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1 Introduction

The forces involved in muscle contraction result from the contractile pro-
teins, myosin and actin. Myosin captures the free energy available from the
hydrolysis of adenosine triphosphate (ATP), and via interaction with actin,
generates the force and motion necessary for the survival of higher organisms.
How this protein-mediated conversion of chemical energy into mechanical en-
ergy occurs remains a fundamental, unresolved question in physiology and
biophysics. As a problem in thermodynamics, mathematical modeling of this
chemomechanical free energy transduction has played an important role in
helping to organize the experimental database into a coherent framework. In
this chapter, I will discuss basic models that have been used to analyze this
really quite remarkable process – the generation of force and motion from
a protein-protein interaction involving the ancillary biochemical reaction of
nucleotide hydrolysis.

Recent x-ray structures of the protein myosin show that the N-terminus of
the protein is composed of a globular motor domain (also termed the catalytic
domain) containing the actin- and nucleotide-binding sites. The motor domain
is approximately 10 nm in length. An α-helical neck region, approximately
9 nm in length, projects from the motor domain. Skeletal muscle myosin is
dimeric with a molecular weight of approximately 520,0000. X-ray, electron
microscopic, and secondary structure prediction analyses all suggest the region
adjacent to the neck is an α-helical, coiled-coil dimerization domain. The ter-
minal portion of this domain aggregates into the thick filaments seen in muscle
ultrastructure. Monomeric G-actin is a globular protein with an approximate
diameter of 5–6 nm and a molecular weight of approximately 42,000. Under
proper conditions, the G-actin monomers aggregate into a helically arranged,
F-actin polymer filament.
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Fig. 1. Cartoon of the relationship between myosin and actin filaments in a sar-
comere

The cartoon in Fig. 1 shows the organization of the fundamental contractile
unit of muscle, the sarcomere. The sarcomere is an interwoven array of myosin
thick filaments, and actin thin filaments. To give relative dimensions, in fast
vertebrate skeletal muscle, the myosin filaments are approximately 1.8 µm in
length (1 µm = 10−6 m). The individual actin filaments are approximately
1 µm long. Myosin cross-bridges project from the thick filaments and can in-
teract with the thin filaments. The most popular hypothesis at this writing is
that the functioning portion of the myosin cross-bridge is the myosin motor do-
main and the neck, discussed above. The strongest evidence in support of this
hypothesis is that the motor domain and neck alone are capable of support-
ing filament sliding [1]. While interacting with actin, the myosin cross-bridges
are capable of producing force and muscle shortening. Early microscopy of
muscle demonstrated that shortening does not result from a change in length
of the myosin and actin filaments (i.e., a “rubber band” model). Instead, the
relatively inextensible filaments slide past each other, with muscle shorten-
ing the result of a decrease in the Z-line-to-Z-line distance as diagrammed
in Fig. 1 [2, 3]. Other geometrical and size parameters are relevant to under-
standing our subsequent modeling efforts. Only a few interdigitating filaments
have been shown in the planar cartoon of Fig. 1. In skeletal muscle, the thin
filament types are arranged in hexagonal arrays around the thick filaments.
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The cross-bridges project from the thick filaments in a 6-fold symmetry to ac-
commodate the packing. The rest sarcomere length is approximately 2.5 µm.
Individual sarcomeres are approximately 1 µm in diameter. They are chained
linearly (Z-line to Z-line) in arrays that may be centimeters in length, termed
a myofibril. The myofibrils are organized into parallel bundles, termed mus-
cle fibers, which are 50 µm–100 µm in diameter. With proper magnification,
individual muscle fibers can be dissected from skinned muscle preparations
(the muscle cell wall has been removed mechanically or chemically). These
can then be mounted on a mechanical apparatus specifically designed to mea-
sure the mechanical properties of contracting muscle. The muscle fiber has
been one of the standard experimental preparations in the study of muscle
mechanics. Whole muscle preparations, or single intact muscle cells, have like-
wise been employed. Parameters given have been for skeletal muscle, and there
is variation with muscle type. However, these values remain useful order of
magnitude estimates. Unless otherwise noted, magnitudes in the remainder of
the chapter will be for fast vertebrate skeletal muscle.

A complete discussion of muscle ultrastructure, myosin structure and me-
chanics, and the actomyosin biochemical interaction is beyond the scope of this
chapter. Excellent detailed reviews are in [4, 5, 6, 7, 8]. The book by Bagshaw
[9] is singled out as an outstanding basic introduction to muscle structure,
biochemistry, and mechanics. It is highly recommended as a place for inter-
ested researchers to start. The lengthier book by Woledge et al. [10] provides a
more advanced discussion of the relationship between biochemistry, mechan-
ics, and energetics. The book by Howard [11] discusses myosin function in the
broader context of other families of motor proteins, and motor function in the
cytoskeleton.

2 A.F. Huxley’s Cross-Bridge Model

The experimental observation is that muscle contraction results from the slid-
ing of otherwise relatively inextensible actin filaments, driven by cross-bridges
that extend from the myosin filaments and interact with the adjacent actin
filaments. Using this as our starting point, we develop the model for muscle
cross-bridge function originally presented by A.F. Huxley [12]. Although this
model was first presented over 45 years ago, it still contains the fundamental
ideas of the overwhelming majority of models that have followed.

The concentration of myosin cross-bridges in muscle is approximately
240 µM [9]. This means that a single 1 cm long muscle fiber, 50 µm in di-
ameter, will contain in excess of 2 × 1012 cross-bridges. The repeat of the
myosin cross-bridges projecting from the thick filaments is different from the
repeat of the actin monomers that polymerize to form the actin thin filaments.
The large number of cross-bridges in the fiber experimental preparation, and
the fact that different cross-bridges will see different distances to the near-
est actin-binding site (assumed to be a discrete multiple of the 5.5 nm actin
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monomer repeat), suggested a continuum model as a first approximation for
Huxley [12]. Furthermore, muscle ultrastructure demonstrates that we have
an extensive array of interdigitating, parallel filaments. For modeling, this
can then be approximated as two infinitely long parallel actin and myosin
filaments as shown in the cartoon in Fig. 2. We let x represent the distance
between a reference point on a myosin cross-bridge and the nearest actin bind-
ing site. We assume a “single-site” assumption where a myosin cross-bridge
has a significant probability of interacting with only the nearest actin. With
the continuum assumption, the parameter x may be either positive (e.g. x3

in Fig. 2) or negative (e.g. x2 in Fig. 2). Shortening with velocity, v > 0, will
be taken to imply that attached cross-bridges see a decrease in x with time.

MYOSIN THICK FILAMENT

ACTIN
FILAMENT

X1 X2 X3

ATTACHED
CROSS-BRIDGESDETACHED

CROSS-BRIDGE

V > 0 DECREASES X
DUE TO SLIDING
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Fig. 2. Cartoon of the Huxley model. For each attached cross-bridge, the reference
cross-bridge distortion is idealized as the horizontal distance, x, between the junction
of the ellipses representing the cross-bridges and the actin binding site. The value
of x increases to the right. Thus x2 < 0 and x3 > 0. Sliding with v > 0 decreases
the distortion of attached cross-bridges

Let f(x) be the first order (units are s−1), spatially dependent rate of
attachment for a myosin cross-bridge that sees the nearest actin binding site
at distance x. The quantity, x, is frequently termed the distortion. Let g(x)
be the first order detachment rate for a myosin cross-bridge that is attached
to an actin binding site at distortion x. Let n(x, t) be the fraction of myosin
cross-bridges that see the nearest actin at distortion, x, at time t and are
attached. Consider a region of distortions, [x0, x0+∆x]. The attached fraction
in this domain can change by four mechanisms. 1. Detached cross-bridges can
attach to actin. 2. Attached cross-bridges can detach. 3. Let the filaments
slide relative to each other with velocity, v > 0. With the sign conventions of
Fig. 2, this implies that attached cross-bridges will experience a decrease in
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distortion with time. Equivalently, at position x0 + ∆x, there will be a flux
of attached cross-bridges into the domain [x0, x0 + ∆x]. This flux is given by
J(x0 + ∆x, t) = ρvn(x0 + ∆x, t), where ρ is the density (per unit length)
of cross-bridges on the thick filament. 4. A similar effect occurs at x0, except
that the flux is out of the domain [x0 + ∆x], and J(x0, t) = −ρvn(x0, t).
If n(x, t) is the attached fraction, then 1 − n(x, t) is the detached fraction.
Considering effects 1–4, the balance law giving the time rate of change of the
fraction of attached cross-bridges in the domain [x0, x0 + ∆x] is

∂

∂t

∫ x0+∆x

x0

ρn(x, t)dx =
∫ x0+∆x

x0

f(x)ρ [1 − n(x, t)] dx

+
∫ x0+∆x

x0

−g(x)ρn(x, t)dx

+ J(x0 + ∆x) − J(x0) (1)

i.e. the rate of change = attachment + detachment + flux in − flux out.
Substituting for the definition of J gives a common factor of ρ. Dividing

by and applying the mean value theorem for integrals yields

∂n(ξ1, t)
∂t

∆x = f(ξ2) [1 − n(ξ2, t)] ∆x − g(ξ3)n(ξ3, t)∆x

+ vn(x0 + ∆x, t) − vn(x0, t) (2)

where x0 < ξ1, ξ2, ξ3 < x0 + ∆x. The standard procedure of now dividing by
∆x and letting ∆x → 0, yields a partial derivative in x for the flux, J , terms.
Rearranging terms and recognizing that there is nothing special about x0 so
that it can be replaced with x, gives a final balance law of

∂n(x, t)
∂t

− v
∂n(x, t)

∂x
= f(x) [1 − n(x, t)] − g(x)n(x, t) . (3)

This hyperbolic partial differential equation, along with initial and bound-
ary conditions, describes the evolution of the attached fraction of cross-bridges
in time and space. Note that the left-hand side of the equation is the stan-
dard material, or convective derivative, given the somewhat non-standard sign
convention adopted for positive velocity.

For comparison with experimental muscle data, the model still requires
specification of the rate functions, f(x) and g(x). After considerable trial and
error, Huxley settled upon the relationship

f(x) =

⎧
⎪⎨

⎪⎩

0, x > h
f1x

h
, 0 < x ≤ h

0, x ≤ 0

(4a)

and
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g(x) =

⎧
⎪⎨

⎪⎩

0, x > h
g1x

h
, 0 < x ≤ h

g2, x ≤ 0
(4b)

Huxley was primarily interested in frog fast vertebrate muscle. Brokaw [13]
suggested parameter values of f1 = 65 s−1, g1 = 15 s−1, g2 = 313.5 s−1, and
h = 10 nm as providing a reasonable fit to the observed contraction velocity
at 0◦C. Rate functions for these values are shown in Fig. 3, and will be used
throughout the text when specific values are employed. Muscle is activated
by the release of calcium from the sarcoplasmic reticulum. This would imply
time-dependent kinetics as a function of calcium concentration. The Huxley
model can viewed as restricting analysis to fully activated conditions.
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Fig. 3. Kinetic rate functions for cross-bridge attachment and detachment. Values
are from Brokaw [13] for frog skeletal muscle

3 Isometric Contraction

Equation (1) is a partial differential equation for cross-bridge function. There
are frequently employed experimental protocols that allow the reduction of the
model to an ordinary differential equation. The first we will consider is when
the muscle, or skinned muscle preparation, is allowed to contract at a fixed
length. In this “isometric” mode of contraction, there is no relative sliding
of the actin and myosin filaments, v = 0, and (1) reduces to the ordinary
differential equation in time, with trivial space dependence

dn(x, t)
dt

= f(x)[1 − n(x, t)] − g(x)n(x, t) . (5)
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Considering the case where all cross-bridges are initially detached, n(x, 0) = 0,
the differential equation for the fraction attached must be solved in the three
regions defined by (4a,b), x ≤ 0, 0 < x ≤ h, and x > h. With f(x) = 0 outside
the region 0 < x ≤ h, we trivially have n(x, t) = 0 for x ≤ 0 and x > h.

Combining the solution of

dn(x, t)
dt

=
f1(x)

h
[1 − n(x, t)] − g1(x)

h
n(x, t), n(x, 0) = 0, 0 < x ≤ h , (6)

with the zero solution outside this domain, the solution for isometric contrac-
tion is given by

n(x, t) =
f1

f1 + g1
{1 − e−(f1+g1)xt/h}, 0 < x ≤ h ,

(7)
0 x ≤ 0, x > h .

Several observations are relevant. For large time,

lim
t→∞n(x, t) =

f1

f1 + g1
for 0 < x ≤ h, see Fig. 4a. (8)

However, this equilibrium distribution is not reached uniformly. From (7), the
time constant for the approach to equilibrium, (f1 + g1)x/h, is greater for
larger x. Cross-bridges with distortions of x ≈ h attach significantly faster
than cross-bridges with x ≈ 0. Thus one of the fundamental consequences
of the Huxley model is that all cross-bridges are not equal as far as reaction
kinetics, and ensuing force production, are concerned.

The function of attached cross-bridges is to produce mechanical force. We
have solved for the fraction of attached cross-bridges for a model of two in-
finitely long parallel filaments. To define the force produced in functioning
muscle, the attached fraction must be related to the actual physical system
of interdigitating thick and thin filaments. Gordon and co-workers [14] exper-
imentally demonstrated a linear decrease in muscle force with a decrease in
thick/thin filament overlap (i.e. an increase in muscle length, see Fig. 1). This
implies that the cross-bridges in a sarcomere on individual filaments sum in
parallel to produce force. Additionally, we need a mathematical constitutive
relationship for the force of an attached cross-bridge. The important experi-
mental observation comes from force changes observed in actively contracting
muscle subjected to rapid length changes. The idea is to impose a small length
change to the muscle sufficiently rapidly such that significant cross-bridge at-
tachment or detachment does not occur during the length perturbation. Thus
one is measuring the mechanics of already attached cross-bridges. If ∆t is
the time during which the length perturbation is completed, this is equiv-
alent in the Huxley model to requiring ∆t � (f1 + g1)−1 for stretch, or
∆t � (f1 + g2)−1 for releases. Experimental data [15] show that for either
rapid stretches or rapid releases, the change in mechanical force is linearly
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proportional to the change in muscle length. This led Huxley to postulate
that attached cross-bridges produce force as linear, Hookean springs. Using
the notation of Huxley [12], the force produced by an attached cross-bridge
with distortion, x, is kx, where k is the elastic force constant. For a muscle
with uniform cross-sectional geometry, let A be the cross-sectional area, m
be number of cross-bridges per unit volume that can interact with actin, 	 be
the distance between myosin sites and s be the sarcomere length. Then the
tension T (t) produced is given by A(s/2)x (average force per cross-bridge), or

T (t) =
Asm

2	

∫ �/2

−�/2

n(x, t)kxdx . (9)

Myosin filaments are bipolar, with the two ends connected in series. Under
conditions of no filament sliding (isometric), each half sarcomere must produce
the same force. Thus the requirement of the factor, s/2. Due to the fact that
muscle preparations are of different diameters, experimental data are generally
normalized in terms of force/unit cross-sectional area. Huxley additionally
noted that if a myosin cross-bridge has a significant probability of interacting
with only the nearest actin binding site (single-site assumption), the integral
on [−	/2, 	/2] in (9) can be replaced with a more general integral on (−∞,∞),
and the tension per unit area, P (t) = T (t)/A is

P (t) =
ms

2	

∫ ∞

−∞
n(x, t)kxdx . (10)

Letting n(x, t) be defined by the cross-bridge distribution for isometric con-
ditions, (7), substituting into (10), and evaluating the integral, gives

P (t) =
mksh2

4	

(
f1

f1 + g1

) {
1 +

2
(f1 + g1)t

e−(f1+g1)t

− 2
[(f1 + g1)t]2

(
1 − e−(f1+g1)t

)}
, (11)

and

lim
t→∞P (t) =

mksh2

4	

(
f1

f1 + g1

)
. (12)

is the final steady-state value of isometric tension, generally represented
by P0.

Protocols involving rapid length changes allow definition of another use-
ful characterization of cross-bridge behavior in actively contracting muscle.
Consider the case where a muscle is rapidly stretched by an amount δx per
half sarcomere. In other words, each pair of parallel filaments shifts relative to
each other by amount δx, again without significant cross-bridge attachment
or detachment. Let S(t), termed the mechanical stiffness of the muscle, be the
change in force divided by the change in length. Then
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S(t) =
ms

2	

{∫ h

0

n(x, t)k(x + δx)dx −
∫ h

0

n(x, t)kxdx

}

/δx . (13)

with

lim
δx→0

S(t) =
mks

2	

∫ h

0

n(x, t)dx . (14)

The integral of n(x, t) in space is just the total fraction of attached cross-
bridges as a function of time. Thus in the limit of small length perturbations,
with all cross-bridges producing force with the same elastic force constant,
S(t) is a measure of total cross-bridge attachment.

4 Isotonic Contraction

The first simplification of the balance law for n(x, t), (1), was motivated by
the experimental protocol of isometric contraction, with v = 0. Another fre-
quently employed experimental protocol is termed isotonic contraction. Here,
an actively contracting muscle is allowed to shorten against a constant force,
P . The experimental observation is that after a short initial velocity transient,
a steady-state shortening at constant velocity is achieved. Additional details
of this protocol and representative experimental data can be found in [16].
A.V. Hill [17] first observed that if P0 is the isometric tension and steady-
state shortening velocity is plotted against normalized tension P/P0, the data
were well fit by the hyperbolic relationship

V = Vmax
(a/P0)(1 − P/P0)

a/P0 + P/P0
. (15)

Here Vmax is the maximum velocity of shortening and a/P0 > 0 is an addi-
tional parameter for the fit. Both Vmax and a/P0 vary with muscle type and
species. Equation (15) is termed the Hill equation. The physiological range
is the portion of the hyperbola that decreases monotonically in (P/P0, V )
space from (0, Vmax) to (1, 0), see Fig. 5. This relationship implies that mus-
cle shortening works on a “there’s no free lunch” basis. In order to shorten
more rapidly, muscle has to pay the price of a decrease in the force that it can
generate. We next investigate the insights the Huxley model provides into the
force-velocity relationship.

For constant velocity shortening with v > 0, we can assume a steady-state
distribution of cross-bridges in time, and the balance law for cross-bridges,
(1), reduces to

− v
dn(x)

dx
= f(x) − [f(x) − g(x)]n(x), with lim

x→∞n(x) = 0 (16)

For v > 0, binding sites enter from the right in Fig. 3. Thus it is necessary to
solve (16) in the three domains of different rate functions. Using the functional



142 E. Pate

values for f(x) and g(x) in (4), the solution for x > h is trivially n(x) = 0.
For 0 < x ≤ h, the differential equation becomes

− v
dn(x)

dx
=

f1x

h
−

(
f1x

h
+

g1x

h

)
n(x) . (17)

For boundary condition, we assume continuity of n at x = h. In order to
normalize with respect to different length muscles, physiologists usually give
shortening velocities in terms of muscle length per unit time. Thus we let
v = (s/2)V , where s is the sarcomere length. It is also customary to define
φ = (f1 + g1) h/s. Then the solution for n(x) in the region 0 < x ≤ h becomes

n(x) =
f1

f1 + g1
{1 − e[(x2/h2−1)ϕ/V ]} . (18)

For x ≤ 0, the differential equation for n, (17) becomes
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Fig. 4. Cross-bridge distributions, n(x), from (8) (isometric conditions, Panel (a)
and from (18, 20) for shortening at (b) 0.15 Vmax, (c) 0.4 Vmax, and (d) Vmax
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− v
dn(x)

dx
= −g2n(x) , (19)

with continuity at x = 0 as the boundary condition. In terms of parameters
V and φ the solution is

n(x) =
f1

f1 + g1
[1 − e(−ϕ/V )]e(2xg2/sV ) . (20)

Figure 4 plots n(x) as a function of shortening velocity. In the Huxley model,
attached cross-bridges with x > 0 produce a positive force supporting ac-
tive shortening and will be termed powerstroke bridges. Those with x < 0,
produce a negative, resistive force to active shortening and will be termed
dragstroke cross-bridges. For V = 0, there is a spatially uniform distribution
of powerstroke cross-bridges and no dragstroke bridges (Fig. 4a). Binding sites
enter from the right for V > 0. Attachment begins when the distance to an
actin binding site satisfies x ≤ h and the fraction of attached cross-bridges in-
creases with passage through the powerstroke toward x = 0. However, the time
of passage decreases with increasing velocity and thus the maximum fraction
attached in the region x > 0 decreases with increasing velocity (Fig. 4b–d).
For x ≤ 0, the flux term in (1) implies that cross-bridges will be carried into
the dragstroke region by work done by powerstroke cross-bridges. More rapid
cross-bridge detachment begins when x < 0, due to the discontinuity in the
off-rate function g(x). However, this off-rate is again finite, and with increas-
ing velocity, cross-bridges translate, on average, further into the dragstroke
region before detaching. Increasing shortening velocity decreases the net force
from positively strained cross-bridges relative to that produced by negatively
strained cross-bridges. It had long been recognized that muscles have a max-
imum shortening velocity, and as formalized in the Hill relation, (15), the net
cross-bridge force at Vmax is zero. Huxley’s key conceptual insight was that
for the first time, he provided a mechanical explanation for the existence of
Vmax. Vmax is simply that velocity at which the negative force produced by
the dragstroke cross-bridges exactly balances the positive force produced by
the powerstroke cross-bridges.

However, the Hill relation further suggested a specific hyperbolic, func-
tional relationship at intermediate velocities. Inserting the solution for n(x),
(18, 20) into the definition of P (t), (11), evaluating the integral, and observing
the value of P0 from (12) gives the relationship

P/P0 = 1 − V

ϕ

(
1 − e−ϕ/V

)
[

1 +
1
2

(
f1

f1 + g1

)2
V

ϕ

]

. (21)

This transcendental equation relating tension and shortening velocity is the
Huxley model equivalent of the hyperbolic Hill equation. Both are plotted
in Fig. 5. The figure shows that to within the experimental error, the fits
are equivalent. The fundamental difference is that the Hill fit is based upon
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Fig. 5. Force-velocity relationship from the Huxley model (solid line) and the Hill
equation (dashed line). Parameters for the Huxley model are taken from Fig. 3. For
the Hill equation, a/P0 = 0.25

heuristic curve fitting of an experimental observation. The Huxley fit follows
naturally from the fundamental properties of interacting, linearly elastic cross-
bridges.

In his original paper, Huxley also analyzed energy liberation during con-
traction. Hill [17] suggested that energy liberation (heat + work) increased
monotonically with the speed of shortening. Huxley [12] showed that the
model also accurately fit the energy liberation data of Hill [17]. However,
Aubert [18] later questioned the Hill observation, suggesting instead that en-
ergy liberation increased initially with shortening velocity, but for rapid short-
ening velocities, energy liberation decreased with increasing velocity. More ad-
vanced technologies always allow for improved experimental equipment. Hill
[19] subsequently agreed that energy liberation decreased at high shortening
velocities (greater than ∼Vmax/2). With current technologies, these remain
difficult experiments. Despite its experimental limitations, the energy analy-
sis of Huxley [12] showed for the first time the mathematical framework of
how a cross-bridge model can be used to interpret energy liberation. It thus
remains extremely informative, and the reader is referred to the original work
for details [12]. It should likewise be noted that having developed a model,
and then having experimentalists change the experimental data underpinning
the model, remains a professional risk for modelers even today.

Since Huxley’s original work, a number of modifications have been pro-
posed, while maintaining the same basic conceptual framework. A complete
discussion of modeling after 1957 is beyond the scope of this chapter. I limit
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discussion to the inclusion of improved modeling of the biochemical cycle and
of thermodynamic constraints. The original Huxley model considered a single
attached and a single detached state. Lymn and Taylor [20] provided the
first widely accepted model of the actin-myosin-ATP biochemical interaction,
based upon experimental studies of the isolated proteins in solution, which
linked cross-bridge biochemical cycling to cross-bridge muscle mechanics. The
model contained five states (two detached, three attached) and is shown in
Fig. 6. Forward and reverse transitions are allowed between adjacent states,
but the working cycle goes in a clockwise direction.

M•T M•D•P

A•M•D•P

PA•M•D
D

A•M

T

DETACHED

ATTACHED

Fig. 6. Kinetic scheme for the actin-myosin-nucleotide interaction. All steps are
reversible, but the contractile cycle goes in the clockwise direction. A =actin,
M = myosin, T = ATP, D= ADP, and P = orthophosphate. Starting at upper left,
ATP is hydrolyzed on myosin (in the absence of actin) with a transition to a myosin-
hydrolysis products state, M·D·P. The binding to actin yields an A·M·D·P state.
P is released first, followed by D, resulting in the A·M, rigor complex. The binding
of ATP results in the dissociation of the actomyosin complex into the original M·T
state. All states above (below) the dashed line are detached from (attached to) actin.
The actual biochemical cycle is more complicated, and the precise determination of
all states involved remains unresolved. This cycle can be viewed as common to more
complex models (reviewed in [9] and references therein)

The Huxley model can be viewed as lumping the attached states and de-
tached states into single states. If this is the resolution of the experimental
data one wishes to explain, this is a valid simplification. On the other hand,
inclusion of the entire five-state model allows for the analysis of mechani-
cal effects of variation of substrate, ATP, and hydrolysis products, ADP and
phosphate. There is additional evidence suggesting the mechanical and kinetic
properties of the individual states have different dependences on the spatial
parameter, x (reviewed in [21, 22] and references therein). More realistic bio-
chemical models are necessary to model these types of effects. However, it
must also be recognized that additional, distinct states come at a modeling
price. For an N-state model, (1) generalizes to a coupled system of N-1 par-
tial differential equations. I note that Huxley [23] demonstrated that a model
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containing more than two states could overcome the energy liberation prob-
lems of the original two-state model.

Another conceptual advance was the work of Eisenberg and co-workers
[21]. In their models, multiple, linearly elastic attached cross-bridge states
were assumed with different attached states having different values of distor-
tion for the neutral strain position. In particular, initial attachment was in
a weakly attached, low-force, pre-powerstroke state, with subsequent transi-
tion into a strongly bound powerstroke attached state, which was mechan-
ically comparable to the attached state in the Huxley model. Considering
in greater detail the relationship between thermodynamics and mechanics
for linearly elastic cross-bridges, the force produced at distortion, x, for
a given state i in a multi-state model was given by Fi(x) = dGi(x)/dx,
where Gi(x) is the free energy of the attached state, which is quadratic in
x. This is homologous to the relationship in classical physics between a lin-
ear spring and its parabolic potential energy as a function of extension, x.
Eisenberg and co-workers further observed that if Rij(x) and Rji(x) were
the forward and reverse transition rates between states i and j, they could
not be thermodynamically independent. They must instead be related by
Rij(x)/Rji(x) = exp[Gi(x)−Gj(x)]/RT , where R is the Boltzmann constant
and T is absolute temperature. Of the forward rate function, the reverse rate
function, and the free energy difference between the two states, the Gibbs re-
lationship implied that only two could be independently specified. The third
was then automatically fixed. This condition has been termed “thermody-
namic consistency” for cross-bridge models. Additional details are provided
in the original references.

5 Transient Simulations

Our discussion of modeling has used two common experimental protocols to
reduce the Huxley balance law to ordinary differential equations. The full
transient equations have been less frequently employed. They are, for example,
required for the modeling of the entire activiation, contraction, and relaxation
cycle of cardiac muscle. However, the initial, detailed transient application
was for analysis of the beating of cilia and flagella. In this system, the motor
protein is dynein. It interacts with the microtubule polymer that forms the
tail of a flagella or the cilia hair to cause the rhythmic beating motion. Dynein
appears to have many mechanical and biochemical characteristics in common
with myosin. Accepting myosin-like behavior, the periodic nature of flagellar
and cilliary beating requires solution of the full time- and space-dependent
equation. Hines and Blum [25, 26] were the first to use finite difference schemes
to solve the hyperbolic cross-bridge balance law. These and other numerical
schemes can likewise be applied to myosin systems.

Brokaw [13] developed an alternative, probabilistic modeling approach. We
discuss his work in greater detail, as it ultimately relates back to the analysis
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of evolving experimental protocols in actomyosin systems. In this modeling
approach, one starts with the knowledge of the states of all the cross-bridges
in a finite ensemble at time, t. For the original Huxley model, this would be
whether the cross-bridge is attached or detached. Parallel actin and myosin
filaments are assumed. One then increments a small increment in time, δt, to
time t + δt. This is done as follows. For each cross-bridge, the distance, x, to
the nearest actin-binding site is calculated. If the cross-bridge is attached, the
probability of detachment in the time step, δt is determined. For the Huxley
model this is

pd(x) = g(x)[1 − exp(−B(x)δt)]/B(x), where B(x) = f(x) + g(x) . (22)

If the cross-bridge is detached, the probability of attachment during a time
step, δt is calculated,

pa(x) = f(x)[1 − exp(−B(x)δt)]/B(x) . (23)

The probability is compared with a computer-generated pseudorandom num-
ber and the cross-bridge status (detached or attached) is updated. All re-
maining cross-bridges are similarly updated. In reality, computational speed
is enhanced by generating a table of probabilities as a function of x and then
doing a table lookup at each step. The forces generated by all cross-bridges
are then balanced against any imposed external load by shifting the modeled
actin filament relative to the modeled myosin filament so that the cross-bridge
force and imposed load come into balance. Brokaw [27, 28] discusses transition
probabilities for models involving more than two states.

The advantage of the probabilistic approach was that it was easy to pro-
gram, and did not require advanced knowledge of finite difference or other
approaches for numerically solving partial differential equations. The disad-
vantages were that it was a first-order scheme, and that one had to either
deal with large ensembles of cross-bridges, or to average multiple simulations
with smaller numbers of cross-bridges, in order to eliminate statistical noise.
This made the probabilistic scheme computationally more time consuming.
However, with massive parallelization on the horizon, and the assumption of
independently functioning cross-bridges, this computational speed deficiency
may not be the case in the future.

The goal is to use modeling to describe how an individual cross-bridge
functions. As noted in Sect. 1, the large numbers of cross-bridges in a muscle
fiber justifies the use of a continuum model. The disadvantage of the intact
muscle preparation is that the properties of an individual cross-bridge must
be deduced from an ensemble average of a very large number of independently
functioning cross-bridges that are not synchronized in their chemomechanical
cycle. One way to examine better the properties of an individual cross-bridge
is to use experimental systems that contain only a few cross-bridges. In this
situation, probabilistic models will not be just useful; they will be essential. I
describe this application next.
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6 Analysis of Systems of Small Numbers
of Cross-Bridges

The first experimental protocol that allowed examination of the mechanical
properties of small numbers of motor molecules was a reconstituted system
of motor proteins termed an in vitro assay [29, 30, 31, 32]. In this proto-
col, as generally employed today, a solution of myosin, or a myosin frag-
ment containing the motor domain, is brought in contact with a nitrocel-
lulose coated glass surface. Individual molecules became fixed to the sub-
strate. The number of motors on the surface can be controlled by the con-
centration in the solution and the contact time. The solution is then ex-
changed for one containing polymerized actin filaments and ATP. With proper
microscopy, the actin filaments can then be visualized gliding like snakes
across a lawn of myosin motors. Gliding velocities are comparable to those
observed in whole fiber preparations. Photographs, on-line videos, and ad-
ditional discussion of in vitro assays can be found on the world-wide web
at http://www.mih.unibas.ch/Booklet/Booklet96/Chapter2/Chapter2.html
(Andreas Bremer, Daniel Stoffler and Ueli Aebi), http://biochem.stanford.
edu/spudich/ (James Spudich), and http://physiology.med.uvm.edu/war-
shaw/TechspgInVitro.html (David Warshaw). An additional advantage of this
protocol is that it can be used with myosins that do not form filaments (e.g.,
intracellular myosins involved in organelle transport).

We consider an application of probabilistic models to this experimental
setup. As noted previously, relative sliding of the actin filaments will be a bal-
ance of cross-bridge forces and any imposed load. The average force produced
by a single myosin cross-bridge is in the picoNewton range (1 pN = 10−12 N)
(reviewed in [5, 7, 8]). There are two imposed loads that need to be considered
in the in vitro assay. One is viscosity; the other is inertia. Approximating an
actin filament to be a cylinder of radius 10 nm, the viscous resistance to slid-
ing along the long axis at a typical velocity of 1000 nm/sec will be only about
1 fN/µM (1 fN = 10−15 N) [33]. The viscous resistance is a factor of 100–1000
less than the force of a single cross-bridge, and thus viscous forces will be
ignored. For a filament moving through a viscous fluid, the Reynolds number,
Re = UL/v, is a dimensionless quantity giving the ratio of inertial to viscous
forces. Here U is a velocity scale, L is a length scale and v is the kinematic
viscosity of the fluid. Take U = 1000 nm/sec, L = 1 µm, and v = 0.01 cm2/sec
(water). Then Re = 10−6, and inertial force of the filament is even smaller
than the already ignored viscous force. In other words, when we update the
filament position for a time step, δt, in the probabilistic model, we are in a sit-
uation of unloaded filament sliding. After updating the cross-bridges, assume
there are i = 1, . . . , n attached cross-bridges with distortions xi. Then our
zero net force requirement is determined by a translation of the actin filament
by an amount, δx, which satisfies
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n∑

i=1

k(xi − δx) = 0, with solution δx =

(
n∑

i=1

xi

) /

n . (24)

If n = 0, no translation is made.
Figure 7 shows representative results from simulations using the Huxley

two-state model cross-bridge kinetic scheme, as the number of cross-bridges,
N , increases. The graininess of the stepping is evident, although for N = 50
it is already dramatically reduced. The other unexpected observation is that
the average velocity of sliding increases with cross-bridge number (Fig 7).
This has been observed experimentally for myosin [32]. We now consider the
factors that determine sliding velocity for a small and a large number of
cross-bridges, and show that modeling can demonstrate how the interplay of
competing effects offers an explanation for velocity increases with increasing
cross-bridge number.

0

400

800

1200

1600

D
IS

TA
N

C
E

 (
nm

)

TIME (s)

0 0.2 0.4 0.6 0.8 1.0

N=50

N=6

N=1

Fig. 7. Sliding distance as a function of time for finite ensembles of Huxley-model
cross-bridges. Results for 1, 6, and 50 cross-bridges are shown. Parameters for f1,
g1, g2, and h were taken from Fig. 3 (Brokaw [13] model for frog muscle, 0◦C)

For the simulations of Fig. 7, myosin cross-bridges were assumed to have
the thick filament repeat of 42.9 nm and actin sites a spacing of 10 nm, the
powerstroke length. The latter insures retention of single-site, thick-thin fila-
ment interaction in even the single cross-bridge, N = 1 case, which we con-
sider first. For the parameters used in the simulations, the nearest binding
site will be located at x = h after the first step. Using the Huxley kinetic
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parameters for frog muscle, (4), cross-bridge attachment will occur with rate
f(10 nm) = f1 = 65 s−1. In the presence of negligible resistive forces, trans-
lation of the actin filament by a distance of δx = 10 nm, (24) follows. De-
tachment then occurs with rate g(0) = g2 = 313.5 s−1. The mean velocity of
sliding will be the mean cycle rate time the powerstroke length. For indepen-
dent Poisson attachment and detachment processes, this becomes

v = (f(h)−1 + g(0)−1)−1h . (25)

For our simulations, f(h) � g(0), (f1 � g2) and to a first approximation,

v = f(h)h . (26)

For a large number of cross-bridges, the limit as N → ∞ gives the original
Huxley model. Then

∂n(x, t)
∂t

− v
∂n(x, t)

∂x
= −g2n(x, t) , x ≤ 0

(27)
∂n(x, t)

∂t
− v

∂n(x, t)
∂x

=
f1x

h
[1 − n(x, t)] − g1x

h
n(x, t) , 0 < x ≤ h

with n(x, t) = 0 for x > h. In order to properly compare the relative sizes of
the terms in our analysis, it is necessary to introduce dimensionless, scaled
variables. Let X = x/t, T = g2t be the dimensionless space and time variables.
The dimensionless cross-bridge fraction, n(x, t) ∈ [0,1], and is already scaled.
In terms of the new parameters, the balance law for cross-bridges becomes

∂n(X,T )
∂T

− V
∂n(X,T )

∂X
= −n(X,T ) , X ≤ 0

(28)
∂n(X,T )

∂T
− V

∂n(X,T )
∂X

= −RXn(X,T ) + HX , 0 < X ≤ 1

Here the dimensionless velocity V = v/(g2h), R = (f1 + g1)/g2 is the di-
mensionless ratio of kinetic constants in the powerstroke and dragstroke force
regions, and H = f1/g2. For steady-state contraction ∂n/∂T = 0, resulting
again in ordinary differential equations in X. With n(1) = 0 and continuity
at X = 0, the solution becomes

n−(X) =
H

R
[1 − e−R/2V ]eX/V , X ≤ 0

(29)

n+(X) =
H

R
[1 − eR(X2−1)/V ] , 0 < X ≤ 1

where the ± subscripts denote the negative and positive distortion region
solutions, respectively. The sliding velocity under unloaded conditions will
occur when the positive and negative cross-bridge forces balance. With k as
the cross-bridge elastic force constant, we require
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∫ 1

0

n+(X)kXdX +
∫ 0

−∞
n−(X)kXdX = 0 (30)

Substituting for n±(X) and evaluating the integrals, the dimensionless sliding
velocity, V , is the solution of the transcendental equation

1 − 2V

R
(1 − e−R/2V )(1 + V R) = 0 (31)

The parameter R = (f1 + g1)/g2 = 0.26 for the Huxley kinetic parameters.
Anticipating that the scaled velocity is O(1), we assume a series expansion
for V in terms of powers of R,

V = a0 + a1R + a2R
2 + · · · (32)

where the ai are constants. Substitute the power series in R into (31) and
expand the exponential term in a Taylor series in R < 1. Grouping the terms
involving like powers of R, and setting the terms individually to zero, yields a
system of algebraic equations that satisfy (31). Solving the equations for the
ai yields

V =
1
2

+
1
24

R + O(R2) . (33)

In terms of dimensioned variables, this becomes (first term only)

v =
g2h

2
. (34)

We can now see the interplay that determines relative sliding velocities at low
and high cross-bridge number. For N = 1, and the parameters relevant to
frog fast skeletal muscle, the rate limiting step for the Huxley for the model is
f(h) = f1, the attachment rate at the beginning of the powerstroke. For the
case of an infinite number of cross-bridges, the rate-limiting step becomes the
detachment rate in the negative force region, g(x) = g2. Due to the magnitudes
of f1 and g2, the sliding velocity is greater for a large number of cross-bridges.

Note that other parameter ratios can yield different results as a function
of cross-bridge number. For example, if g2 � f1 + g1 < f1, then for N = 1,
detachment, g(0), and not attachment, f(h), now dominates in (25). The
mean velocity becomes v = g2h for the single cross-bridge case. Comparison
with the Lymn-Taylor biochemical cycle [20] suggests that this is equivalent
to considering a regime in which the concentration of substrate, ATP, is very
low [34]. The parameter R = (f1 + g1)/g2 	 1. The proper expansion for V
to solve the transcendental (31) for V is now in powers of 1/R, and it can be
shown that

v =
g2h√

2
. (35)

Thus in this case, the Huxley model predicts that sliding velocity of many
cross-bridges will be less than that of a single cross-bridge. Additional details
are provided in [34].
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In summary, we are now approaching 5 decades after the original work
by Huxley. The basic framework of the Huxley model remains the primary
foundation for the quantitative interpretation of experimental data. This in-
cludes both persons who would claim to be primarily experimentalists and
persons who are primarily modelers seeking to add quantitative insight into
the experimental database. Although modifications have been made as the
experimental database has expanded, the original basic assumptions of elastic
attached cross-bridges and spatially dependent cross-bridge kinetics continue
to dominate the muscle conversation.
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