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Abstract. We consider a non-preemptive, stochastic parallel machine
scheduling model with the goal to minimize the weighted completion
times of jobs. In contrast to the classical stochastic model where jobs
with their processing time distributions are known beforehand, we as-
sume that jobs appear one by one, and every job must be assigned
to a machine online. We propose a simple online scheduling policy for
that model, and prove a performance guarantee that matches the cur-
rently best known performance guarantee for stochastic parallel machine
scheduling. For the more general model with job release dates we de-
rive an analogous result, and for NBUE distributed processing times we
even improve upon the previously best known performance guarantee for
stochastic parallel machine scheduling. Moreover, we derive some lower
bounds on approximation.

1 Introduction

Non-preemptive parallel machine scheduling to minimize the weighted comple-
tion times of jobs, P| |

∑
wjCj in the three-field notation of Graham et al. [6],

is one of the classical problems in scheduling theory. This problem plays a role
whenever many jobs must be processed on a limited number of machines, with
typical applications, e.g., in parallel computing [2] or compiler optimization [3].
The main characteristic of the model of stochastic scheduling is the fact that
the processing times of jobs are subject to fluctuations, and become known only
upon completion of the jobs. Their respective distributions are assumed to be
given beforehand. This usually requires the notion of scheduling policies instead
of simple schedules.
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Stochastic scheduling. Stochastic machine scheduling models have been addressed
mainly since the 1980s [4]. Let us briefly recall the concept of a scheduling pol-
icy as introduced by Möhring et al. [10]. Roughly spoken, at any time t, such a
policy specifies which action to perform, in particular which jobs to start at t. In
order to decide, it may utilize the complete information contained in the partial
schedule up to time t. However, it must not utilize any information about the
future. An optimal scheduling policy is one that minimizes the objective function
value in expectation. Notice that, in general, a scheduling policy need not yield
a fixed assignment of jobs to machines.

With the exception of the papers by Weiss [18, 19], the first approxima-
tion algorithms for stochastic machine scheduling have been derived only re-
cently [11, 13, 14, 16]. In the papers [11, 14], the expected performance of a lin-
ear programming based list scheduling policy is compared against the expected
performance of an optimal scheduling policy. The results are constant-factor
approximations for problems with or without release dates [11], and also with
precedence constraints [14]. The approach is based upon the solution of linear
programming relaxations, and for the models with release dates or precedence
constraints, their solutions are used in order to define corresponding list schedul-
ing policies. Recently, another type of analysis has been pursued by Steger et
al. in the papers [13, 16], where the expected ratio of the performance of the
(W)SEPT rule1 over the optimum solution is analyzed. This approach may in-
deed have advantages over the previous approach, namely in terms of averaging
over different realizations of processing times, and we refer to [13, 16] for a discus-
sion. One of the main differences, however, is the fact that it uses a comparison
against the off-line optimum, whereas the approach in [11, 14] compares against
the on-line optimum. Nevertheless, restricted to models without release dates or
precedence constraints, constant-factor approximation results for the expected
ratio have been obtained for the (W)SEPT rule on parallel machines [13, 16].

Stochastic online scheduling. In this paper, we follow the approach taken by
Möhring et al. [11]. In other words, we compare the expected outcome of a certain
scheduling policy against the expected outcome of an optimal scheduling policy.
In contrast to the previously mentioned work on stochastic scheduling, however,
we consider a model where jobs have to be assigned to machines online. More
precisely, jobs j are presented to the scheduler one by one, with their weights wj

and expected processing times E [P j ], and without knowledge about jobs that
might appear in the future, or their number, they must be assigned to a ma-
chine. This assignment cannot be revised later. Once all jobs have been assigned
this way, there is freedom concerning the scheduling of jobs on every single ma-
chine; of course, still within the restrictions that jobs must not be preempted, and

1 In the WSEPT rule, jobs are scheduled greedily in the order of non-increasing ratios
wj/E [P j ], where wj is the weight of job j, P j its processing time distribution,
and E [P j ] is its expectation. For unit weights, this equals SEPT; shortest expected
processing time first.
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that their actual processing times become known only upon completion. For
convenience, let us denote this model Sos, for stochastic online scheduling.

Discussion of the model. As a matter of fact, the solution of LP relaxations is
crucial for the work of Möhring et al. [11] or Skutella and Uetz [14]. For models
with release dates or precedence constraints, optimal LP solutions are not only
required for the purpose of analysis, but also to define the corresponding list
scheduling policies. In order to set up these LP relaxations, it is required to know
beforehand the set of jobs, their expected processing times E [P j ], as well as a
uniform upper bound ∆ on the squared coefficient of variation of all processing
times distributions

CV [P j ]
2 = Var [P j ]/E [P j ]

2 ≤ ∆ for all jobs j .

One critique of this approach is the fact that in practical applications, parts of
this data might not be available. Even worse, in an online setting there is no
knowledge about jobs that might appear in the future. In that case, algorithms
that first require the solution of sophisticated LP relaxations might be useless.

The Sos model as proposed in this paper can be seen as a first step in the
direction of simpler, combinatorial algorithms for models with stochastic pro-
cessing times. It is a two-phase model, where the first phase consists of an online
assignment of jobs to machines. In this phase, whenever a job j is presented
to the scheduler, the only information that is disclosed is its weight wj and its
expected processing time E [P j ]. In the model with release dates, it is also the
release time rj . The second phase consists of the actual process of scheduling
the jobs over time, processing times being realized according to the respective
distributions. Yet, we compare the expected outcome of the online stochastic
scheduling policy to the expected outcome of an optimal scheduling policy, ac-
cording to the definition of general scheduling policies by Möhring et al. [10].

In comparison to classical online models, we make two remarks. First, like
in classical online optimization, the adversary in the Sos model may choose
an arbitrary sequence of jobs in the first phase. These jobs are assumed to be
stochastic, with corresponding processing time distributions (deterministic jobs
being a special case). However, in the second phase, the actual processing times
are realized according to the exogenous probability distributions, thus they are
not under control of the adversary. Moreover, given the exogenously controlled
processing times, the best the adversary can do is in fact to use an optimal
stochastic scheduling policy. In this view, our model indeed incorporates some
of the ideas by Koutsoupias and Papadimitriou in [8].

Results and methodology. We derive worst case performance guarantees for the
expected performance of very simple, combinatorial online scheduling policies
for models with and without release dates. For the model without release dates,
P| |E [

∑
wj Cj ], this is a performance guarantee of

1 +
(∆ + 1)(m − 1)

2m
,
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matching the previously best known performance guarantee of [11] for the per-
formance of the WSEPT rule. Note, however, that this bound holds even though
we use a restricted scheduling policy that first has to assign jobs to machines
online, without knowledge of the jobs to come. For the model with release dates,
P|rj |E [

∑
wjCj ] we prove a more complicated performance guarantee for a class

of processing time distributions that we call δ-NBUE. They generalize NBUE
distributions2, which are contained as a special case. For NBUE distributions,
we obtain a performance bound strictly less than

5 +
√

5
2

− 1
2m

,

where (5 +
√

5)/2 ≈ 3.62. Thereby, we improve upon the previously best known
performance guarantee of 4 − 1/m for NBUE distributions, which was derived
for an LP based list scheduling policy [11]. Again, notice that this improved
bound holds even though we use a restricted policy that first has to assign jobs
to machines online, without knowledge of the jobs to come.

Our results are achieved by the following, quite simple Sos policy. Once the
jobs have been assigned to the machines, we assume that on every machine
the jobs are processed in the WSEPT order3. To make the online decisions on
machine assignments in the first phase, at any time when a job is presented, we
assign it to that machine where it causes the minimal increase in total expected
objective value; given the jobs that have been assigned so far, and given that the
jobs on each machine will be scheduled in WSEPT order. Intuitively, the reason
why we can recover (or improve, respectively) the previous best known results in
stochastic machine scheduling is the following: On the one hand, we restrict the
full power of scheduling policies by fixing machine assignments beforehand. On
the other hand, it is precisely this fixed machine assignment, together with an
averaging argument over the number of machines, that allows an improvement
in the analysis in comparison to general scheduling policies. We mention that,
to obtain our results, we in fact utilize one of the LP based lower bounds of [11].

2 Model Definition, Notation, and Preliminaries

Let n be the number of jobs, index j ∈ {1, . . . , n} denote a job, with associated
weight wj and processing time distribution P j . By E [P j ] we denote its expected
processing time, and pj denotes a particular realization of P j . In the model
with release dates, rj denotes the earliest point in time when job j can be
started. Given a schedule of start times S1, . . . , Sn for a particular realization
p = (p1, . . . , pn) of processing times, Cj = Sj + pj is the completion time of

2 A distribution X is called NBUE, new better than used in expectation, if
E [X − t | X > t ] ≤ E [X] for all t > 0.

3 In the case with release dates, this is in fact a modified version of the WSEPT order,
that will be explained later.
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job j, j = 1, . . . , n. Each job must be processed non-preemptively, on any of the
m machines, and each machine can process at most one job at a time. The goal
is to find a scheduling policy that minimizes the expected value of the weighted
completion times of jobs, E [

∑
wj Cj ].

A scheduling policy eventually yields a feasible m-machine schedule for each
realization p of the processing times. For a given policy, denoted by Π, let SΠ

j (p)
and CΠ

j (p) denote the start and completion times of job j for a given realiza-
tion p, and let SΠ

j (P ) and CΠ
j (P ) denote the associated random variables. Unless

there is danger of ambiguity, we also write Sj and Cj , for short. We let

E
[
ZΠ

]
= E

[∑

j
wj CΠ

j (P )
]

denote the expected performance of a scheduling policy Π. Then, if OPT is an
optimal scheduling policy according to the most general definition of stochastic
scheduling policies in [10], we say that a policy Π is a ρ–approximation if, for
some ρ ≥ 1,

E
[
ZΠ

]
≤ ρ E

[
ZOPT

]
.

We assume that the jobs are presented to the scheduler one by one, in the order
1, . . . , n. However, the number of jobs n is not known before. When a job is pre-
sented, the scheduler is informed about its weight wj and its expected processing
time E [pj ] (in the case with release dates, also its release date rj). When job j
appears, it must be assigned to a machine i ∈ {1, . . . ,m} immediately, and this
decision must not be revised later. For a given job j ∈ W , and a given subset of
jobs W , let us define by H(j) the jobs in W that have a higher priority in the
WSEPT ordering, that is

H(j) =
{

k ∈ W | wk

E [P k]
≥ wj

E [P j ]

}

.

Notice that, by convention, H(j) contains job j, too. Accordingly, define

L(j) =
{

k ∈ W | wk

E [P k]
<

wj

E [P j ]

}

as those jobs that have lower priority in the WSEPT order.
It is clear that the online scheduling policies for the Sos model can in fact

be interpreted as a subclass of stochastic scheduling policies in general. This
because, assuming a classical input for a stochastic scheduling problem where
all (stochastic) input data is disclosed at the outset, the only thing we require
in the Sos model is a fixed assignment of jobs to machines beforehand. There-
fore, the expected performance of an optimal Sos policy is no less than the ex-
pected performance of an optimal policy for a corresponding classical stochastic
problem. (The latter being defined by the input after the online phase.) Hence,
lower bounds on the expected value of an optimal policy known from stochastic
scheduling carry over to the online setting. We crucially exploit that fact, and
will utilize the following lower bound on the expected performance E

[
ZOPT

]
of
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an optimal stochastic scheduling policy. It is a generalization of a lower bound
by Eastman et al. [5] for the deterministic setting.

Lemma 1 (Möhring et al. [11]). For any instance of P| |E [
∑

wj Cj ], we have
that

E [Zopt] ≥
∑

j

wj

∑

k∈H(j)

E [P k]
m

− (m − 1)(∆ − 1)
2m

∑

j

wjE [P j ] ,

where ∆ bounds the squared coefficient of variation of the processing times, that
is, Var[P j ]/E [P j ]

2 ≤ ∆ for all jobs j = 1, . . . , n and some ∆ ≥ 0.

This lemma indeed plays a crucial role in achieving performance guarantees
for the Sos policies presented in the following sections. Clearly, the claim of
Lemma 1 also applies to the setting with release dates P|rj |E [

∑
wj Cj ].

3 Lower Bounds on Approximation

The requirement of a fixed assignment of jobs to machines beforehand may be in-
terpreted as ignoring the additional information on the outcome of the stochastic
process (that is, the actual realization of processing times), at least with respect
to assignments of jobs to machines. In the following, we therefore give a lower
bound on the expected performance E

[
ZFIX

]
of an optimal stochastic schedul-

ing policy FIX that assigns jobs to machines beforehand. A fortiori, this lower
bound holds for the best possible Sos policy, too.

Theorem 1. For stochastic parallel machine scheduling with unit weights and
i.i.d. exponential processing times, P|pj ∼ exp(1)|E [

∑
Cj ], there exist instances

such that
E

[
ZFIX

]
≥ 3(

√
2 − 1) · E

[
ZOPT

]
− ε ,

for any ε > 0. Here, 3(
√

2 − 1) ≈ 1.24. Hence, no policy that uses fixed assign-
ments of jobs to machines can perform better in general.

Notice that the Theorem is formulated for the special case of exponentially
distributed processing times. Stronger bounds could probably be obtained for
arbitrary distributions. However, since our performance guarantees, as in [11],
will depend on the coefficient of variation of the processing times, we are particu-
larly interested in lower bounds for classes of distributions where this coefficient
of variation is small. The coefficient of variation of exponentially distributed
random variables equals 1. For example, for the case of m = 2 machines, we
get a lower bound of 8/7 ≈ 1.14, and for that case our performance bound
equals 2 − 1/m = 1.5.

Proof (of Theorem 1). For simplicity, we will prove a slightly worse lower bound.
Let us consider an instance with m machines and n = m + �m/2� exponentially
distributed jobs, pj ∼ exp(1). The optimal stochastic scheduling policy is SEPT,
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shortest expected processing time first [1, 20], and the expected performance is
(see, e.g., [17–Cor. 3.5.17])

E
[
ZOPT

]
= E

[
ZSEPT]

=
∑

j

E
[
CSEPT

j

]
= m +

n∑

j=m+1

j

m
.

The best fixed assignment policy assigns 2 jobs each to �m/2� of the machines,
and 1job each to 	m/2
 of the machines. Hence, there are m jobs with E [Cj ]=1,
and �m/2� jobs with E [Cj ] = 2. The expected performance for the best fixed
assignment policy FIX is

E
[
ZFIX

]
=

∑

j

E
[
CFIX

j

]
= m + 2 · �m/2� .

For small values m = 2, 3, 4 . . . , we calculate E
[
ZFIX

]
/E

[
ZOPT

]
= 8/7,

7/6, 32/27, . . . . It is easy to see that

E
[
ZFIX

]

E
[
ZOPT

] =
16m2

13m2 + o(m2)
,

and for m → ∞ we get a lower bound of 16/13 ≈ 1.23. Now the claim of the
theorem follows along the same lines if we redefine the number of jobs as n =
m + �

√
2m�. 
�

4 Stochastic Online Scheduling

We next define a stochastic online scheduling policy for the problem without
release dates, P| |E [

∑
wj Cj ]. The basic idea is simple: any job j, once it appears,

will be assigned to the machine where it causes the minimal increase in expected
objective value (given that jobs 1, . . . , j−1 have been assigned already). In order
to be able to do that, we first need to specify how the jobs will be scheduled
on every single machine. We introduce a final bit of notation, letting Mi denote
all jobs that are assigned to machine i, and letting Mi(j) = {k < j | k ∈ Mi}
denote the subset of jobs assigned to a machine i before some job j appears4.

WSEPT (weighted shortest expected processing time first)
On each machine i, schedule the jobs Mi in non-decreasing order of their
ratios of weight over expected processing time wj/E [P j ].

This policy is known to be optimal for (stochastic) machine problems on a single
machine, 1| |E [

∑
wj Cj ], by results of Smith and Rothkopf, respectively [15, 12].

Now we can define the MinIncrease policy as follows.

4 Recall that we assume a numbering of the jobs in the order in which they appear in
the online sequence; hence k < j denotes jobs k that appeared earlier than job j.
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MinIncrease
When a job j is presented to the scheduler, it is assigned to the machine i
that minimizes the expression

incr (j, i) = wj ·
∑

k∈H(j)∩Mi(j)

E [P k] + E [P j ]·
∑

k∈L(j)∩Mi(j)

wk +wjE [P j ] .

In fact, given that WSEPT is used on each machine, MinIncrease just chooses
the machine where job j causes the least increase in expected performance.

Theorem 2. Consider the stochastic online scheduling problem on parallel ma-
chines, P| |E [

∑
wj Cj ]. Given that Var[P j ]/E [P j ]

2 ≤ ∆ for all jobs j and some
constant ∆ ≥ 0, the MinIncrease policy is a ρ–approximation, where

ρ = 1 +
(∆ + 1)(m − 1)

2m
.

Proof. Denote by E [incr (j) ] the increase in the expected objective value caused
by fixing the assignment of a job j using MinIncrease. Since MinIncrease

chooses the machine i on which j causes the least expected increase, the expected
increase is

E [incr (j) ] = min
i

{E [incr (j, i) ]}

= min
i

{

wj

∑

k∈H(j)∩Mi(j)

E [P k] + E [P j ]
∑

k∈L(j)∩Mi(j)

wk

}

+ wjE [P j ]

≤ 1
m

(

wj

∑

k∈H(j),k<j

E [P k] + E [P j ]
∑

k∈L(j),k<j

wk

)

+ wjE [P j ] ,

where the inequality holds because the least expected increase is not more than
the average expected increase over all machines. By summing up these quantities
over all jobs we obtain the expected performance E

[
ZMI

]
of the MinIncrease

policy.

E
[
ZMI

]
=

∑

j

E [incr (j) ]

≤ 1
m

∑

j

(

wj

∑

k∈H(j),k<j

E [P k] + E [P j ]
∑

k∈L(j),k<j

wk

)

+
∑

j

wjE [P j ]

=
1
m

∑

j

wj

∑

k∈H(j)

E [P k] +
m − 1

m

∑

j

wjE [P j ] ,

where the last equality holds by index rearrangement, since
∑

j

E [P j ]
∑

k∈L(j),k<j

wk =
∑

j

wj

∑

k∈H(j),k>j

E [P k] .
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Now, we plug in the inequality of Lemma 1, and using the trivial fact that∑
j wjE [P j ] is a lower bound for the expected performance E

[
ZOPT

]
of an

optimal policy, we obtain

E
[
ZMI

]
≤ E

[
ZOPT

]
+

(∆ − 1)(m − 1)
2m

∑

j

wjE [P j ] +
m − 1

m

∑

j

wjE [P j ]

≤
(

1 +
(∆ + 1)(m − 1)

2m

)

· E
[
ZOPT

]
. �

This performance guarantee matches the currently best known performance
guarantee for the classical stochastic setting, which was derived for the per-
formance of the WSEPT rule in [11]. The WSEPT rule, however, requires the
knowledge of all jobs with their weights wj and expected processing times E [P j ]
at the outset. In contrast, the MinIncrease policy decides on machine assign-
ments online, without any knowledge of the jobs to come. Finally, it is worthy
to note that simple instances show that these two policies are indeed different.

Lower bounds for MinIncrease. The lower bound on the performance ratio for
any fixed assignment policy given in Theorem 1 holds for the MinIncrease pol-
icy, too. Hence, in general, MinIncrease cannot be better than 1.24-
approximative. We can strengthen the lower bound via more sophisticated in-
stances, but the computations of the optimal values become unpleasant. We next
give an instance for m = 2 machines.

Example 1. We are given 6 jobs with exponentially distributed processing times
such that E [P 1] = E [P 4] = 1, E [P 2] = E [P 5] = k and E [P 3] = E [P 6] = 2k, for
some fixed k. The jobs appear in order of their indices in the online sequence.

Without going into further details, it turns out that the expected performance of
the MinIncrease policy is 6 + 9k, and the expected performance of an optimal
scheduling policy is 5 + k(167/24 + 7/(1 + k) + 1/(2 + 4k)). For k → ∞, this
yields a lower bound of 216/167 ≈ 1.29, whereas Theorem 2 yields a performance
guarantee of 1.5.

For less restricted probability distributions, i.e., non-exponential and with
larger coefficients of variation, we obtain a lower bound of 3/2 on the expected
performance of MinIncrease relative to an optimal scheduling policy. However,
this is less meaningful compared to the performance bound of Theorem 2, which
depends on an upper bound ∆ on the squared coefficient of variation. We skip
the details.

5 Stochastic Online Scheduling with Release Dates

In this section we consider the problem of stochastic online scheduling on parallel
machines where jobs have release dates. As the optimal single machine scheduling
policy is unknown to date for this problem, we analyze the expected performance
of the MinIncrease policy which runs the following single machine scheduling
policy.
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α-Shift-WSEPT
Modify the release date rj of each job j such that r′j = max{rj , α E [P j ]},
for some fixed 0 < α ≤ 1. At any time t, when the machine is idle,
start the job with the highest priority in the WSEPT order among all
available jobs (respecting the modified release dates).

In the deterministic (online) setting, this policy was proposed for parallel ma-
chines in [9]. For the analysis of this policy, we restrict ourselves to random
variables that we call δ-NBUE. This is a generalization of NBUE random vari-
ables.

Definition 1 (δ-NBUE). A non-negative random variable X is δ-NBUE if,
for δ ≥ 1,

E [X − t |X > t ] ≤ δ E [X] for all t ≥ 0.

Ordinary NBUE distributions are by definition 1-NBUE. For a NBUE random
variable X, Hall and Wellner [7] showed that the (squared) coefficient of variation
is bounded by 1, that is, Var[X]/E [X]2 ≤ 1. From their work, it also follows
that, if X is δ-NBUE, then Var[X]/E [X]2 ≤ 2δ − 1. Examples of ordinary
NBUE (or 1-NBUE) distributions are exponential, Erlang, uniform, or Weibull
distributions (with shape parameter at least 1). We next derive an upper bound
on the expected completion time of a job, E [Cj ], when scheduling jobs on a
single machine according to the α-Shift-WSEPT policy. This bound is used later
to analyze the expected performance of MinIncrease.

Lemma 2. Let all processing times be δ-NBUE. Then the expected completion
time of job j for α-Shift-WSEPT on a single machine can be bounded by

E [Cj ] ≤ (1 + δ/α) r′j +
∑

k∈H(j)

E [P k] .

Proof. We consider some job j. Let us denote by B the event that the machine
is busy processing some job at time r′j , and let us denote by I the complement
of B, namely that the machine is idle (or just finished processing some job) at
time r′j . Under the condition I it could still be that there are higher priority
jobs k ∈ H(j) \ {j} available at time r′j , but in any case the expected start time
of job j can be postponed by at most

∑

k∈H(j)\{j}
E [P k | I ] .

However, due to independence of processing times, we have that E [P k | I ] =
E [P k], and therefore

E [Sj | I ] ≤ r′j +
∑

k∈H(j)\{j}
E [P k] .

Consider condition B and let us denote by E [x(B)] the expected length of the
time period until the machine becomes idle for the first time after r′j . Under the
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condition B, for any realization p of the processing times, conditioned on B, some
job �(p) is in process at time r′j (in fact, �(p) might have lower or higher priority
than j). Any such job � was available at time r′� < r′j , and by definition of the
modified release dates, we therefore know that E [P �] ≤ (1/α)r′� < (1/α)r′j for
any such job �. Moreover, letting t = r′j −S�, the expected remaining processing
time of such job �, conditioned on the fact that it is indeed in process at time
r′j , is E [P � − t | P � > t ]. Due to the assumption of δ-NBUE processing times,
we thus know that

E [P � − t | P � > t ] ≤ δ E [P �] ≤ (δ/α)r′j .

Therefore, the expected remaining processing time of any job � that might be in
process at time r′j is bounded by (δ/α)r′j , and thus

E [x(B)] ≤ (δ/α)r′j .

Repeating the same argument as above, we can now conclude that

E [Sj | B ] ≤ (1 + δ/α) r′j +
∑

k∈H(j)\{j}
E [P k] . (1)

As each of the two conditional expectations E [Sj | I ] and E [Sj | B ] is bounded
by the right hand side of (1), we obtain that

E [Sj ] ≤ (1 + δ/α) r′j +
∑

k∈H(j)\{j}
E [P k] ,

and the fact that E [Cj ] = E [Sj ] + E [P j ] concludes the proof. 
�

In fact, it is quite straightforward to use Lemma 2 in order to show the
following.

Corollary 1. The α-Shift-WSEPT algorithm is a 3-approximation for the sin-
gle machine problem 1|rj |E [

∑
wjCj ], for NBUE processing times.

We just use that δ = 1, and we choose α = 1. We skip further details, and note
that this matches the best known LP based performance bound derived in [11],
which even holds for arbitrary processing time distributions.

The MinIncrease policy for the problem with release dates is now the fol-
lowing. In order to decide on which machine a job should go, we just ignore the
release dates, and use the same policy for assigning jobs to machines that we
used before in the setting without release dates.

Theorem 3. Consider the stochastic online scheduling problem on parallel ma-
chines with release dates, P|rj |E [

∑
wj Cj ]. Given that all processing times are

δ-NBUE, the modified MinIncrease policy is a ρ–approximation, where

ρ = 1 + max{1 + δ/α , α + δ + (m − 1)(∆ + 1)/(2m)} .
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Here, ∆ is such that Var[P j ]/E [P j ]
2 ≤ ∆ for all jobs j. In particular, since all

processing times are δ-NBUE, we know that ∆ ≤ 2δ−1 in the above performance
bound.

Proof. Let ij be the machine to which job j is assigned. Then, by Lemma 2 we
know that

E [Cj ] ≤ (1 +
δ

α
)r′j +

∑

k∈H(j)∩Mij

E [P k] , (2)

and the expected value of MinIncrease can be bounded by

E
[
ZMI

]
≤

(
1 +

δ

α

) ∑

j

wj r′j +
∑

j

wj

∑

k∈H(j)∩Mij

E [P k] (3)

Using an index rearrangement argument as in the proof of Theorem 2, we can
write

∑

j

wj

∑

k∈H(j)∩Mij

E [P k]=
∑

j

⎛

⎜
⎝wj

∑

k∈H(j)∩Mij
(j)

E [P k]+E [P j ]
∑

k∈L(j)∩Mij
(j)

wk+wjE [P j ]

⎞

⎟
⎠ .

By definition of MinIncrease, we know that job j is assigned to the machine
which minimizes the sums in parenthesis of the right hand side of this equation.
Hence, by an averaging argument, we know that

∑

j

wj

∑

k∈H(j)∩Mij

E [P k]≤
∑

j

⎛

⎝wj

∑

k∈H(j),k<j

E [P k]
m

+ E [P j ]
∑

k∈L(j),k<j

wk

m
+ wjE [P j ]

⎞

⎠

=
∑

j

wj

∑

k∈H(j)

E [P k]
m

+
m − 1

m

∑

j

wjE [P j ] ,

where the last equality follows from index rearrangement. Plugging this into (2),
leads to the following bound on the expected performance of MinIncrease.

E
[
ZMI

]
≤

(
1 +

δ

α

)∑

j

wjr
′
j +

∑

j

wj

∑

k∈H(j)

E [P k]
m

+
m − 1

m

∑

j

wjE [P j ] .

As mentioned before, the relaxed problem without release dates provides a
lower bound on the expected optimum with release dates. We therefore can plug
into the above inequality the bound of Lemma 1, and obtain

E
[
ZMI

]
≤

(
1 +

δ

α

)∑

j

wjr
′
j + E

[
ZOPT

]
+

(m − 1)(∆ + 1)
2m

∑

j

wjE [P j ]

= E
[
ZOPT

]
+

∑

j

wj

(
(
1 +

δ

α

)
r′j +

(m − 1)(∆ + 1)
2m

E [P j ]
)

. (4)
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By bounding r′j by rj + αE [P j ], we obtain the following bound on the term in
parenthesis of the sum in the right hand side of inequality (4).

(
1 +

δ

α

)
r′j +

(m − 1)(∆ + 1)
2m

E [P j ]

≤
(
1 +

δ

α

)
rj +

(
α + δ +

(m − 1)(∆ + 1)
2m

)
E [P j ]

≤
(
rj + E [P j ]

)
max

{

1 +
δ

α
, α + δ +

(m − 1)(∆ + 1)
2m

}

.

The proof is completed by using this inequality in equation (4), and applying the
trivial lower bound

∑
j wj(rj + E [P j ]) ≤ E

[
ZOPT

]
on the expected optimum

performance. 
�

For NBUE processing times, where we can choose ∆ = δ = 1, the approxima-
tion ratio is minimal for α = (

√
5m2 − 2m + 1 − m + 1)/(2m), obtaining a ratio

of 2+(
√

5m2 − 2m + 1 + m − 1)/(2m), which is less than (5+
√

5)/2−1/(2m) ≈
3.62 − 1/(2m), improving upon the previously best know approximation ratio
of 4−1/m from [11].
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10. R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems
I: General strategies. ZOR - Zeitschrift für Oper. Res., 28:193–260, 1984.
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