space of shapes as follows:

c(α) = α s + (1 − α) d, 0 ≤ α ≤ 1

One then can define a linear space of deformations that can account for the systolic, the
diastolic frame as well as the frames in between:

c(α, λd
k, λ

d
s) = c(α) +

o1∑
k=1

λd
k (ud

k,v
d
k) +

o2∑
k=1

λs
k (us

k,v
s
k)

The most critical issue to be addressed within this process is the registration of the
training examples as well as the registration of the systolic and diastolic average shapes.
The approach proposed in [7] that performs registration in the implicit space of distance
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functions using a combination between mutual information criterion and a free-form
deformation principle is used. Such an approach can provide one-to-one correspondences
between shapes for any given number of sampling elements. The resulting composite
model is of limited complexity, can account for the systolic and the diastolic form of the
endocardium as well as for the frames between the two extrema.

2.4 Composite Active Shape Models

Active shapes assume an average model, a certain number of modes of variation and the
existence of corresponding image features. Without loss of generality one can assume
that for each point j on the model space c(α, λd

k, λ
d
s) the corresponding image point has

been recovered yj . Then, the objective is to recover a set of parameters that will move
each point in the model space cj to the corresponding location in the image space yj .
Such a task is performed in two stages where first a global transformation T between
the model and the image is recovered that minimizes:

Edata(α, T ) =
m∑

j=0

ρ (||T (cj(α)) − yj ||)

according to some metric function ρ where T is a global transformation, similarity in
our case

T (x, y) =
[

a b
−b a

] [
x
y

]
+
[
c
d

]
that consists of a translation, a rotation and a scaling component andα defines the model
space. The selection of the transformation should be consistent with the one adopted
during the learning stage. It is important to point out that the model is not static since
refers to a linear combination of the systolic and the diastolic model. Therefore, the
process aims to recover simultaneously the combination of these two models that better
accounts for the shape of the true data points and the optimal transformation between
the model and the image space.

One can recover these parameters through an incremental update of the transforma-
tion. The corresponding location of the model points in the image plane could be used to
improve the segmentation be seeking an incremental update on the transformation T (; )
such that the projection of the cj moves closer to its true position yj in the image.

3 Rough Segmentation of the Endocardium

The left ventricle is bounded on each side by the walls which tend to appear brighter
in the ultrasound clip due to the various reflections from the tissue. In apical (both 2
chamber and 4 chamber views), the left ventricle is bounded on the bottom side by the
mitral valve which connects it to the left atrium. The mitral valve is constantly moving
(opening and closing) and its reflections are well recovered by the acquisition process.

We consider two parabolic equations to recover a rough approximation/detection of
these walls which are the areas with the highest brightness. The parabola model the walls
of the left ventricle but also outline the left atrium. The next step is to extract and track
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the position of the mitral valve that separates the left ventricle and the left atrium. The
approach relies on the observation that if the valve is closed, the two heart chambers
are clearly separated while if the valve is open, the two chambers are connected. Two
ellipses are used to model the ventricle and the atrium and the plane that best separates
these ellipses and is consistent over time is considered to be the valve plane.

3.1 Recovering Correspondences

The most critical part within the presented framework is solving the correspondence
problem, between the actual projection of the model and the optimal position. Such
task within the active shape model is solved using a normalized intensity profile in the
normal direction. We consider a probabilistic formulation of the problem. One would
like to recover a density pborder(; ) that can provide the probability of a given pixel ω
being at the boundaries of the endocardium. Within the considered framework, one can
constrain the search in the direction normal to the model projection. The ventricular area
consists of blood pool and heart walls. Endocardium border detection is equivalent with
finding the boundaries between these two classes.

A description on the statistical properties of the blood pool as well as cardiac wall
can be recovered. Let pwall(; ) being the probability of a given intensity being part of the
endocardium walls and pblood(; ) the density the describes the visual properties of the
blood pool. Then or correspondences between the model and the image are meaningful
in places where there is a transition (wall to blood pool) between the two classes. Given
a local partition one can define a transition probability between these two classes. Such
partition consists of two line segments [L(T (xj)),R(T (xj))] that live in the normal
direction [T (Nj)] of the model curve at element T (xj). The origins of these line seg-
ments is the point of interest T (xj), the have the same slope and opposite directions.
One can assume that this point is a projection of the model point xj :

pborder(T (xj)) = p ([wall|ω ∈ L(T (xj))] ∩ [blood|ω ∈ R(T (xj))])

These conditions can be considered independent, leading to the following form for the
border density:

pborder(T (xj)) = p (wall|ω ∈ L(T (xj))) p (blood|ω ∈ R(T (xj)))
=
∏

ω∈L pwall(I(ω))
∏

ω∈R pblood(I(ω))

One can evaluate this probability under the condition that the blood pool and wall density
functions are known. The use of -log function can be considered to overcome numerical
constraints, that is equivalent with finding the minimum of:

E(φ) =
∑

ω∈L(φ)

λ|I(ω)| +
∑

ω∈R(φ)

(I(ω) − µ)2

2σ2

after dropping out the constant terms where blood pool is modelled using an exponential
distribution (λ) and tissue/walls using a Gaussian distribution (µ, σ). Thus, the most
probable correspondence is recovered through the evaluation ofE(φ) where φ is a point
in the line defined by the projected normal. The search space for φ is considered to be
all image locations respecting two conditions; (i) live in the normal T (Nj), and (ii)
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their distance from the current projection T (cj(α)) is within a given search window.
Once such correspondences were established the mechanism presented in [Sec. 2.4] is
considered to determine the optimal solution through the estimation of the parameters
of the transformation (αt, Tt).

3.2 Constraints on the Motion and the Position of the End-Valve Points

The motion of the valve plane is very critical to the operation of the endocardium. Such
motion is consistent over time, and quite often exhibits a symmetric form. Without loss
of generality, one can assume that the first c0(α) and the last point cm(α) of the model
correspond to the valve end points. The displacement of these points from one frame to
the next can be recovered in an implicit form.

Let (αt−1, Tt−1) be the model and its transformation to the image plane towards the
desired image features in the previous frame. Then, given some estimates on the current
solution (αt, Tt) one can constrain the implicit motion of the valve points as follows:

Evalve motion(αt, Tt) =

ψ (|Tt−1(c0(αt−1)) − Tt(c0(αt))|) + ψ (|Tt−1(cm(αt−1)) − Tt(cm(αt))|)

where ψ is an error metric - the Euclidean in our case - Tt−1(cm(αt−1)) is the position
of the valve point at frame t − 1, Tt(cm(αt)) the corresponding projection at frame t
and Tt−1(cm(αt−1)) − Tt(cm(αt)) the displacement of this point from one frame to
the next. Such term will constrain the motion of the valve plane to be smooth over time.

Such a term accounts for the relative motion of the valve points but not for their actual
position. To this end, one can introduce constraints forcing the model projections of the
valve points to be close to the valve-plane earlier recovered (αvalve x + βvalve y +
γvalve = 0). The distance between the current positions of the model valve points
(c0(α), cm(α)) and their projections to the valve-plane (p0(t),pm(t)) is a term to
be minimized;

Evalve projection(αt, Tt) = ψ (|p0(t) − Tt(c0(αt))|) + ψ (|pm(t) − Tt(cm(αt))|)

One can consider a step further by recovering the exact position of the valve points
in the image and then use these positions during the segmentation process. To this end,
a model is built on the image profile for the left and the right end-valve points using
an image patch cantered at the ground truth position of the valve. Then, these patches
are normalized and an average model is recovered. Standard matching techniques are
considered within a search area in the vicinity of the projected valve position to recover
the most prominent valve points.

3.3 Smoothness Constraints on the Transformation Parameters

The motion of the ventricle also should fulfil certain constraints. It has to be periodic,
exhibit a shrinking between the diastolic and the systolic frame and an expansion for the
last part of the cardiac cycle. Such conditions can be imposed in various forms. Direct
motion constraints (like the one earlier considered) focus on the distance of a model point
in two consecutive frames. Such constraints though do not encode the continuity of the
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model. We consider an implicit form, where continuity is imposed on the parameters of
the model (α(t)) and the transformation (T (t));

Esmoothness(αt, Tt) =
τ∑

k=−τ

⎛
⎝ω (|α(t) − α(t+ k)|) + w

∑
p∈T

ω (|p(t) − p(t+ k)|)

⎞
⎠

where p ∈ T is the set of the similarity transformation parameters (a, b, c, d), ω a
monotonically decreasing function and [−τ, τ ] is the interval where continuity on the
rough segmentation parameters is imposed. Such a term will keep distance small between
the registration parameters from the model space to the image within a couple of frames
that is equivalent with constraining the motion of the endocardium from one frame to
the next.

The objective function is minimized using a two-stage robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the transformation
parameters leads to a 4 × 4 linear system that has a closed form solution. Once such
an estimate is available, the optimal model space α is recovered through an exhaustive
search within the [0, 1] integral according to some quantization step.

4 Refine Segmentation

Once, appropriate models and similarity transformations were recovered for all frames of
the cardiac clip, the next step is precise extraction of the endocardium walls. Such a task
is equivalent with finding a linear combination of the modes of variation that deforms
globally the model projection towards the desired image features. The space of variations
consists of the diastolic and the systolic models. Opposite to the rough segmentation case
where the scale of the model is fixed, the need of a blending parameter does not exist
between systolic and diastolic models of variation is not present. Under the assumption
of existing correspondences yj and the global transformation (α, T ) for a given frame
t - that is omitted from the notation -, these linear coefficients are recovered through:

Edata(λd
0, ..., λ

s
0, ...) =

m∑
j=0

ρ (||T (cj(α))+
o1∑

k=1

λd
k (ud

k,v
d
k)+

o2∑
k=1

λs
k (us

k,v
s
k)−yj ||)

Similar to the case of global transformation, one can assume now that the form of the
ventricle changes gradually during the cardiac cycle. The geometry of the recovered
solution is determined according to the set of coefficients (λd

0, ..., λ
s
0, ...). Therefore,

imposing constraints of smoothing deformation from one frame-to-the next is equivalent
with seeking the lowest potential of

Esmoothness(λd
0, ..., λ

s
0, ...) =

τ∑
k=−τ

(
o1∑

l=1

ω(λd
l (t) − λd

l (t+ k)) +
o2∑

l=1

ω(λs
l (t) − λs

l (t+ k))

)

Last, but not least additional constraints using the position of the valve points could be
considered, that aims at moving the projections of the model valve points to the their
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Fig. 3. Endocardium Segmentation for Apical Views for the diastolic frame and the systolic frame

true positions. The objective function is minimized using a robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the unknown vari-
ables (λd

0, ..., λ
s
0, ...) leads to a [o1 + o2]× [o1 + o2] linear system that has a closed form

solution. Such step is repeated until convergence.

5 Conclusions

In this paper we have proposed a composite time-consistent 2D+time active shape model
for the segmentation of the left ventricle in echocardiography. The approach exhibits
certain novel elements, notably in the modelling and the segmentation phase.

Validation of the method was performed using a representative set of fifty patients
for 2 and 4 champers views [Fig. 3] where the output of the proposed technique is
superimposed to the ground truth. The objective was precise delineation of the ventricle,
a much harder task than estimation of the ejection fraction. 50% of the time sonographers
have accepted the result as it was while for the 25% of the remaining validation set, minor
adjustments, notably in the valve position were sufficient to make the solution, same as
the one pointed out from the clinical experts.
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Future directions of our method involve epicardium segmentation and tracking. Such
an objective is a natural extension that will improve results and the diagnostic power of
the method since one could derive volume curves, EF radial strain, etc.
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