
Parallel Job Scheduling — A Status Report

Dror G. Feitelson1, Larry Rudolph2, and Uwe Schwiegelshohn3

1 School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel
2 Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

3 Computer Engineering Institute
Universität Dortmund

44221 Dortmund, Germany

1 Introduction

The popularity of research on the scheduling of parallel jobs demands a periodic
review of the status of the field. Indeed, several surveys have been written on
this topic in the context of parallel supercomputers [17, 20]. The purpose of
the present paper is to update that material, and to extend it to include work
concerning clusters and the grid.

The paper is divided into three major parts. The first part addresses algo-
rithmic and research issues covering the two main approaches: backfilling and
gang scheduling. For each, recent advances are reviewed, both in terms of how to
perform the scheduling and in terms of understanding the performance results.
An underlying theme of the surveyed results is the shift from dogmatic use of
rigid formulations to a more flexible approach. This reflects a maturation of the
field and improved concern for real-world issues.

The second part of the paper addresses current usage. It presents a short
overview of vendor offerings, and then reviews the scheduling frameworks used
by top-ranking parallel systems. For vendor offerings, we highlight the distinction
between what is done in a research setting and what is actually developed for
production use. Regarding actual usage, we consider the alternative options of
procurement of an existing system vs. the development of an in-house solution
that more directly reflects desired attributes.

The third part of the paper looks both back and forward in time. As with
any field, the success, popularity, and influence of a particular approach depends
on a range of factors. We review some less successful ones. It is possible that
some of these techniques may only be relevant to future machines. The paper,
therefor concludes with some observations about the near-term future.

This paper contains a large number of references. In order to highlight the
more recent results, i.e. those with publication dates in this millennium, their
citation will be superscripted with the last two digits of the publication date.

D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.): JSSPP 2004, LNCS 3277, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

2 Advances in Parallel Job Scheduling Research

There are many different ways to schedule parallel jobs and their constituent
threads [17], but only a few mechanisms are used in practice and studied in detail.
This section reviews backfilling and gang scheduling strategies, their variants,
and their connections. The special requirements and strategies for scheduling
parallel jobs on a grid are addressed as well.

2.1 Backfilling

The most basic batch scheduling algorithm is First-Come-First-Serve (FCFS)
[43] where jobs are considered in order of arrival. Each job specifies the number
of processors it requires and is placed in a FIFO queue upon arrival. If there
are sufficient available processors to run the job at the head of the queue, the
processors are allocated and the job is started. If there are not enough, the
scheduler waits for some currently running job to terminate and free additional
processors.

Backfilling is an optimization that tries to balance the goals of utilization and
maintaining FCFS order. It requires that each job also specifies its maximum
execution time. While the job at the head of the queue is waiting, it is possible
for other, smaller jobs, to be scheduled, especially if they would not delay the
start of the job on the head of the queue. Processors get to be used that would
otherwise remain idle.

By letting some jobs execute out of order, other jobs may get delayed. Back-
filling will never completely violate the FCFS order where some jobs are never
run (a phenomenon known as “starvation”). In particular, jobs that need to wait
are typically given a reservation for some future time.

The use of reservations was included in several early batch schedulers [29, 8].
Backfilling, in which small jobs move forward to utilize the idle resources, was
introduced by Lifka [33]. This was done in the context of EASY, the Extensible
Argonne Scheduling sYstem, which was developed for the first large IBM SP1
installation at Argonne National Lab.

Variations on Backfilling While the concept of backfilling is quite simple,
it nevertheless has several variants with subtle differences. We generalize the
behavior of backfilling by parameterizing several constants. Judicial choice of
parameter values lead to improved performance.

One parameter is the number of reservations. In the original EASY backfilling
algorithm, only the first queued job received a reservation. Jobs may be scheduled
out of order only if they do not delay the job at the head of the queue. The
scheduler estimates when a sufficient number of processors will be available for
that job and reserves them for this job. Other backfilled jobs may not violate
this reservation, they must either terminate before the time of the reservation
(known as the “shadow time”), or use only processors that are not required by
the first job [33].



Parallel Job Scheduling — A Status Report 3

Backfilling may cause delays in the execution of other waiting jobs (which
are not the first, and therefore do not get a reservation). The obvious alternative
is to make reservations for all jobs. This approach has been named “conservative
backfilling” [37]01. Simulation results indicate, however, that delaying other jobs
is rarely a problem, and that conservative backfilling tends to achieve reduced
performance in comparison with the more aggressive EASY backfilling. The
MAUI scheduler includes a parameter that allows system administrators to set
the number of reservations [30]01. Chiang et al. suggest that making up to four
reservations is a good compromise [6]02.

An intriguing recent suggestion is adaptive reservations depending on the
extent different jobs have been delayed by previous backfilling decisions. If a job
is delayed by too much, a reservation is made for this job [50]02. This is essentially
equivalent to the earlier “flexible backfilling”, in which all jobs have reservations,
but backfilling is allowed to violate these reservations up to a certain slack [51].
Setting the slack to the threshold used by adaptive reservations is equivalent to
only making a reservation if the delay exceeds this threshold.

Another parameter is the order of queued jobs. The original EASY scheduler,
and many other systems and designs, use a first come, first served (FCFS) order
[33]. A general alternative is to prioritize jobs in some way, and select jobs for
scheduling (including as candidates for backfilling) according to this priority
order. Flexible backfilling combines three types of priorities: an administrative
priority set to favor certain users or projects, a user priority used to differentiate
among the jobs of the same user, and a scheduler priority used to guarantee that
no job is starved [51]. The Maui scheduler has a priority function that includes
even more components [30]01.

A special type of prioritization depends on job characteristics. In particu-
lar, Chiang et al. have proposed a whole set of criteria based on resource con-
sumption, that are generalizations of the well-known Shortest Job First (SJF)
scheduling algorithm [6]02. These have been shown to improve performance met-
rics, especially those that are particularly sensitive to the performance of short
jobs, such as slowdown.

A final parameter is the amount of lookahead into the queue. All previous
backfilling algorithms consider the queued jobs one at a time, and try to schedule
them. But the order in which jobs are scheduled may lead to loss of resources
to fragmentation. The alternative is to consider the whole queue at once, and
try to find the set of jobs that together maximize desired performance metrics.
This can be done using dynamic programming, leading to optimal packing and
improved performance [47]03.

Effect of User Runtime Estimates Backfilling depends on estimates of how
long each job will run to figure out when additional processors will become
available, and to verify that backfilled jobs will terminate in time so as not
to violate reservations. The source of the estimates is typically the user who
submits the job. Jobs that execute beyond their estimated runtime are usually



4 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

terminated by the system. Many users therefore regard these estimates as upper
bounds, rather than as tight estimates.

Initial expectations were that user runtime estimates will nevertheless be
tight, as low estimates improve the chance for backfilling. However, comparisons
of user estimates with real runtimes show that they tend to be inaccurate, even
when users are requested to provide their best possible estimate with no danger
of having their job killed if the estimate is too low [18],[37]01,[32]04. Attempts
to derive better estimates automatically based on historical information from
previous runs have not been successful, as they suffered from too many under-
estimations (which in backfilling would lead to killed jobs).

Probably, the most surprising result demonstrated by several studies has
shown that inaccurate runtime estimates actually lead to improved average per-
formance [18, 61],[37]01. This is not simply the result of more backfilling due to
more holes in the schedule, because inflated runtime estimates not only create
holes in the schedule, but also enlarge potential backfill jobs, making it harder
for them to fit into the holes. Rather, it is the result of a sequence of events
where small backfill jobs prevent the holes from closing up, leading to a strong
preference for short jobs and the automatic production of an SJF-like schedule
[53]04. This also motivates the construction of algorithms that explicitly favor
short jobs such as those proposed by Chiang et al. [6]02.

This does not necessarily indicate that more accurate runtime estimates are
impossible and useless. Not all estimates are bad; in most cases, some users
provide reasonably accurate estimates while others do not. Some studies indicate
that those users who do provide reliable estimates do indeed benefit, as their jobs
receive better service from the scheduler [6]02. Also, while it seems that deriving
good estimates automatically is not possible for all jobs, it might be possible to
do so for short jobs and for jobs that have exhibited especially small variability
in the past.

Incidently, inaccurate user runtime estimates have been shown to have sur-
prising effects on performance evaluations [16]03,[15]03. In a nutshell, it was seen
that for workloads with numerous long single-process jobs, the inaccurate esti-
mates allow for significant backfilling of these jobs under the aggressive EASY
backfilling, but not under conservative backfilling. This in turn was detrimental
for the performance of short jobs that were delayed by the long backfilled jobs.
But if accurate estimates were used the effect was reversed, leading to a situ-
ation where short jobs were favored over long ones. This has more to do with
evaluation methodology than will scheduling technology.

2.2 Gang Scheduling

The main alternative to batch scheduling is gang scheduling, where jobs are
preempted and re-scheduled as a unit, across all involved processors. The notion
was introduced by Ousterhout, using the analogy of a working set of memory
pages to argue that a “working set” of processes should be co-scheduled for the
application to make efficient progress [38]. Subsequent work emphasized gang



Parallel Job Scheduling — A Status Report 5

scheduling, which is an all-or-nothing affair, i.e. either all of the job’s processes
run or none do.

The point of gang scheduling is that it provides an environment similar to a
dedicated machine, in which all a job’s threads progress together, and at the same
time allows resources to be shared. In particular, preemption is used to improve
performance in face of unknown runtimes. This prevents short jobs from being
stuck in the queue waiting for long ones, and improves fairness [44]00.

Flexible Algorithms One problem with gang scheduling is that the require-
ment that all a job’s processes always run together causes too much fragmenta-
tion. This has led to several proposals for more flexible variants.

One such variant, called “paired gang scheduling” is designed to alleviate
inefficiencies caused by I/O activity [56]03. In conventional gang scheduling, pro-
cessors running processes that perform I/O remain idle for the duration of the
I/O operation. In paired gang scheduling jobs with complementary characteris-
tics are paired together, so that when the processes of one perform I/O, those of
the other can compute. Given a good job mix, this can lead to improved resource
utilization at little penalty to individual jobs.

A more general approach is to monitor the communication behavior of all
applications, and try to determine whether they really benefit for gang scheduling
[24]03. Gang scheduling is then used for those that need it. Processes belonging
to other jobs are used as filler to reduce the fragmentation cause by the gang
scheduled jobs.

Dealing with Memory Pressure Early evaluations of gang scheduling as-
sumed that all arriving jobs can be started immediately. Under high loads this
could lead to situations where dozens of jobs share each processor. This is un-
realistic as all these jobs would need to be memory resident or else suffer from
paging, which would interfere with the synchronization among the job’s threads.

A simple approach for avoiding this problem is to use admission controls,
and only allow additional jobs to start if enough memory is available [3]00. An
alternative is placing an oblivious cap on the multiprogramming level (MPL),
usually in the range of 3–5 jobs [35]. While this avoids the need to estimate how
much memory a new job will need, it is more vulnerable to situations in which
memory becomes overcommitted causing excessive paging.

When admission controls are used and jobs wait in the queue the question of
queue order presents itself. The simplest option is to use a FCFS order. Improved
performance is obtained by using backfilling, and allowing small jobs to move
ahead in the queue [59]00,[58]03. In fact, using backfilling fully compensates for
the loss of performance due to the limited number of jobs that are actually run
concurrently [23]03.

All the above schemes may suffer from situations in which long jobs are
allocated resources while short jobs remain in the queue and await their turn.
The solution is to use a preemptive long-range scheduling scheme. With this
construction, the long term scheduler allocates memory to waiting jobs, and



6 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

then the short term scheduler decides which jobs will actually run out of those
that are memory resident. The long term scheduler may decide to swap out a job
that has been in memory for a long time, to make room for a queued job that
has been waiting for a long time. Such a scheme was designed for Tera (Cray)
MTA machine [1].

System Integration The only commercially successful implementation of gang
scheduling that we know of so far was the one on the Connection Machine CM-5.
Other implementations, e.g. on the Intel Paragon, never moved beyond exper-
imentation because of significant performance overheads, probably due to the
cost of gang synchronization and coordination. Recent advances in the imple-
mentation of gang scheduling in experimental systems promise to reduce these
overheads.

Gang scheduling requires the context switching to be synchronized across
the nodes of the machine, and software-implemented synchronization on large
machines is expensive. But some modern interconnection networks provide hard-
ware support for global operations, and this can be exploited also in the runtime
system. For example, in the STORM, where all parallel system activities are
expressed in terms of three basic primitives, which in turn are supported by the
hardware of the Quadrics network. In particular, this design has resulted in a
very scalable implementation of gang scheduling [25]02.

While high performance networks enable efficient implementation of sys-
tem primitives, they may cause problems with multiprogramming. The difficulty
arises due to the use of user-level communication, in which user processes access
the network interface cards (NICs) directly so as to avoid the overheads involved
in trapping into the operating system. As a result no protection is available, and
only one job can use the NICs. This can be solved by switching communication
buffers as part of the gang scheduling’s context switch operation [14]01. It is also
possible that this problem will be reduced in the future, as the memory available
on NICs continues to grow.

Even tighter integration between communication and scheduling is used in
the “buffered coscheduling” scheme proposed by Petrini and Feng [39]00,[40]00.
In this scheme the execution of all jobs is partitioned by the system into phases.
In each phase, communication operations are buffered and at the end of the phase
all the required communications is scheduled and and performed during the next
phase. This leads to complete overlap of computation and communication.

Gang scheduling was originally developed in order to support fine-grain syn-
chronization of parallel applications [19]. But an even greater benefit may be
its contribution to reducing interference. The problem is that the nodes of par-
allel machines and clusters typically run a full operating system, with various
user-level daemons that are required for various system services. These daemons
may wake up at unpredictable times in order to perform their function. Ob-
viously this interferes with the application process running on the node [36].
If such interferences are not synchronized across nodes, the application will be
slowed considerably as different processes are delayed. But with gang scheduling



Parallel Job Scheduling — A Status Report 7

it is possible to run all the daemons on the different nodes at the same time,
and eliminate their interference when user jobs are running [41]03. When this is
done, the full capabilities of the hardware are achieved.

2.3 Parallel Job Scheduling and the Grid

More recently, parallel computers are becoming part of a so called computational
grid. The name grid has been chosen in analogy to the electrical power grid where
several power plants provide numerous consumers with electrical power without
the consumer being aware of the origin of the power. Similarly, it is the goal
of a computational grid or simply Grid to allow users to run their jobs on any
suitable computer belonging to the Grid. This way the computational load is
balanced across many machines. Clearly, the Grid is mainly of interest for large
computational jobs or jobs using a large data set as smaller jobs will usually run
locally. However, the Grid is not restricted to this kind of jobs but will cover a
wide range of general services. Nevertheless at the moment large computational
jobs form the dominant grid application.

Before addressing the scheduling problem in a grid it is necessary to point
out some differences between a parallel computer and the grid. A parallel com-
puter has a central resource management system that can control all individual
processors. However in a grid, the compute resources typically have different
owners and as in most distributed systems there is no central control. Therefore,
a compute resource typically has its own local resource management system that
implements the policy of its owner. Hence, a grid scheduling architecture must
be built on top of those existing local resource management systems. This re-
quires communication between those different layers of the scheduling system in
a grid [45]03,[55]. As in a distributed system the use of a central grid scheduler
may result in a performance bottleneck and lead to a failure of the whole sys-
tem if the scheduler fails. It is therefore appropriate to use a decentralized grid
scheduler architecture and distributed algorithms.

Further, grid resources are heterogeneous in hardware and software which
imposes constraints on the suitability of a resource for a given job. In addi-
tion, not every user may be accepted on every machine due to the implemented
owner policy. A grid scheduler must determine which resources can be used for
a specific submitted job while such a problem is usually not encountered in a
parallel processor or even in a cluster of computers [10]02,[12]02. Moreover, the
grid is subject to frequent changes as some compute resources may be temporar-
ily withdrawn from the grid due to maintenance or privileged non-grid use on
request of the owner. To obtain these data, the grid scheduler needs a specific
grid information service while the necessary up-to-date information is always
assumed to be available in a parallel computer.

Today, the main purpose of grid computing is considered to be in the area of
cross-domain load balancing. To support this idea the Globus Toolbox provides
basic services that allow the construction of a grid scheduler [22]. With the help of
those basic services grid schedulers are constructed that run on top of commercial
resource management systems, like LSF, PBS or Loadleveler. Further, existing



8 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

Systems, like Condor [34, 42], are adapted to include grid scheduling abilities or
allow integration with a grid scheduler.

If a parallel computer is embedded in a grid, a large variety of jobs from
different users will be run on this machine. Then it will become increasingly
difficult to implement the usage policy of an owner with the help of those simple
scheduling criteria that are used today, like utilization and response time. There-
fore, it can be assumed that the grid will also change job scheduling strategies
for parallel computers. However in practice such an effect has not been observed
yet.

Large grid application projects, like LCG, Datagrid, GriPhyn, frequently
include the construction of some grid scheduler. Unfortunately, the scope of such
a scheduler is usually restricted to the corresponding application project. On
the other hand, there are academic projects that specifically address scheduling
issues like the generation, distribution and selection of resource offerings. To this
end various means are used, for instance economic methods.

In another approach, the job itself is responsible for its scheduling. Then
we speak of an application scheduler. This is important for jobs which have a
complex workflow and are subject to complex parallelization constraints. For
example, this is the approach taken in the AppLes project [7]00.

As a continuation of some metacomputing ideas it is sometimes considered
to use a computational grid as a single parallel processor, where many compu-
tational resources, that is parallel computers in the grid, are combined to solve
a single very large problem . In this situation, the network performance varies
greatly from communication within a parallel computer to communication be-
tween two parallel computers. Some models have been derived to evaluate the
performance of so called multi site computing [26, 4, 9, 11, 13]03. However in
practice, such an approach has not been implemented with the possible excep-
tion of the preplanned combination of a few specific parallel computers for a
specific purpose.

An important component of using the grid as a single parallel resource is co-
allocation [5, 4, 2, 48]04. This means that resources on several different machines
need to be allocated to the same job at the same time. This is hard to accomplish
due to the fact that the different resources belong to different owners, and do
not have a common resource management infrastructure. The way to circumvent
this problem is to try and reserve resources on the different machines, and then
to use them only if all required reservations are successful [49]00.

3 Parallel Job Scheduling Practice

3.1 Vendor Offerings

Commercial scheduling software for parallel jobs comes in two types: portable,
standalone systems, and components in a specific system.

There are two main competitors in the market for scheduling software. One
is the Platform Computing Load Sharing Facility (LSF), which is based on the



Parallel Job Scheduling — A Status Report 9

Utopia project [60]. The other is the Veridian Portable Batch System (PBS)
[27]. Both provide similar functionality. In particular, they provide support for
various administrative tasks, which is often lacking from research prototypes.

In addition, vendors of parallel supercomputers typically provide some sort
of scheduling support with their systems. This includes schedulers on the IBM
SP, the Cray Origin, and HP and Sun systems.

3.2 Actual Usage

In order to determine which job scheduling strategies for parallel processors
are actually applied in practice we considered the 50 most powerful parallel
computers based on actual Top500 list. Information about the strategies used
in each case where mainly retrieved from publicly available information sources
like the web. In addition many sites were contacted directly and asked to provide
further information.

Those parallel computers can be classified into 3 groups:

Parallel Vector Processors There are only 4 entries in this class: the NEC’s
Earth-Simulator, which is the leader of the Top500 list, and 3 installations
of a Cray X1.

Parallel Processors Almost 40% of the considered computers are true parallel
processors. All but 4 of which are not IBM SP Power3 or IBM pSeries 690.

Clusters There is a larger variety of types for clusters although Xeon clusters
clearly dominate with more than 50% of all cluster installation among the
considered computer systems.

Parallel Vector Processors The Cray X1 installations all use the same schedul-
ing system consisting of PBS Pro in combination with Cray’s psched placement
scheduler. PBS is used for workload management. This means that it controls
the allocation of resources to different users and groups, the performs accounting
functions [27]. Psched, originally developed for the Cray T3E, includes a load
balancer and a gang scheduler [31]. It monitors the actual usage of the system’s
nodes, and passes the information to PBS to allow PBS to decide which job
should run. Psched is then responsible for the actual placement of this job in
the system, i.e. the allocations of specific nodes.

Scheduling is different for the Earth Simulator which is currently the most
powerful parallel processor according to the Top500 list. The system uses a queue
for small batch requests (S-queue) and a queue for large batch requests (L-queue)
[54]03. For the S-queue, ERS-II is used as a scheduling system. Although ERS-II
supports gang scheduling this feature is not used for the S-queue. The L-queue
has a customized scheduler which does not support gang scheduling. Further,
the Earth Simulator scheduling systems support backfilling and checkpointing.

Parallel Processors Most IBM systems use the LoadLeveler scheduler, which
supports backfilling. Although LoadLeveler also allows job prioritization, this



10 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

is not mentioned as a feature in the description of most installations. As most
direct replies confirmed job prioritization, we may assume that it is actually
used in most systems but nor explicitly mentioned. At least the newer versions
of LoadLeveler also support gang scheduling which is also not found in most
descriptions. However, at least the Max-Plank-Society in Germany explicitly
states that gang scheduling is possible but not used. This shows that at least
some installations have decided against gang scheduling.

The Lawrence Livermore National Labs have developed a home grown re-
source management system called LCRM (Livermore Computing Resource Man-
agement System) that supports backfilling, reservation, preemption, and gang
scheduling. This system is used for the ASCI White installation and for cluster
installations at Lawrence Livermore National Labs. The ASCI White system has
batch partition and an interactive partition but uses only a single queue with 3
classes of jobs (expedited, normal and stand-by). However, it does not currently
use the preemption feature. The utilization is between 80% and 90%.

Reservation is also used in the installation at ECMWF (European Centre
for Medium-Range Weather Forecast) [28]04. Here, LoadLeveler is enhanced by
a special job filter. The system separates serial and parallel jobs by assigning
them to different classes (2 classes for serial jobs and 3 classes for parallel jobs).
The utilization of this system is between 94% and 97.5%. A similar utilization
is achieved on the above mentioned parallel processor of the Max-Plank-Society
with a more elaborate scheme of job queues.

We were not able to obtain much information on non-IBM parallel processors
except that gang scheduling is supported by the ASCI Red system consisting of
Intel Xeon processors and using the Paragon operating system.

Clusters Various commercial resource management systems can be found in
cluster installations, including various form of PBS [27] and LSF [60]. They
are frequently combined with the Maui scheduler [30]01. As already mentioned
Lawrence Livermore National Labs use LCRM also for their clusters. In many
Linux clusters SLURM (Simple Linux Utility for Resource Management) is espe-
cially used for low priority jobs [57]03. The Pittsburgh Supercomputing Center
has developed a custom scheduler called Simon on top of OpenPBS in order
to support a variety of advanced scheduling features like advance reservation,
backfilling, and checkpointing.

In general, it can be stated that the scheduler of most cluster installations
support backfilling and job prioritization. Gang scheduling, preemption, advance
reservations and checkpointing are more frequently found than in parallel pro-
cessor installations. In most installations, almost all computing nodes are in a
single partition. There are few exceptions. For instance the Pacific Northwest
National Lab has additional partitions for management and user log-in nodes (4
nodes) as well as for the Lustre file system nodes (34). However, these partitions
are relatively small in comparison to the total number of nodes in the compute
partition (940). The cluster at Los Alamos National Labs also has file serving
nodes that allow interactive access via LSF.



Parallel Job Scheduling — A Status Report 11

Los Alamos National Lab also uses more queues (8-9 active queues and 4-
5 special purpose queues) than other installations.In addition queues can be
specifically set up for a project. In other clusters users can submit their hobs to
at most 3 different queues.

The utilization of the systems depends on the applications and ranges from
approximately 55% in 2003 (Los Alamos National Lab) to 95% for the last 30
days (Pittsburgh Supercomputing Center).

4 Conclusions

Parallel job scheduling has been useful for parallel processors. Recently, the
strategies and algorithms have been adapted to the grid and to clusters. In the
future, microprocessors are likely to contain several processors on a chip with the
numbers of processors per chip rapidly increasing over the years. Servers and even
personal computers will be parallel processors. These may then be organized into
clusters, grids, or tightly coupled microprocessors. To a degree, this is already
happening with the introduction of hyperthreading in Intel microprocessors [52].

Job schedulers will have to deal with at least two layers of scheduling and
even more if several processor chips are aggregated together into a server. Current
research projects are actively building processors with tens or even hundreds of
processors.

When used as a fast personal computer, some gang scheduling variant makes
sense. When used as a supercomputer, some variant on batch scheduling will be
used. This leads to the obvious convergence of both types of scheduling strategies.

To summarize, actual usage patterns in parallel job scheduling have advanced
in the past decade, but largely remain within the realm of batch scheduling.
Backfilling and prioritization are standard in many systems. More advanced
facilities such as reservations and checkpointing are also making inroads. The
alternative approach of gang scheduling is common, but not always deployed.

One outcome of this progress is the utilization is improving greatly. While
in the past utilization of 50-70% were accepted as the norm [46]00, now many
systems report utilization in the 90% range [28]04.

The competition between many different systems and designs testifies to
the fact that the field of parallel job scheduling is important and vibrant. The
flip side of the coin is that this may reach proportions that actually hamper
progress rather than promoting it. As each large installation starts from scratch
and develops its own home-grown solution, there is much duplication of effort.
At the same time novel ideas are left at the wayside, as developers struggle to
get new systems to perform. One may wonder at this point whether the time is
not ripe for some standardization effort, that will define a basic architecture for
parallel job schedulers, complete with interfaces between the major components.
This would allow researchers and developers to focus on that component that
they feel compelled to work on, with the assurance that the results of their labor
would be usable in combination with other components from different origins.

Another issue that raises concern is that of scalability. A review of the Top500
list of supercomputer installations reveals that since 1997 the largest machines



12 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

in the world have always been just smaller than 10,000 nodes. While this may
reflect power and packaging limitations, it may also be interpreted as indicating
that we currently do not really know how to utilize more nodes effectively [21]04.
This has two aspects. One is programming models that allow such large numbers
of nodes to be harnessed to work in concert, while dealing effectively with the
occurrence of failures. The other is management of such large numbers of nodes.

Management is problematic because workload studies on current systems
indicate that many jobs run on parallel systems actually have a very limited
degree of parallelism. This implies that the load on the management system may
grow considerably as more nodes are added. It also conflicts with the common
approach of handling larger systems simply by increasing the unit of allocation,
e.g. by allocating blocks of 32 nodes rather than single nodes. Scalable and
effective management solutions for large systems are therefore an important
area for further research and development.

Acknowledgments The authors are thankful to Gary Skouson from Pacific
Northwest National Lab, Manuel Vigil from Los Alamos National Lab, Graham
Holt from the European Centre for Medium-Range Weather Forecast, and Inge-
borg Weidl from the Max-Plank-Institut für Plasmaphysik, for providing them
with detailed information about the scheduling methods and tools used in their
respective installation.

References

[1] G. Alverson, S. Kahan, R. Korry, C. McCann, and B. Smith, “Scheduling on the
Tera MTA”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 19–44, Springer-Verlag, 1995. Lect. Notes Comput.
Sci. vol. 949.

[2] S. Banen, A. I. D. Bucur, and D. H. J. Epema, “A measurement-based simulation
study of processor co-allocation in multicluster systems”. In Job Scheduling Strate-
gies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 105–128, Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[3] A. Batat and D. G. Feitelson, “Gang scheduling with memory considerations”. In
14th Intl. Parallel & Distributed Processing Symp., pp. 109–114, May 2000.

[4] A. I. D. Bucur and D. H. J. Epema, “The influence of communication on the
performance of co-allocation”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 66–86, Springer Verlag, 2001. Lect.
Notes Comput. Sci. vol. 2221.

[5] A. I. D. Bucur and D. H. J. Epema, “The influence of the structure and sizes
of jobs on the performance of co-allocation”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 154–173, Springer
Verlag, 2000. Lect. Notes Comput. Sci. vol. 1911.

[6] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of more ac-
curate requested runtimes on production job scheduling performance”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 103–127, Springer Verlag, 2002. Lect. Notes Com-
put. Sci. vol. 2537.



Parallel Job Scheduling — A Status Report 13

[7] W. Cirne and F. Berman, “Adaptive selection of partition size for supercomputer
requests”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 187–207, Springer Verlag, 2000. Lect. Notes Comput.
Sci. vol. 1911.

[8] D. Das Sharma and D. K. Pradhan, “Job scheduling in mesh multicomputers”.
In Intl. Conf. Parallel Processing, vol. II, pp. 251–258, Aug 1994.

[9] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,
“Enhanced Algorithms for Multi-Site Scheduling”. In Proceedings of the 3rd In-
ternational Workshop on Grid Computing, Baltimore, Springer–Verlag, Lecture
Notes in Computer Science LNCS, 2002.

[10] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,
“On Advantages of Grid Computing for Parallel Job Scheduling”. In Proc. 2nd
IEEE/ACM Int’l Symp. on Cluster Computing and the Grid (CCGRID2002),
IEEE Press, Berlin, May 2002.

[11] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour, “On Effects of Machine
Configurations on Parallel Job Scheduling in Computational Grids”. In Interna-
tional Conference on Architecture of Computing Systems, ARCS, pp. 169–179,
VDE, Karlsruhe, April 2002.

[12] C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic Scheduling in Grid
Computing”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 128–152, Springer Verlag, 2002.
Lect. Notes Comput. Sci. vol. 2537.

[13] C. Ernemann and R. Yahyapour, ”Grid Resource Management - State of the Art
and Future Trends”, chap. ”Applying Economic Scheduling Methods to Grid En-
vironments”, pp. 491–506. Kluwer Academic Publishers, 2003.

[14] Y. Etsion and D. G. Feitelson, “User-level communication in a system with gang
scheduling”. In 15th Intl. Parallel & Distributed Processing Symp., Apr 2001.

[15] D. G. Feitelson, Experimental Analysis of the Root Causes of Performance Eval-
uation Results: A Backfilling Case Study. Technical Report 2002–4, School of
Computer Science and Engineering, Hebrew University, Mar 2002.

[16] D. G. Feitelson, “Metric and workload effects on computer systems evaluation”.
Computer 36(9), pp. 18–25, Sep 2003.

[17] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems.
Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct
1994.

[18] D. G. Feitelson and A. Mu’alem Weil, “Utilization and predictability in scheduling
the IBM SP2 with backfilling”. In 12th Intl. Parallel Processing Symp., pp. 542–
546, Apr 1998.

[19] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits for fine-
grain synchronization”. J. Parallel & Distributed Comput. 16(4), pp. 306–318,
Dec 1992.

[20] D. G. Feitelson and L. Rudolph, “Parallel job scheduling: issues and ap-
proaches”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 1–18, Springer-Verlag, 1995. Lect. Notes Comput. Sci.
vol. 949.

[21] D. G. Feitelson “The Supercomputer Industry in Light of the Top500 Data”. In
Comput. in Science & Engineering 7(1), pp. 42-47, 2004.

[22] I. Foster and C. Kesselman, “The Globus toolkit”. In The Grid: Blueprint for a
New Computing Infrastructure, I. Foster and C. Kesselman (eds.), pp. 259–278,
Morgan Kaufmann, 1999.



14 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

[23] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini, “Parallel job
scheduling under dynamic workloads”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 208–
227, Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[24] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Flexible
coscheduling: mitigating load imbalance and improving utilization of heteroge-
neous resources”. In 17th Intl. Parallel & Distributed Processing Symp., Apr
2003.

[25] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll, “STORM:
lightning-fast resource management”. In Supercomputing, Nov 2002.

[26] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of
Job-Scheduling Strategies for Grid Computing”. In Proc. 7th Int’l Conf. on
High Performance Computing, HiPC-2000, pp. 191–202, Springer, Berlin, Lec-
ture Notes in Computer Science LNCS 1971, Bangalore, Indien, 2000.

[27] R. L. Henderson, “Job scheduling under the portable batch system”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 279–294, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[28] G. Holt, “Time-Critical Scheduling on a Well Utilised HPC System Using Re-
source Reservations,” In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), Springer-Verlag, 2004.
Lect. Notes Comput. Sci. (this volume).

[29] Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities
Manual. Order number 312261-002, May 1992.

[30] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the Maui scheduler”. In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 87–102, Springer Verlag, 2001. Lect. Notes Comput. Sci. vol. 2221.

[31] R. Lagerstrom, and S. Gipp, “PScheD: Political Scheduling on the CRAY
T3E,” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 117–138, Springer-Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[32] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime esti-
mates inherently inaccurate?”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), Springer-Verlag,
2004. Lect. Notes Comput. Sci. (this volume).

[33] D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–303, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[34] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - a hunter of idle worksta-
tions”. In 8th Intl. Conf. Distributed Comput. Syst., pp. 104–111, Jun 1988.

[35] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A. Jette, “An infrastruc-
ture for efficient parallel job execution in terascale computing environments”. In
Supercomputing’98, Nov 1998.

[36] R. Mraz, “Reducing the variance of point-to-point transfers for parallel real-time
programs”. IEEE Parallel & Distributed Technology 2(4), pp. 20–31, Winter 1994.

[37] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling”. IEEE Trans.
Parallel & Distributed Syst. 12(6), pp. 529–543, Jun 2001.

[38] J. K. Ousterhout, “Scheduling techniques for concurrent systems”. In 3rd Intl.
Conf. Distributed Comput. Syst., pp. 22–30, Oct 1982.



Parallel Job Scheduling — A Status Report 15

[39] F. Petrini and W-c. Feng, “Buffered coscheduling: a new methodology for multi-
tasking parallel jobs on distributed systems”. In 14th Intl. Parallel & Distributed
Processing Symp., pp. 439–444, May 2000.

[40] F. Petrini and W-c. Feng, “Time-sharing parallel jobs in the presence of multi-
ple resource requirements”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 113–136, Springer Verlag, 2000. Lect.
Notes Comput. Sci. vol. 1911.

[41] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q”.
In Supercomputing, Nov 2003.

[42] J. Pruyne and M. Livny, “Parallel processing on dynamic resources with
CARMI”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 259–278, Springer-Verlag, 1995. Lect. Notes Comput.
Sci. vol. 949.

[43] U. Schwiegelshohn and R. Yahyapour, “Analysis of First-Come-First-Serve Par-
allel Job Scheduling”. In Proceedings of the 9th SIAM Symposium on Discrete
Algorithms, pp. 629–638, January 1998.

[44] U. Schwiegelshohn and R. Yahyapour, “Fairness in Parallel Job Scheduling”. Jour-
nal of Scheduling, 3(5):297-320. John Wiley, 2000.

[45] U. Schwiegelshohn and R. Yahyapour, ”Grid Resource Management - State of
the Art and Future Trends”, chap. ”Attributes for Communication Between Grid
Scheduling Instances”, pp. 41–52. Kluwer Academic Publishers, 2003.

[46] L. Rudolph, and P. Smith, “Valuation of Ultra-scale Computing Systems,” In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 39–55, Springer-Verlag, 2003. Lect. Notes Comput. Sci. vol. 1911.

[47] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize the per-
formance of parallel job scheduling”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 228–
251, Springer-Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[48] J. M. P. Sinaga, H. H. Mohammed, and D. H. J. Epema, “A dynamic co-allocation
service in multicluster systems”. In 10th Job Scheduling Strategies for Parallel
Processing, Jun 2004.

[49] Q. Snell, M. Clement, D. Jackson, and C. Gregory, “The performance impact of
advance reservation meta-scheduling”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 137–153, Springer Verlag,
2000. Lect. Notes Comput. Sci. vol. 1911.

[50] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Selective reser-
vation strategies for backfill job scheduling”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),
pp. 55–71, Springer-Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537.

[51] D. Talby and D. G. Feitelson, “Supporting priorities and improving utilization
of the IBM SP scheduler using slack-based backfilling”. In 13th Intl. Parallel
Processing Symp., pp. 513–517, Apr 1999.

[52] D. M. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multi-
threading Processor,” In 23rd Annual International Symposium on Computer
Architecture, May, 1996.

[53] D. Tsafrir. in preparation.
[54] A. Uno, T. Aoyagi, and K. Tani, “Job scheduling on the earth simulator”. NEC

Res. & Develop. 44(1), pp. 47–52, Jan 2003.



16 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

[55] U. Schwiegelshohn and R. Yahyapour, “GGF-GFD.6: Attributes for Communica-
tion between Scheduling Instances”. http://www.ggf.org/documents/GFD/GFD-
I-6.pdf, Dec 2001.

[56] Y. Wiseman and D. G. Feitelson, “Paired gang scheduling”. IEEE Trans. Parallel
& Distributed Syst. 14(6), pp. 581–592, Jun 2003.

[57] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: simple Linux utility for
resource management”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 44–60, Springer
Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[58] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An integrated ap-
proach to parallel scheduling using gang-scheduling, backfilling, and migration”.
IEEE Trans. Parallel & Distributed Syst. 14(3), pp. 236–247, Mar 2003.

[59] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “Improving parallel
job scheduling by combining gang scheduling and backfilling techniques”. In 14th
Intl. Parallel & Distributed Processing Symp., pp. 133–142, May 2000.

[60] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a load sharing facility for
large, heterogeneous distributed computer systems”. Software — Pract. & Exp.
23(12), pp. 1305–1336, Dec 1993.

[61] D. Zotkin and P. J. Keleher, “Job-length estimation and performance in backfilling
schedulers”. In 8th Intl. Symp. High Performance Distributed Comput., Aug 1999.


	Introduction
	Advances in Parallel Job Scheduling Research
	Parallel Job Scheduling Practice
	Conclusions

