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Abstract. This paper presents a comprehensive characterization of a multi-cluster
supercomputelﬁ workload using twelve-month scientific research traces. Metrics
that we characterize include system utilization, job arrival rate and interarrival
time, job cancellation rate, job size (degree of parallelism), job runtime, memory
usage, and user/group behavior. Correlations between metrics (job runtime and
memory usage, requested and actual runtime, etc) are identified and extensively
studied. Differences with previously reported workloads are recognized and sta-
tistical distributions are fitted for generating synthetic workloads with the same
characteristics. This study provides a realistic basis for experiments in resource
management and evaluations of different scheduling strategies in a multi-cluster
research environment.

1 Introduction

Workload characterization of parallel supercomputers is important to understand the
system performance and develop workload models for evaluating different system de-
signs and scheduling strategies [[T[2]. During the past several years, lots of workload
data has been collected [3], analyzed [4/5l6], and modeled [7/8]9]. Benchmarks and
standards are also proposed for job scheduling on parallel computers [T0].

In previously studied workloads [4516]7]], some characteristics are similar. For ex-
ample, most of the workloads are collected from large custom-made production fa-
cilities (IBM SP2, SGI Origin, etc) in supercomputing centers. Jobs typically request
“power-of-two” number of processors and have different arrival patterns in different pe-
riods (e.g. peak and none-peak hours in a daily cycle). Some characteristics, such as job
attribute distributions and correlations, vary across different workloads [4/S/TT]]. Other
characteristics are studied and reported separately, such as job cancellation rate [9] and
conditional distributions (e.g. actual runtime distributions conditioned on requested run-
time [4]]). In this paper we compare our workload with previous reported ones on a per
characteristics basis.

? Distributed ASCI Supercomputer-2 (DAS-2). ASCI stands for Advanced School for Comput-
ing and Imaging in the Netherlands.
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This paper presents a comprehensive workload characterization of the DAS-2
supercomputer. The DAS-2 system is interesting in that it is built using the popular
COTS (Commodity Off The Shelf) components (e.g. Intel Pentium processors and Eth-
ernet networks) and consists of multiple distributed clusters serving the participating
universities. Not like other production machines, DAS-2 is dedicated to parallel and
distributed computing research thus has much lower system utilization. We analyze
twelve-month workloads on DAS-2 clusters in year 2003. Characteristics include sys-
tem utilization, job arrival rate and interarrival time, job cancellation rate, job size (de-
gree of parallelism), job runtime, memory usage, and user/group behavior. Correlations
between metrics are also identified and studied.

The contributions of this paper reside in the following. Firstly, our study is based on
cluster workloads. Cluster computing is a popular alternative in the HPC community
and to our knowledge, not much work has been done in characterizing cluster work-
loads. Secondly, the system we study is a research facility. This provides an interesting
comparison point to the well studied production workloads. Thirdly, we present a com-
prehensive characterization of the DAS-2 workloads. We not only analyze most of the
metrics appeared in previous work, but also extensively study the correlations between
different characteristics. Moreover, we fit the observed data with statistical distribu-
tions to facilitate synthetic workload generation. This research serves as a realistic basis
in modeling cluster workloads, which contributes as input for evaluations of different
scheduling strategies in a multi-cluster research environment [13]].

The rest of the paper is organized as follows. Section [2] provides an overview of
the DAS-2 system and workload traces used in our study. Section[3 analyzes the over-
all system utilization. Section [ describes the job arrival characteristics, including job
arrival rate, job interarrival time and job cancellation rate. Distributions are fitted for
job interarrival times and job cancellation lags. Section B]describes job execution char-
acteristics. This includes job size, job actual runtime, memory usage, and correlations
between them. Distributions and/or conditional distributions are also provided. Sec-
tion [6] describes user/group behavior and its implications in modeling and predictions.
In section[7] conclusions are presented and future work is discussed.

2 The DAS-2 Supercomputer and Workload Traces

The DAS-2 supercomputer consists of five clusters located at five Dutch universities and
is primarily used for computing and scientific research. The largest cluster (Vrije Uni-

Cluster Location #CPUs  Period #Job entries
fsO Vrije Univ. (VU) 144 01-12/2003 219618

fsl Leiden Univ. 64 01-12/2003 39356

fs2 Univ. of A’dam (UvA) 64 01-12/2003 65382

fs3 Delft Univ. of Tech. 64 01-12/2003 66112

fs4 Utrecht Univ. 64 02-12/2003 32953

Table 1. DAS-2 clusters and workload traces.
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Fig. 1. System utilization of DAS-2 clusters. “Average” stands for the average utilization
of all days in the year. “Average*” stands for the average utilization of all active days in
the year, excluding system downtime and days without job arrivals.

versiteit) contains 72 nodes and the other four clusters have 32 nodes each. Every node
contains two 1GHz Pentium III processors, IGB RAM and 20GB local storage. The
clusters are interconnected by the Dutch university internet backbone and the nodes
within a local cluster are connected by high speed Myrinet as well as Fast Ethernet
LANSs. All clusters use openPBS [[14] as local batch system. Maui [[15] (FCFS with
backfilling) is used as the local scheduler. Jobs that require multi-clusters can be sub-
mitted using toolkits such as Globus [16]. DAS-2 runs RedHat Linux as the operating
system.

We use job traces recorded in the PBS accounting logs for twelve months in year
2003 on the five clusterdd. All jobs in the traces are rigid (jobs that do not change
parallelism at runtime) batch jobs. An overview of the DAS-2 system and workload
traces is provided in Table[Il As we can see, fsO (VU) is the most active cluster, with
more than two hundred thousand job entries. Next we have clusters at UvA (fs2) and
Delft (fs3), each with more than sixty thousand entries. Leiden (fs1) and Utrecht (fs4)
are relatively less active among the DAS-2 clusters. Next section gives a more detailed
analysis on the overall system utilization.

3 System Utilization

Figure [1] shows the DAS-2 system utilization as function of time of day. Two plots are
shown for each cluster. One is average utilization of all days and the other is average uti-

* Logs of January on fs4 are not available.
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Fig. 2. Daily cycle of job arrivals during weekdays on DAS-2 clusters.

lization of all active days in the year (excluding system down time and days without job
arrivalsﬁ). In average, fsO has the highest (22%) and fs3 has the lowest system utilization
(7.3%) among DAS-2 clusters. The utilization (7.3% to 22%) is substantially lower than
previously reported workloads (e.g. 50% in average excluding downtime [S]). This is
because DAS-2 system is designed for scientific research and production jobs are pre-
cluded from it. The goal of DAS-2 is not on high utilization, but rather on provide
fast response time and more available processors for university researchers. Moreover,
DAS-2 schedulers define one special policy, which forbids jobs to be scheduled on
nodes (SMP dual processor) of which one processor is already used by another job.
This policy also has certain negative impact on the overall system utilization.

We can see that the utilization approximately follows the daily job arrival rate (see
Figure[2), although the differences between day and night are generally smaller. It is be-
cause nightly jobs often require more processors and run longer than daily jobs, despite
substantially fewer job arrivals. This is particularly evident on cluster fs3 and fs4.

4 Job Arrival Characteristics

In this section we analyze the job arrival characteristics. We first describe the job arrival
rate, focusing mainly on daily cycles. Daily peak and non-peak hours are identified.
Secondly, we characterize the job interarrival times during daily peak hours. Several
statistical distributions are examined to fit the job interarrival times. Finally, job cancel-

> Since we calculate the system utilization based on traces, we could not distinguish whether it
is system down time or time without job arrivals.
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Cluster Period M (s) CV  Best Fitted distribution KS
fs0 2003/12/02 17 1.6 gamma (a =0.44,b=39) 0.10
fs1 2003/11/25 26 24 gamma (a =0.30, b= 86) 0.13

fs2 2003/12/29 14 1.3 hyperexp2 (c1=0.92, A1=0.07, ¢2=0.08, A2=100)  0.07
fs3 2003/05/26 10 1.8  hyperexp2 (c1=0.55, A1=0.06, ¢2=0.45, \2=0.42) 0.10
fs4 2003/08/13 62 3.0  hyperexp2 (c1=0.09, A1=0.003, 2=0.91, A\2=0.03) 0.10

Table 2. High load distributions of job interarrival time during daily peak hours (M -
Mean, CV - Coefficient of Variation, KS - maximal distance between the cumulative
distribution function of the theoretical distribution and the sample’s empirical distribu-
tion).

Cluster Period M (s) CV  Best Fitted distribution KS

fsO Dec 27 45  hyperexp2 (c1=0.04, A1=0.003, ¢2=0.96, A2=0.06) 0.15
fs1 Aug, Dec 66 3.6 Weibull (a=22.6,b=0.44) 0.10
fs2 Dec 44 5.0 Weibull (a=26.1,b=0.58) 0.08
fs3 May, Dec 23 6.0 Weibull (a=11.6,b=0.53) 0.14
fs4 Aug, Nov 8 5.1 Weibull (a=33.2,b=0.5) 0.09

Table 3. Representative distributions of job interarrival time during daily peak hours
(M - Mean, CV - Coefficient of Variation, KS - maximal distance between the cumu-
lative distribution function of the theoretical distribution and the sample’s empirical
distribution).

lation rate and cancellation lags are analyzed and modeled, since it may also affect the
scheduling process.

4.1 Job Arrival Rate

As is studied in [7], job arrivals are expected to have cycles at three levels: daily, weekly,
and yearly. In a yearly cycle, we find that workloads are not distributed evenly through-
out the year. Instead, workloads concentrate on specific months and job entries in these
months are around two or more times above average. We call them “job-intensive”
months (October, November and December on fsO, August, November on fs1, Novem-
ber, December on fs2, May, December on fs3, and August, November on fs4). This
is because of the different active users/groups on different clusters and they are active
in specific periods during the year (see Section[@)). In a weekly cycle, all clusters share
similar characteristics. Wednesday has the highest average job arrival rate and decreases
alongside, with Sunday and Saturday have the lowest arrival rate. This is natural since
people generally work more during weekdays (Monday - Friday) than weekends (Sat-
urday and Sunday).

The most important cycle is the daily cycle. As is shown in Figure 2| clusters share
similar daily workload distributions during weekdays. We identify the daily peak hours
as from 9am to 7pm on all five clusters. This is in accordance with normal “work-
ing hours” at Dutch universities. Similar job arrival distributions are reported on other
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Fig. 3. Fitting distributions of interarrival time during peak hours on fs0.

workloads with different peak hour periods (e.g. 8am to 6pm in [4], 8am to 7pm in [7]).
Additionally, an intermediate period is reported from 6pm to 11pm in [4]. We observed
similar characteristics on DAS-2 clusters, with an intermediate arrival period from 8pm
to lam and a low arrival period from lam to 8am. The arrival rate per hour can be di-
vided into three scales. The fsO cluster has the highest one, with an average arrival rate
of 108 jobs per hour and peak arrival rate exceeding 200 jobs per hour. In the middle
there are fs2 and fs3, with average arrival rates of 31 and 32 jobs per hour each. Clusters
fs1 and fs4 have average arrival rates of 19 and 15 jobs per hour, respectively.

4.2 Job Interarrival Time

Based on the observed job interarrival patterns, we choose to characterize “representa-
tive” and “high load” period of job interarrival times. The representative period is de-
fined as the peak hours during weekdays in job-intensive months. The high load period
is the peak hours of the most heavily loaded days in the year. As is shown in Table 2
during high load period the mean ranges from 14 to 62 seconds and the coefficient of
variation (CV) varies from 1.3 to 3.0 on DAS-2 clusters. The mean and CV are consid-
erably larger in the representative period (see Table [3). Both small (1-2) and large CVs
(3-6) have been reported in other workloads [416].

We have selected several statistical models to fit the interarrival times of represen-
tative and high load period, including hyperexponential, gamma, Weibull, and heavy-
tailed distributions like lognormal and Pareto [17]. We fit the above mentioned distribu-
tions (except hyperexponential) using Maximum Likelihood Estimation (MLE) method,
and a two-phase hyperexponential distribution using Expectation Maximization (EM)
algorithnﬂ [18]. The goodness of fit is assessed using the Kolmogorov-Smirnov test.

¢ Matlab [19] and Dataplot [20] are used to calculate means, CVs, do MLE fitting and goodness
of fit test. EMpht is used to fit the hyperexponential distribution.
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Fig. 4. Fitting distributions of interarrival time during peak hours on fs1.

Results of distribution fitting are shown in Table 2] and 3l Figure Bl and [ further
illustrate how well the different distributions fit the trace data on fsO and fs1. Generally
speaking, none of the chosen distributions pass the goodness of fit test. Some distri-
butions, such as gamma and hyperexponential, fit the head of the sample distribution
well but fail to fit the tail. Others like lognormal and Pareto, fit the tail but not the head.
It seems not likely to find a model that fits all parts of the empirical distribution well.
However, we provide the best fitted distributions for high load and representative period
on DAS-2 clusters. For the high load period (see Table 2), gamma and two-phase hy-
perexponential give the best results among the distributions. One is slightly better than
the other depending on the clusters. For the representative period where longer tails
and larger CV are observed, Weibull distribution has the best Kolmogorov-Smirnov
test results. The only exception occurs on fsO, where a two-phase hyperexponential dis-
tribution fits the sample tail better than Weibull. Parameters of fitted distributions are
provided in Table 2] and[3]

4.3 Cancelled Jobs

Cancelled jobs may also affect the scheduling process and should be taken into account
during workload modeling. In [9], reported job cancellation rates range from 12% to
23% and cancelled jobs are modeled separately. On DAS-2 clusters, as is shown in
Table [ lower cancellation rate are observed. The average percentage of cancelled jobs
are 6.8 % (range from 3.3% on fs3 to 10.6% on fs0).

The cancellation lag (CL) is defined as the time between job arrival and cancella-
tion. On DAS-2 clusters, the average cancellation lag is 6429 seconds (Table ). Plots
of cancellation lag distributions (CDF) on a log scale are shown in Figure 8 (a). In [9],
log-uniform distribution is used to fit the cancellation lag. We examined three distribu-
tions (two-phase hyperexponential, lognormal and weibull). Figure 3l (b) illustrates the
fitting results on fs0. In general, lognormal provides the best fit for the observed data.
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Fig. 5. Distributions of cancellation lags on DAS-2 clusters.

However, only on fs4 it passes the goodness of fit test. Fitted lognormal parameters are

provided in Table 4l

cluster job cancelled (%) M (s) CV lognormal parameters KS

fsO 10.6 3528 8.7 u=47,0=20 0.06
fs1 7.7 4749 6.4 n=44,0=20 0.16
fs2 3.6 13480 6.6 n=50,0=2.1 0.14
fs3 33 3931 6.5 nu=40,0=23 0.09
fs4 8.6 6458 6.3 nw=580=21 0.02
Average 6.8 6429 6.9 pn=48,0=21 0.09

Table 4. Job cancellation rates and cancellation lags (CL) on DAS-2 clusters (M - CL
Mean, CV - CL Coefficient of Variation, KS - maximal distance between the cumu-
lative distribution function of the theoretical distribution and the sample’s empirical
distribution).

5 Job Execution Characteristics

In this section we describe the job execution characteristics. Firstly we characterize
job size (number of processors requested), job actual runtime, and memory usage. Sec-
ondly the correlations between these metrics are extensively studied and conditional
distributions are defined for the job actual runtime.
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Fig. 6. Distributions of job sizes on DAS-2 clusters.

5.1 Job Size

Table[3] shows the job size characteristics on DAS-2 clusters. The “power-of-two” phe-
nomenon (78.8% in average) is clearly observed, as is found in many other work-
loads [4I79I11]]. However, the “power-of-two” sizes on cluster fs0, fsl, and fs2 are
not as dominant as on fs3 and fs4. Instead, some multiple-2 sizes also contribute to a
significant portion of the total number of jobs (e.g. 6 and 14 processors on fs1, shown
in Figure[6](a)). The fractions of serial (0.9-4.7%) and odd numbers (1% in average) are
significantly lower compared to previously reported workloads (30-40%). One possible
explanation could be the special policy mentioned in Section[3, which forbids jobs to
be scheduled on nodes (SMP dual processor) with one processor busy. Researchers are
not encouraged to submit multi-processor jobs with odd numbers.

As we all noticed in Table [3] job size of two processors is surprisingly popular on
DAS-2 clusters and it is chosen by a major fraction of jobs (range from 39.6% on fs2
to 85.3% on fs4). To find a proper explanation for this phenomenon, we analyze the
internal structure of the workloads. On fs0, for instance, there are ten very active users
(out of 130 users in total). The most active user submitted more than 40,000 jobs (18%
of the total number of jobs on fsO) in consecutive seven weeks during October and
November 2003, which is his/her only active period throughout the year. All of these
jobs have the same name and request two processors. For the second most active user on
fs0, around 90% of his/her jobs have job sizes of two. On other DAS-2 clusters similar
user behavior are observed, resulting in the popularity of job size two and power-of-two.
We discuss more on user behavior and its impacts on workload modeling in Section

In [[7], the best results for fitting job sizes are obtained by gamma and two-stage uni-
form distributions. On DAS-2 clusters, we find that two-stage loguniform distribution
provides the best fit for job sizes. Plots of the job size distributions on a log scale are
shown in Figure[@l(b).



Workload Characteristics of a Multi-cluster Supercomputer 185

1
0.8
A A 06
> >
& 5 0.4
— fsO .
© — - fs1 © — fs0 trace
. fs2 0.2 — — Weibull
fs3 ’ - lognormal
 fs4 - — - gamma
0 —2 : 0 2 4 6 0 —é - 0 2 4 6
10 10 10 10 10 10 10 10 10 10
job actual runtime t (seconds) job actual runtime t (seconds)
(a) CDFs of job actual runtime (b) Fitting distributions of job actual
on DAS-2 clusters runtime on fsO
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5.2 Job Actual Runtime

Job actual runtime has been extensively studied in previous reported workloads. Table
shows the characteristics of job actual runtimes on DAS-2 clusters. The actual runtimes
range from 374 to 2427 seconds, which is lower then previously reported workloads
(e.g. 3479 seconds on SDSC SP2 [6]). However, the CV (5.3 - 16) is substantially
higher than other production systems (2 - 5) [4I5l6]. This is in accordance with the
scientific and experimental nature of the DAS-2 usage: the majority of jobs have small
execution times and they vary a lot. Plots of the actual runtime distributions on a log
scale are shown in Figure 7] (a).

Different kinds of distributions have been used to model the actual runtime, for in-
stance, loguniform in [22]], hypergamma in [[7] and Weibull in [4]. We evaluate gamma,
lognormal and Weibull distributions for actual runtimes on DAS-2 clusters. Figure [7]
(b) shows the distribution fitting on fs0. Weibull and lognormal have similar goodness
of fit test results, and they both fit better than gamma. Lognormal is a better model for
samples that have a lower head and a longer tail (fs2, fs3, and fs4, see Figure [1 (a)).
Parameters of fitted distributions are listed in Table

cluster serial(%) two(%) power-of-two(%) others(%) odd (except serial) (%)
fsO 2.8 59.4 78.1 19.1 4.2

fs1 24 42.8 60.5 37.1 0.2

fs2 4.7 39.6 61.9 334 0.4

fs3 1.4 73.6 96.1 2.5 0.03

fs4 0.9 85.3 97.6 1.5 0.05

average 24 60.1 78.8 18.7 1.0

Table 5. Job size characteristics on DAS-2 clusters.



186 Hui Li, David Groep, and Lex Wolters

cluster mean (s) CV fitted distributions KS

fs0 374 53 Weibull (a = 121.7, b = 0.46) 0.08
fs1 648 7.9 Weibull (a = 142.2, b = 0.45) 0.12
fs2 531 16 lognormal (1 =4.2, 0 = 1.8) 0.22
fs3 466 12 lognormal (1 =3.7,0 =1.7) 0.12
fs4 2427 6.4 lognormal (. =5.3, 0 =2.5) 0.13

Table 6. Job actual runtimes on DAS-2 clusters.

5.3 Memory Usage

The PBS [[14]] accounting logs record the maximum amount of physical memory used
by the job. Hereafter we refer to memory usage as the maximum used physical memory.
Memory usage per processor is defined as the maximum used memory divided by the
number of processors requested.

cluster OKB (%) 324KB (%) 2600-3000KB (%)
fsO 32 19 34
fs1 29 20 16
fs2 25 18 21
fs3 40 17 34
fs4 24 6 62
Average 30 16 33

Table 7. Three special memory usage values and their corresponding job percentages.

Figure[8](a) shows the distributions of memory usage on DAS-2 clusters. It is clearly
observed that three special values are chosen by a major fraction of jobs. These special
values are OKB, 324KB and 2600-3000KB (slightly different values in this range de-
pending on the clusters), and their corresponding job percentages are listed in Table[7l
We can see that a large fraction (30% in average) of jobs have very small memory
usageﬁ. 324KB and 2600-3000KB, on the other hand, contributes nearly one-sixth and
one-third (in average) to the total number of jobs, respectively. The reason why memory
usage concentrates on these special values might be that jobs typically have to load cer-
tain shared libraries (e.g. C, MPI, Globus), and these shared libraries normally require
a fixed amount of memory. To verify this claim, we run MPI jobs (fractal computation)
with different requested number of processors (4, 8, 16 and 32) on DAS-2 clusters. We
found that memory usage for these jobs is almost the same (324KB, for job size 4, 8 and
16). The exception occurs for job size 32, of which memory usage jumps to 52,620KB.
Other MPI programs also appears to use memory size of 324KB. Therefore, we might

7 OKB is recorded in the PBS accounting logs. It means that the job uses very small memory
(rounded to zero) instead of saying that the job does not use memory at all.
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cluster |memory ver-\memory/proc |actual runtime|actual runtime|actual versus re-
sus job size |versus job size |versus job size |versus memory |quested runtime

fsO 0.34 -0.02 0.01 0.72 0.44

fs1 0.59 0.22 0.27 0.71 0.61

fs2 0.64 0.13 0.46 0.68 0.45

fs3 0.25 0.08 -0.25 0.54 0.02

fs4 0.13 -0.08 -0.21 0.51 0.62

Table 8. Spearman’s rank correlation coefficients between job execution characteristics.

say that jobs which use 324KB memory most likely have to load certain libraries like
MPI. Memory usage of 2600-3000KB could be other shared libraries or objects.

Distributions of memory usage per processor on a log scale are shown in Figure
(b). As we can see, most of the jobs uses less than 10MB memory per processor (only
2% of the available amount). Correlations between memory usage and job sizes are
discussed in next section.

5.4 Correlations Between Job Execution Characteristics

A simple way to check the correlations between job execution characteristics is to cal-
culate the Pearson’s R correlation coefficients between these variables. However, Pear-
son’s R is very weak and misleading in our case since the variables we study are not
normally distributed. Instead, we use Spearman’s rank correlation coefficients to as-
sess the relationship between job execution characteristics, as it makes no assumptions
about the variable’s distributions. Correlations that we studied are: memory usage ver-
sus job size, memory usage per processor versus job size, actual runtime versus job size,
memory usage, and requested runtime. Spearman’s r coefficients are listed in Table [
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Fig. 9. CDF of requested runtime and conditional distributions of actual job runtime on
fs0.

Firstly we examine the correlations between memory usage and job size. The Spear-
man’s r coefficients show positive correlations. This indicates that larger size jobs (using
more processors) tend to use more memory than smaller jobs. Similar characteristics are
reported in [23]]. Correlations between memory usage per processor and job size have
two folds on DAS-2 clusters. On fs1-3 small positive correlations are observed, while
on fsO and fs4, weak inverse correlations are shown. We would expect that memory
usage per processor would increase as the job size increases. However, as is discussed
in Section[53] memory usage is concentrated on special values. Following the same ex-
ample in Section[5.3, MPI programs with different job sizes (e.g. 4, 8, 16) use the same
amount of memory (324KB). This will result an inverse correlation between memory
usage per processor and job size. As the job size increases to a certain extent (e.g. 32),
the maximum used memory jumps to another level (e.g. 52,620KB). Correspondingly
the memory usage per processor grows rapidly and exceeds those of smaller job sizes.
This explains why the correlations between memory usage per processor and job size
are weak and two-fold.

Correlations between job actual runtime and other characteristics (e.g. job size, re-
quested runtime, etc) are also extensively studied in previous workloads [4]7l9]. For
job runtime and size, small positive correlation coefficients are reported in [7], meaning
that in general larger jobs runs longer than smaller jobs. On DAS-2 clusters, however,
both positive and negative correlations are observed and it is hard to said in general
how the actual runtime is related with size. The correlations between actual and re-
quested runtime appear to be strong (except fs3). Naturally jobs with larger requested
runtimes generally run longer. This is clearly observed in Figure[0l which illustrates the
requested and actual runtime distributions on fs0. In Figure [0l (a), we can see that re-
quested runtimes can be divided into three ranges and each range contains a significant
portion of jobs. Actual runtime distributions conditioned on these ranges are shown in
Figure Bl (b). Jobs with larger requested runtimes run longer is evident by the fact that
their CDFs are below those of jobs with smaller requested runtimes.
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Fig. 10. CDF of memory usage and conditional distributions of actual job runtime on
fs0.

The most significant correlation is obtained between actual runtime and memory
usage. This is also illustrated in Figure However, as our observed memory usage
is very special compared with other workloads [23], we choose to generate actual run-
times in a synthetic workload based on the requested runtimes. The fitted conditional
actual runtime distributions for the five DAS-2 clusters are given is Table [0l Generally
speaking, two-phase log-uniform, Weibull, and lognormal are the best fitted distribu-
tions for small, medium, and large requested runtimes, respectively. Exception occurs
on fs3, where requested runtimes are only divided into medium and large ranges. Above
all, distributions conditioned on requested runtimes are more realistic and accurate in
modeling job actual runtimes.

6 User/Group Behavior

User behavior has been discussed in [2IT1] as an important structure in the workloads.
Workloads typically contain a pool of users with different activity levels and periods. A
few users and applications tend to dominate the workload. This special structure results
in uniformity and predictability on short time scales, allowing better predictions to be
made for improving the scheduler performance [IT]]. Similar structures are observed on
the DAS-2 clusters. In Figure [IT] (a), we can see that there are twelve groups on fsO
in total. Six of them are dominant, contributing to the major fraction of the workload.
Among the six groups two of them are the most active. They are local groupﬁ at VU
(CS staff/group 3 and student/group 7). On other clusters similar behavior is observed:
local groups are the most active in their cluster workloads. Group Leiden and Delft are
of special interest and they are active on most of the DAS-2 clusters. This is partially
because Leiden students have to accomplish grid tasks utilizing more than one clusters,
and Delft researchers are experimenting processor co-allocation on multi-clusters.

8 The common group and user accounts are mapped onto all five clusters.
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Cluster |Small requested runtime (R -|Middle requested run-|Large requested runtime
minutes) time (R - minutes) (R - minutes)
fs0 0<R<10, 10<R<16, R>16,
m=34s,CV=1.2, m=206s, CV =1.2, m=1624s, CV =2.9,
loguniform-2 Weibull lognormal
(I=-2.5,m=1.2,h=2.1,p=0.1)  |(a=150, b=0.6) (u=5.4, 0=2.2)
fs1 0<R<10, 10<R<60, R>60,
m=40s, CV =0.9, m=250s, CV = 1.5, m = 6022s, CV = 2.8,
loguniform-2 Weibull lognormal
(I=-2.5,m=1.2,h=2, p=0.08) |(a=184, b=0.7) (n=6.4, 0=2.9)
fs2 0<R<10, 10<R <60, R>60,
m=69s, CV=0.8, m=301s, CV = 1.5, m = 7473s,CV =4.9,
loguniform-2 Weibull lognormal
(1=-2.6,m=1.6,h=2.1,p=0.03) |(a=229, b=0.7) (u=6, 0=2.7)
fs3 none 0<R<61, R>61,
m=85s, CV = 1.8, m = 10060s,CV =2.8,
Weibull lognormal
(a=71, b=0.8) (u=6.9, 0=2.6)
fs4 0<R<16, 16<R<600, R>600,
m=72s,CV=1.5, m=3131s, CV =10.5, |m=4270s,CV =3.1,
loguniform-2 Weibull lognormal
(I=-2.5,m=1.7,h=2.3, p=0.04) |(a=1369, b=0.5) (1=6.6, 0=2.1)

Table 9. Distributions of job actual runtimes conditioned on requested runtimes
(loguniform-2 stands for two-stage log-uniform distribution).

As to the users, 10 out of 130 are the most active on fs0 (see Figure [[1] (b)). We
further analyze two users with the largest portion of jobs. User 7 submitted more than
40,000 jobs in consecutive seven weeks during October and November 2003, which is
his/her only active period throughout the year. Moreover, these jobs all have the same
name and request two processors. Jobs from user 2 are distributed evenly throughout
the year, but 70% of them have the same name and 90% request two processors. This
structure explains some of our main observations before - a majority of DAS-2 work-
loads have a job size of two processors, and certain applications appear many more
times than others. Figure [Tl (c) shows the application repeated times and their num-
ber of occurrences on fsO. We can see that while lots of applications run only once or
a small number of times, there are highly repeated applications that contribute to the
heavy tail in the distribution. Similar phenomena are reported on other workloads [[11].

Since the user/group structure have an significant impact on the workload mod-
eling, techniques and models have been proposed to capture the user behavior in the
workloads [24]. We are also investigating multi-class models on other cluster work-
loads which are strongly group/VO (Virtual Organization) oriented.
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Fig. 11. Activity of groups, users and applications on the cluster fs0. From left to right
the color changes (gray scale on a none-color printer) of bars symbolize the consecutive
weeks in year 2003.

7 Conclusions and Future Work

In this paper, we present a comprehensive characterization of a multi-cluster supercom-
puter (DAS-2) workload. We characterized system utilization, job arrival process (ar-
rival rate, interarrival time, and cancellation rate), job execution characteristics (job size,
runtime, and memory usage), correlations between different metrics, and user/group be-
havior. Differences of DAS-2 workloads compared with previously reported workloads
include the following:

1. A substantially lower system utilization (from 7.3% to 22%) is observed.

2. Lower job cancellation rates (3.3%-10.6%) are observed than in previously reported
workloads (12%-23%).

3. Power-of-two phenomenon of job sizes is clearly observed, with an extreme popu-
larity of job size rwo. The fraction of serial jobs (0.9%-4.7%) is much lower than
other workloads (30%-40%).

4. The job actual runtimes are strongly correlated with memory usage as well as job
requested runtimes. Conditional distributions based on requested runtime ranges
are well fitted for actual runtimes.

5. A large portion of jobs has very small memory usage and several special values are
used by a major fraction of jobs.

To facilitate generating synthetic workloads, we provide distributions and condi-
tional distributions of the main characteristics. The distributions are summarized as
follows:

1. Interarrival time: in high load period, gamma or two phase hyperexponential are
the most suitable distributions; in representative period, Weibull gives the best fit.

2. Cancellation lag: lognormal is the best fitted distribution.

3. Job size: two-stage loguniform is the suitable distribution.
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4. Actual runtime: Weibull or lognormal is the best fitted distribution.

5. Actual runtime conditioned on requested time ranges (R): for small R, two-stage
loguniform is the most suitable distribution; for medium R, Weibull is the best fitted
distribution; for large R, lognormal gives the best fit.

In future work, we plan to generate workload models based on the results in this
paper and evaluate several scheduling strategies for DAS-2 clusters. Since the goal of
DAS-2 system is to provide fast response time to researchers, load balancing techniques
and higher level resource brokering are to be investigated. Another interesting point in
a multi-cluster environment is co-allocation. Currently multi-cluster job information
is not logged on the DAS-2 clusters. We plan to instrument the Globus gatekeeper to
collect the necessary traces and identify the key characteristics for multi-cluster jobs.

8 Acknowledgments

The DAS-2 supercomputer is funded by NWO (Netherlands Organization for Scientific
Research) and the participating universities. We thank Dr. Dick Epema (Delft University
of Technology) and the referees for their many valuable suggestions that improved the
quality of this paper.

References

1. M. Calzarossa and G. Serazzi. Workload characterization: A survey. Proc. IEEE, 81(8):
1136-1150, 1993.

2. D. G. Feitelson. Workload modeling for performance evaluation. Lecture Notes in Computer

Science, 2459:114-141, 2002.

. Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

4. S.-H. Chiang and M. K. Vernon. Characteristics of a large shared memory production work-
load. Lecture Notes in Computer Science, 2221: 159-187, 2001.

5. D. Feitelson and B. Nitzberg. Job characteristics of a production parallel scientific workload
on the NASA ames iPSC/860. In D. G. Feitelson and L. Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing — IPPS’95 Workshop, volume 949, pages 337-360.
Springer, 1995.

6. K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg. A comparison of workload
traces from two production parallel machines. In 6th Symp. Frontiers Massively Parallel
Comput., pages 319-326, 1996.

7. U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: modeling the
characteristics of rigid jobs. J. Parallel and Distributed Comput., 63(11): 1105-1122, 2003.

8. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan. Modeling of workload
in MPPs. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, pages 95-116. Springer Verlag, 1997.

9. W. Cirne and F. Berman. A comprehensive model of the supercomputer workload. In /EEE
4th Annual Workshop on Workload Characterization, 2001.

10. S.J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger, U. Schwiegelshohn,
W. Smith, and D. Talby. Benchmarks and standards for the evaluation of parallel job sched-
ulers. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, pages 67-90. Springer-Verlag, 1999.

W



11

12.
13.

14.
15.
16.
17.

19.
20.
21.
22.

23.

24.

Workload Characteristics of a Multi-cluster Supercomputer 193

A. B. Downey and D. G. Feitelson. The elusive goal of workload characterization. Perf.
Eval. Rev., 26(4): 14-29, 1999.

The DAS-2 Supercomputer. http://www.cs.vu.nl/das2.

S. Banen, A. Bucur and D. H. J. Epema. A Measurement-Based Simulation Study of Pro-
cessor Co-Allocation in Multicluster Systems. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages 105-128. Springer-Verlag, 2003.
Portable Batch System. http://www.openpbs.org.

The Maui Scheduler. http://www.supercluster.org.

The Globus project. http://www.globus.org.

O. Allen. Probability, Statistics, and Queueing Theory with Computer Science Applications.
Acdemic Press, 1978.

. R.E. A. Khayari, R. Sadre, B. R. Haverkort. Fitting world-wide web request traces with the

EM-algorithm. Performance Evaluation 52, pp 175-191, Elsevier, 2003.

Matlab. http://www.mathworks.com.

Dataplot. http://www.itl.nist.gov/div898/software/dataplot/.

The EMpht programme. http://www.maths.lth.se/matstat/staff/asmus/pspapers.html.

Allen B. Downey. Using Queue Time Predictions for Processor Allocation. In D. G. Feitel-
son and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 35-57.
Springer-Verlag, 1997.

D. G. Feitelson Memory usage in the LANL CM-5 Workload. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 78-94.
Springer-Verlag, 1997.

M. Calzarossa and G. Serazzi. Construction and use of multiclass workload models. Perfor-
mance Evaluation, 19(4): 341-352, 1994.



	Introduction
	The DAS-2 Supercomputer and Workload Traces
	System Utilization
	Job Arrival Characteristics
	Job Execution Characteristics
	User/Group Behavior
	Conclusions and Future Work
	Acknowledgments

