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This article reviews many of the observational constraints on Lorentz sym-
metry violation (LV). We first describe the GZK cutoff and other phenomena
that are sensitive to LV. After a brief historical sketch of research on LV, we
discuss the effective field theory description of LV and related questions of
principle, technical results, and observational constraints. We focus on con-
straints from high energy astrophysics on mass dimension five operators that
contribute to LV electron and photon dispersion relations at order E/MPlanck.
We also briefly discuss constraints on renormalizable operators, and review the
current and future constraints on LV at order (E/MPlanck)2.

1 Windows on Quantum Gravity?

In most fields of physics it goes without saying that observation and prediction
play a central role, but unfortunately quantum gravity (QG) has so far not
fit that mold. Many intriguing and ingenious ideas have been explored, but
it seems safe to say that without both observing phenomena that depend on
QG, and extracting reliable predictions from candidate theories that can be
compared with observations, the goal of a theory capable of incorporating
quantum mechanics and general relativity will remain unattainable.

Besides the classical limit, there is one observed phenomenon for which
quantum gravity makes a prediction that has received encouraging support:
the spectrum of primordial cosmological perturbations. The quantized lon-
gitudinal linearized gravitational mode, albeit slave to the inflaton and not
a dynamically independent degree of freedom, plays an essential role in this
story [1].
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What other types of phenomena might be characteristic of a quantum
gravity theory? Motivated by tentative theories, partial calculations, intima-
tions of symmetry violation, hunches, philosophy, etc, some of the proposed
ideas are: loss of quantum coherence or state collapse, QG imprint on initial
cosmological perturbations, scalar moduli or other new fields, extra dimen-
sions and low-scale QG, deviations from Newton’s law, black holes produced
in colliders, violation of global internal symmetries, and violation of spacetime
symmetries. It is this last item, more specifically the possibility of Lorentz vi-
olation (LV), that is the focus of these lecture notes.

From the observational point of view, developments are encouraging a
new look at the possibility of LV. Increased detector size, space-borne instru-
ments, technological improvement, and technique refinement are permitting
observations to probe higher energies, weaker interactions, lower fluxes, lower
temperatures, shorter time resolution, and longer distances. It comes as a wel-
come surprise that the day of true quantum gravity observations may not be
so far off [2].

2 Lorentz Violation

Lorentz symmetry is linked to a scale-free nature of spacetime: unbounded
boosts expose ultra-short distances, and yet nothing changes. However, sug-
gestions for Lorentz violation have come from: the need to cut off UV di-
vergences of quantum field theory and of black hole entropy, tentative calcu-
lations in various QG scenarios (e.g. semiclassical spin-network calculations
in Loop QG, string theory tensor VEVs, non-commutative geometry, some
brane-world backgrounds), and the possibly missing GZK cutoff [3] on ultra-
high energy (UHE) cosmic rays.

The GZK question has generated a lot of interest, and is currently the
only observational phenomenon thought to indicate a possible violation of
Lorentz symmetry. As an invitation to the subject, we discuss it in this section,
before embarking on the rest of the lectures. We also give a list of possible LV
phenomena, and a brief historical overview of the subject.

2.1 The GZK Cut-Off

In collisions of ultra high energy protons with cosmic microwave background
(CMB) photons there can be sufficient energy in the center of mass frame to
create a pion, leading to the the reaction

p+ γCMB → p+ π0 . (1)

The threshold occurs when the invariant magnitude of the total four mo-
mentum is the sum of the proton and pion mass, since at threshold these
particles are both at rest in the zero-momentum frame. That is, it occurs



Astrophysical Bounds on Planck Suppressed Lorentz Violation 103

when (pp + pγ)2 = (mp + mπ)2, or pp · pγ = mpmπ + 1
2m

2
π, where pp,γ are

the proton and photon 4-momenta, and mp,π are the proton and pion mass.
Since Ep � mp, and mπ � 2mp, this yields the proton energy threshold

EGZK � mpmπ

2Eγ
� 3 × 1020eV ×

(
2.7K
Eγ

)

(2)

To get a definite number we have put Eγ equal to the energy of a photon
at the CMB temperature, 2.7 K, but of course the CMB contains photons of
higher energy,

This process degrades the initial proton energy with an attenuation length
of about 50 Mpc. Since plausible astrophysical sources for UHE particles are
located at distances larger than 50 Mpc, one expects a cutoff in the cosmic
ray proton energy spectrum, which occurs at around 5 × 1019 eV, depending
on the distribution of sources [4].

One of the experiments measuring the UHE cosmic ray spectrum, the
AGASA experiment, has not seen the cutoff. An analysis [6] from January
2003 concluded that the cutoff was absent at the 2.5 sigma level, while another
experiment, HiRes, is consistent with the cutoff but at a lower confidence level.
(For a brief review of the data see [4].) The question should be answered
in the near future by the AUGER observatory, a combined array of 1600
water Čerenkov detectors and 24 telescopic air fluorescence detectors under
construction on the Argentine pampas [7]. The new observatory will see an
event rate one hundred times higher, with better systematics.

Many ideas have been put forward to explain the possible absence of the
GZK cutoff [4]. For example the cosmic rays might originate closer, in some
unexpected way, by astrophysical acceleration or by decay of ultra-heavy ex-
otic particles, or they may be produced by collisions with ultra high energy
cosmic neutrinos. Virtually all of these explanations have problems.

In this context, it is intriguing to consider that with even a tiny amount of
Lorentz violation the energy threshold for the GZK reaction could be affected.
According to (2) the Lorentz invariant threshold is proportional to the proton
mass. Thus any LV term added to the proton dispersion relation E2 = p2 +
m2 will modify the threshold if it is comparable to or greater than m2

p at
around the energy EGZK . Modifying the proton and pion dispersion relations,
the threshold can be lowered, raised, or removed entirely, or even an upper
threshold where the reaction cuts off could be introduced (see e.g. [5] and
references therein).

For example, the LV term considered by Coleman and Glashow [8] was of
the form ηp2, assumed given in a reference frame close to that of the earth,
which is natural since we are close to being at rest in the universal rest frame.
This would affect the GZK threshold as long as η > (mp/EGZK)2 ∼ 10−22.
Even LV suppressed by two powers of the Planck mass M would affect the
threshold: a term of the form p4/M2 is comparable to m2

p when the proton
energy is (mpM)1/2 � 3×1018 eV, which is two orders of magnitude below the
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highest energy cosmic rays. Thus a missing GZK cutoff could be explained by
Planck double-suppressed LV. Conversely, observational confirmation of the
GZK cutoff can severely constrain such LV.

2.2 Possible LV Phenomena

Trans-GZK cosmic rays are not the only window of opportunity we have to
detect or constrain Lorentz violation induced by QG effects. In fact, many
phenomena accessible to current observations/experiments are sensitive to
possible violations of Lorentz invariance. A partial list is

– sidereal variation of LV couplings as the lab moves with respect to a pre-
ferred frame or directions, or cosmological variation

– long baseline dispersion and vacuum birefringence (e.g. of signals from
gamma ray bursts, active galactic nuclei, pulsars, galaxies)

– new reaction thresholds (e.g. photon decay, vacuum Čerenkov effect)
– shifted thresholds (e.g. photon annihilation from blazars, GZK reaction)
– maximum velocity (e.g. synchrotron peak from supernova remnants)
– dynamical effects of LV background fields (e.g. gravitational coupling and

additional wave modes)

2.3 A Brief History of Some LV Research

We conclude this section with a brief historical overview mentioning some of
the more influential papers, but by no means complete.

Suggestions of possible LV in particle physics go back at least to the 1960’s,
when a number of authors wrote on that idea [10]4. The possibility of LV in
a metric theory of gravity was explored beginning at least as early as the
1970’s [12]. Such theoretical ideas were pursued in the ’70’s and ’80’s notably
by Nielsen and several other authors on the particle theory side [13], and
by Gasperini [14] on the gravity side. A number of observational limits were
obtained during this period [16].

Towards the end of the 80’s Kostelecky and Samuel [17] presented evi-
dence for possible spontaneous LV in string theory, and motivated by this
explored LV effects in gravitation. The role of Lorentz invariance in the “trans-
Planckian puzzle” of black hole redshifts and the Hawking effect was empha-
sized in the early 90’s [18]. This led to study of the Hawking effect for quantum
fields with LV dispersion relations commenced by Unruh [19] and followed up
by others. Early in the third millennium this line of research led to work on
the related question of the possible imprint of trans-Planckian frequencies on
the primordial fluctuation spectrum [20]. Meanwhile the consequences of LV
4 Remarkably, already in 1972 Kirzhnits and Chechin [10] explored the possibil-

ity that an apparent missing cutoff in the UHE cosmic ray spectrum could be
explained by something that looks very similar to the recently proposed “doubly
special relativity” [11].
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for particle physics were being explored using LV dispersion relations e.g. by
Gonzalez-Mestres [21].

Four developments in the late nineties seem to have stimulated a surge of
interest in LV research. One was a systematic extension of the standard model
of particle physics incorporating all possible LV in the renormalizable sector,
developed by Colladay and Kostelecký [22]. That provided a framework for
computing the observable consequences for any experiment and led to much
experimental work setting limits on the LV parameters in the lagrangian [23].
On the observational side, the AGASA experiment reported events beyond
the GZK cutoff [24]. Coleman and Glashow then suggested the possibility that
LV was the culprit in the possibly missing GZK cutoff [8], and explored many
other high energy consequences of renormalizable, isotropic LV leading to
different limiting speeds for different particles [25]. In the fourth development,
it was pointed out by Amelino-Camelia et al. [26] that the sharp high energy
signals of gamma ray bursts could reveal LV photon dispersion suppressed by
one power of energy over the mass M ∼ 10−3MP, tantalizingly close to the
Planck mass.

Together with the improvements in observational reach mentioned earlier,
these developments attracted the attention of a large number of researchers to
the subject. Shortly after [26] appeared, Gambini and Pullin [27] argued that
semiclassical loop quantum gravity suggests just such LV. Some later work
supported this notion, but the issue continues to be debated [28, 29]. In any
case, the dynamical aspect of the theory is not under enough control at this
time to make any definitive statements concerning LV.

A very strong constraint on photon birefringence was obtained by Gleiser
and Kozameh [30] using UV light from distant galaxies. If the recent report[31]
of polarized gamma rays from a GRB turns out to be correct despite the
concerns of [32], this constraint will be further strengthened dramatically [33,
34]. Further stimulus came from the suggestion [35] that an LV threshold shift
might explain the apparent under-absorption on the cosmic IR background of
TeV gamma rays from the blazar Mkn501, however it is now believed by many
that this anomaly goes away when a corrected IR background is used [36].

The extension of the effective field theory framework to include LV di-
mension 5 operators was introduced by Myers and Pospelov [37], and used to
strengthen prior constraints. Also this framework was used to deduce a very
strong constraint [38] on the possibility of a maximum electron speed less than
the speed of light from observations of synchrotron radiation from the Crab
Nebula.

3 Theoretical Framework for LV

Various different theoretical approaches to LV have been taken to pursue the
ideas summarized above. Some researchers restrict attention to LV described
in the framework of effective field theory (EFT), while others allow for effects
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not describable in this way, such as those that might be due to stochastic
fluctuations of a “space-time foam”. Some restrict to rotationally invariant
LV, while others consider also rotational symmetry breaking. Both true LV
as well as “deformed” Lorentz symmetry (in the context of so-called “doubly
special relativity”[11]) have been pursued. Another difference in approaches
is whether one allows for distinct LV parameters for different particle types,
or proposes a more universal form of LV.

The rest of this article will focus on just one of these approaches, namely
LV describable by standard EFT, assuming rotational invariance, and allowing
distinct LV parameters for different particles. In exploring the possible phe-
nomenology of new physics, it seems useful to retain enough standard physics
so that clear predictions can be made, and so that the possibilities are narrow
enough to be meaningfully constrained.

This approach is not universally favored. For example a sharp critique ap-
pears in [39]. Therefore we think it is important to spell out the motivation
for the choices we have made. First, while of course it may be that EFT is not
adequate for describing the leading quantum gravity phenomenology effects,
it has proven itself very effective and flexible in the past. It produces local
energy and momentum conservation laws, and seems to require for its valid-
ity just locality and local spacetime translation invariance above some length
scale. It describes the standard model and general relativity (which are pre-
sumably not fundamental theories), a myriad of condensed matter systems
at appropriate length and energy scales, and even string theory (as perhaps
most impressively verified in the calculations of black hole entropy and Hawk-
ing radiation rates). It is true that, e.g., non-commutative geometry (NCG)
seems to lead to EFT with problematic IR/UV mixing, however this more
likely indicates a physically unacceptable feature of such NCG rather than a
physical limitation of EFT.

The assumption of rotational invariance is motivated by the idea that LV
may arise in QG from the presence of a short distance cutoff. This suggests a
breaking of boost invariance, with a preferred rest frame, but not necessarily
rotational invariance. Since a constraint on pure boost violation is, barring a
conspiracy, also a constraint on boost plus rotation violation, it is sensible to
simplify with the assumption of rotation invariance at this stage. The preferred
frame is assumed to coincide with the rest frame of the CMB.

Finally why do we choose to complicate matters by allowing for differ-
ent LV parameters for different particles? First, EFT for first order Planck
suppressed LV (see Sect. 3.2) requires this for different polarizations or spin
states, so it is unavoidable in that sense. Second, we see no reason a priori
to expect these parameters to coincide. The term “equivalence principle” has
been used to motivate the equality of the parameters. However, in the presence
of LV dispersion relations, free particles with different masses travel on differ-
ent trajectories even if they have the same LV parameters [5, 40]. Moreover,
different particles would presumably interact differently with the spacetime
microstructure since they interact differently with themselves and with each
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other. An example of this occurs in the braneworld model discussed in [41],
and an extreme version occurs in the proposal of [42] in which only certain
particles feel the spacetime foam effects. (Note however that in this proposal
the LV parameters fluctuate even for a given kind of particle, so EFT would
not be a valid description.)

3.1 Deformed Dispersion Relations

A simple approach to a phenomenological description of LV is via deformed
dispersion relations. If rotation invariance and integer powers of momentum
are assumed in the expansion of E2(p), the dispersion relation for a given
particle type can be written as

E2 = p2 +m2 +∆(p), (3)

where p is hereafter the magnitude of the three-momentum, and

∆(p) = η̃1p1 + η̃2p2 + η̃3p3 + η̃4p4 + · · · (4)

Since they are not Lorentz invariant, it is necessary to specify the frame in
which these relations are given, namely the CMB frame.

Let us introduce two mass scales, M = 1019 GeV ≈MPlanck, the putative
scale of quantum gravity, and µ, a particle physics mass scale. To keep mass
dimensions explicit we factor out possibly appropriate powers of these scales,
defining the dimensionful η̃’s in terms of corresponding dimensionless para-
meters. It might seem natural that the pn term with n ≥ 3 be suppressed by
1/Mn−2, and indeed this has been assumed in most work. But following this
pattern one would expect the n = 2 term to be unsuppressed and the n = 1
term to be even more important. Since any LV at low energies must be small,
such a pattern is untenable. Thus either there is a symmetry or some other
mechanism protecting the lower dimension operators from large LV, or the
suppression of the higher dimension operators is greater than 1/Mn−2. This
is an important issue to which we return in Subsect. 3.3.

For the moment we simply follow the observational lead and insert at least
one inverse power of M in each term, viz.

η̃1 = η1
µ2

M
, η̃2 = η2

µ

M
, η̃3 = η3

1
M
, η̃4 = η4

1
M2

. (5)

In characterizing the strength of a constraint we refer to the ηn without the
tilde, so we are comparing to what might be expected from Planck-suppressed
LV. We allow the LV parameters ηi to depend on the particle type, and indeed
it turns out that they must sometimes be different but related in certain ways
for photon polarization states, and for particle and antiparticle states, if the
framework of effective field theory is adopted. In an even more general setting,
Lehnert [43] studied theoretical constraints on this type of LV and deduced
the necessity of some of these parameter relations.
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The deformed dispersion relations are introduced for elementary particles
only; those for macroscopic objects are then inferred by addition. For example,
if N particles with momentum p and mass m are combined, the total energy,
momentum and mass are Etot = NE(p), ptot = Np, and mtot = Nm, so that
E2

tot = p2tot+m
2
tot+N

2∆(p). Although the Lorentz violating term can be large
in some fixed units, its ratio with the mass and momentum squared terms in
the dispersion relation is the same as for the individual particles. Hence, there
is no observational conflict with standard dispersion relations for macroscopic
objects.

This general framework allows for superluminal propagation, and spacelike
4-momentum relative to a fixed background metric. It has been argued [44]
that this leads to problems with causality and stability. In the setting of a LV
theory with a single preferred frame, however, we do not share this opinion. As
long as the physics is guaranteed to be causal and the states all have positive
energy in the preferred frame, we cannot see any room for such problems to
arise.

3.2 Effective Field Theory and LV

The standard model extension (SME) of Colladay and Kostelecký [22] consists
of the standard model of particle physics plus all Lorentz violating renormal-
izable operators (i.e. of mass dimension ≤4) that can be written without
changing the field content or violating the gauge symmetry. For illustration,
the leading order terms in the QED sector are the dimension three terms

− baψ̄γ5γaψ − 1
2
Habψ̄σ

abψ (6)

and the dimension four terms

− 1
4
kabcdFabFcd +

i

2
ψ̄(cab + dabγ5)γa

↔
D

bψ , (7)

where the dimension one coefficients ba, Hab and dimensionless kabcd, cab,
and dab are constant tensors characterizing the LV. If we assume rotational
invariance then these must all be constructed from a given unit timelike vector
ua and the Minkowski metric ηab, hence ba ∝ ua, Hab = 0, kabcd ∝ u[aηb][cud],
cab ∝ uaub, and dab ∝ uaub. Such LV is thus characterized by just four
numbers.

The study of Lorentz violating EFT in the higher mass dimension sector
was initiated by Myers and Pospelov [37]. They classified all LV dimension five
operators that can be added to the QED Lagrangian and are quadratic in the
same fields, rotation invariant, gauge invariant, not reducible to a combination
of lower and/or higher dimension operators using the field equations, and
contribute p3 terms to the dispersion relation. Just three operators arise:

− ξ

2M
umFma(u · ∂)(unF̃

na) +
1
M
umψ̄γm(ζ1 + ζ2γ5)(u · ∂)2ψ (8)
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where F̃ denotes the dual of F , and ξ, ζ1,2 are dimensionless parameters. The
sign of the ξ term in (8) is opposite to that in [37], and is chosen so that
positive helicity photons have +ξ for a dispersion coefficient (see below). All
of these terms violate CPT symmetry as well as Lorentz invariance. Thus if
CPT were preserved, these LV operators would be forbidden.

In the limit of high energy E � m, the photon and electron dispersion
relations following from QED with the above terms are [37]

ω2
± = k2 ± ξ

M
k3 (9)

E2
± = p2 +m2 +

2(ζ1 ± ζ2)
M

p3 . (10)

The photon subscripts ± refer to helicity, i.e. right and left circular po-
larization, which it turns out necessarily have opposite LV parameters. The
electron subscripts ± refer to the helicity, which can be shown to be a good
quantum number in the presence of these LV terms [33]. Moreover, if we write
η± = 2(ζ1 ± ζ2) for the LV parameters of the two electron helicities, those for
positrons are given [33] by

ηpositron
± = −ηelectron∓ . (11)

If η1 = 0, then the two helicities have opposite LV parameters, η+ = −η−, so
electron and positron have the same LV parameters. If instead η2 = 0, then
the η+ = η−, so electron and positron have opposite LV parameters.

3.3 Naturalness of Small LV at Low Energy?

As discussed above in Subsect. 3.1, if LV operators of dimension n > 4 are
suppressed, as we have imagined, by 1/Mn−2, LV would feed down to the lower
dimension operators and be strong at low energies [25, 37, 46, 47], unless there
is a symmetry or some other mechanism that protects the lower dimension
operators from strong LV. What symmetry (other than Lorentz invariance, of
course!) could that possibly be?

In the Euclidean context, a discrete subgroup of the Euclidean rotation
group suffices to protect the operators of dimension four and less from viola-
tion of rotation symmetry. For example [48], consider the “kinetic” term in
the EFT for a scalar field with hypercubic symmetry, Mµν∂µφ∂νφ. The only
tensorMµν with hypercubic symmetry is proportional to the Kronecker delta
δµν , so full rotational invariance is an “accidental” symmetry of the kinetic
operator.

If one tries to mimic this construction on a Minkowski lattice admitting a
discrete subgroup of the Lorentz group, one faces the problem that each point
has an infinite number of neighbors related by the Lorentz boosts. For the
action to share the discrete symmetry each point would have to appear in in-
finitely many terms of the discrete action, presumably rendering the equations
of motion meaningless.
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Another symmetry that could do the trick is three dimensional rotational
symmetry together with a symmetry between different particle types. For
example, rotational symmetry would imply that the kinetic term for a scalar
field takes the form (∂tφ)2 − c2(∇φ)2, for some constant c. Then, for multiple
scalar fields, a symmetry relating the fields would imply that the constant c
is the same for all, hence the kinetic term would be Lorentz invariant with c
playing the role of the speed of light. Unfortunately this mechanism does not
work in nature, since there is no symmetry relating all the physical fields.

Perhaps under some conditions a partial symmetry could be adequate,
e.g. grand unified gauge and/or super symmetry. In fact, a recent analysis of
Nibbelink and Pospelov [49] presents evidence that supersymmetry (SUSY)
together with gauge symmetry might indeed play this role. SUSY here refers to
the symmetry algebra that is a kind of square root of the spacetime translation
group. The nature of this square root depends upon the Minkowski metric,
so is tied to the Lorentz group, but it does not require Lorentz symmetry.
It is shown in [49], using the superfield formalism, that the SUSY preserving
LV operators that can be added to the SUSY Standard Model first appear at
dimension five. Moreover, these operators do not contribute O(p3) terms to
the particle dispersion relations. Of course SUSY is broken in the real world,
but the suppression in the SUSY theory may mean that the low dimension LV
terms allowed in the presence of soft SUSY breaking are suppressed enough
to be compatible with observation. On the other hand, it might also mean
that they are so suppressed as to lie beyond the scope of observation.

At this stage we assume the existence of some realization of the Lorentz
symmetry breaking scheme upon which constraints are being imposed. If none
exists, then our parametrization (5) is misleading, since there should be more
powers of 1/M suppressing the higher dimension terms. In that case, current
observational limits on those terms do not significantly constrain the funda-
mental theory.

4 Reaction Thresholds and LV

Lorentz violation can have significant effects on energy thresholds for parti-
cle reactions. Such effects could be signatures of LV, and can be used to put
constraints on LV. In the presence of LV, standard properties of LI threshold
configurations (e.g. angles and momentum distributions) may not be pre-
served. Hence a careful study of properties of LV threshold configurations is
needed before signatures and constraints can be considered. In this section we
review some basic results concerning LV thresholds.

Threshold configurations and new phenomena in the presence of LV disper-
sion relations were systematically investigated in [25, 50] (see also references
therein). We give here a brief summary of the results. We shall consider reac-
tions with two initial and two final particles (results for reactions with only one
incoming or outgoing particle can be obtained as special cases). Following our
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previous choice of EFT we allow each particle to have an independent disper-
sion relation of the form (3) with E(p) a monotonically increasing non-negative
function of the magnitude p of the 3-momentum p. While the assumption of
monotonicity could perhaps be violated at the Planck scale, it is satisfied for
any reasonable low energy expansion of a LV dispersion relation. EFT further
implies that energy and momentum are additive for multiple particles, and
conserved.

Consider a four-particle interaction where a target particle of 3-momentum
p2 is hit by a particle of 3-momentum p1, with an angle α between the two
momenta, producing two particles of momenta p3 and p4. We call β the angle
between p3 and the total incoming 3-momentum pin = p1 + p2. We define
the notion of a threshold relative to a fixed value of the magnitude of the
target momentum p2. A lower or upper threshold corresponds to a value of
p1 (or equivalently the energy E1) above which the reaction starts or stops
being allowed by energy and momentum conservation.

We now introduce a graphical interpretation of the energy-momentum
conservation equation that allows the properties of thresholds to be easily
understood. For given values of (p1, p2, α, β, p3), momentum conservation de-
termines p4. Since p3 and p4 determine the final energies E3 and E4, we can
thus define the final energy function Eα,β,p3

f (p1). (Since p2 is fixed we drop it
from the labelling.) Energy conservation requires that Ef be equal to Ei(p1),
the initial energy (again, we do not indicate the dependence on the fixed
momentum p2).

Now consider the region R in the (E, p1) plane covered by plotting
Eα,β,p3

f (p1) for all possible configurations (α, β, p3). An example is shown in
Fig. 1. The region R is bounded below by E = 0 since the particle energies
are assumed non-negative, hence it has some bounding curve EB(p1). Simi-
larly one can plot Ei(p1). The reaction is allowed (i.e. there is a solution to
the energy and momentum conservation equations) when this latter curve lies
inside the region R. A lower or upper threshold occurs when Ei(p1) enters or
leaves R.

This graphical representation demonstrates that in any threshold config-
uration (lower or upper) occurring at some p1, the parameters (α, β, p3) are
such that the final energy function Eα,β,p3

f (p1) is minimized. That is, the
configuration always yields the minimum final particle energy configuration
conserving momentum at fixed p1 and p2. From this fact, it is easy to deduce
two general properties of these configurations:

1. All thresholds for processes with two outgoing particles occur at parallel
final momenta (β = 0).

2. For a two-particle initial state the momenta are antiparallel at threshold
(α = π).

These properties are in agreement with the well known case of Lorentz in-
variant kinematics. Nevertheless, LV thresholds can exhibit new features not
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E

p1

E= p1

R

Ei

Fig. 1. R is the region covered by all final energy curves Eα,β,p3
f (p1) for some fixed

p2, with p4 determined by momentum conservation. The curve Ei(p1) is the initial
energy for the same fixed p2. Where the latter curve lies inside R there is a solution
to the energy and momentum conservation equations

present in the Lorentz invariant theory, in particular upper thresholds and
asymmetric pair creation.

Figure 1 clearly shows that LV allows for a reaction to not only to start
at some lower threshold but also to end at some upper threshold where the
curve Ei exits the region R. It can even happen that Ei enters and exits R
more than once, in which case there are what one might call “local” lower and
and upper thresholds.

Another interesting novelty is the possibility to have a (lower or upper)
threshold for pair creation with an unequal partition of the initial momentum
pin into the two outgoing particles (i.e. p3 �= p4 �= pin/2). Equal partition of
momentum is a familiar result of Lorentz invariant physics, which follows from
the fact that the final particles are all at rest in the zero-momentum frame at
threshold. This has often been (erroneously) presumed to hold as well in the
presence of LV dispersion relations.

A reason for the occurrence of asymmetric LV thresholds can be seen
graphically, as shown in Fig. 2. Suppose the dispersion relation for a massive
outgoing particle Eout(p) has negative curvature at p = pin/2, as might be
the case for negative LV coefficients. Then a small momentum-conserving dis-
placement from a symmetric configuration can lead to a net decrease in the
final state energy. According to the result established above, the symmetric
configuration cannot be the threshold one in such a case. A lower p1 could
satisfy both energy and momentum conservation with an asymmetric final
configuration. A sufficient condition for the pair-creation threshold configura-
tion to be asymmetric is that the final particle dispersion relation has negative
curvature at p = pin/2. This condition is not necessary however, since it could
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Fig. 2. Asymmetric pair production. The negative curvature of the outgoing par-
ticle dispersion relation allows the energy of the outgoing pair to be reduced by
distributing the initial momentum pin un-equally between the two particles

happen that the energy is locally but not globally minimized by the symmetric
configuration.

5 Constraints

Observable effects of LV arise, among other things, from (1) sidereal variation
of LV couplings due to motion of the laboratory relative to the preferred
frame, (2) dispersion and birefringence of signals over long travel times, (3)
anomalous reaction thresholds. We will often express the constraints in terms
of the dimensionless parameters ηn introduced in (5). An order unity value
might be considered to be expected in Planck suppressed LV.

The possibility of interesting constraints in spite of Planck suppression
arises in different ways for the different types of observations. In the laboratory
experiments looking for sidereal variations, the enormous number of atoms
allow variations of a resonance frequency to be measured extremely accurately.
In the case of dispersion or birefringence, the enormous propagation distances
would allow a tiny effect to accumulate. In the anomalous threshold case, the
creation of a particle with mass m would be strongly affected by a LV term
when the momentum becomes large enough for this term to be comparable
to the mass term in the dispersion relation.
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We briefly mention first constraints on the renormalizable Standard Model
Extension, then focus on LV suppressed by one or two powers of the ratio
E/M .

5.1 Constraints on Renormalizable Terms

For the n = 2 term in (4,5), the absence of a strong threshold effect yields a
constraint η2 � (m/p)2(M/µ). If we consider protons and put µ = m = mp ∼
1 GeV, this gives an order unity constraint when p ∼

√
mM ∼ 1019 eV. Thus

the GZK threshold, if confirmed, can give an order unity constraint, but multi-
TeV astrophysics yields much weaker constraints. The strongest laboratory
constraints on dimension three and four operators come from clock comparison
experiments using noble gas masers [51]. The constraints limit a combination
of the coefficients for dimension three and four operators for the neutron to be
below 10−31 GeV (the dimension four coefficients are weighted by the neutron
mass, yielding a constraint in units of energy). For more on such constraints
see e.g. [23, 52]. Astrophysical limits on photon vacuum birefringence give a
bound on the coefficients of dimension four operators of 10−32 [53].

5.2 Summary of Constraints on LV in QED at O(E/M)

Since we do not assume universal LV coefficients, different constraints cannot
be combined unless they involve just the same particle types. To achieve the
strongest combined constraints it is thus preferable to focus on processes in-
volving a small number of particle types. It also helps if the particles are very
common and easy to observe. This selects electron-photon physics, i.e. QED,
as a useful arena.

The current constraints on the three LV parameters at order E/M – one
in the photon dispersion relation and two in the electron dispersion relation –
will now be summarized. These are equivalent to the parameters in the di-
mension five operators (8) written down by Myers and Pospelov.

For n = 3, a strong effect on energy thresholds involving only electrons
and photons can occur when the LV term ηp3/M in the electron or photon
dispersion relation is comparable to or greater than the electron mass term
m2. This happens when

p � 14TeV η−1/3
3 . (12)

We can thus obtain order unity and even much stronger constraints from high
energy astrophysics, where such energies are reached and exceeded.

In Fig. 3 (from [33]) constraints on the photon (ξ) and electron (η) LV
parameters are plotted on a logarithmic scale to allow the vastly differing
strengths to be simultaneously displayed. For negative parameters, the nega-
tive of the logarithm of the absolute value is plotted, and a region of width
10−18 is excised around each axis. The synchrotron and Čerenkov constraints
must both be satisfied by at least one of the four quantities ±η±. The IC
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Fig. 3. Constraints on LV in QED at O(E/M) (figure from [33])

and synchrotron Čerenkov lines are truncated where they cross. Prior photon
decay and absorption constraints are shown in dashed lines since they do not
account for the EFT relations between the LV parameters.

We now briefly review the physics and observations behind these and other
constraints.

Electron Helicity Dependence and “Helicity Decay”

The constraint |η+ − η−| < 4 on the difference between the positive and neg-
ative electron helicity parameters was deduced by Myers and Pospelov [37]
using a previous spin-polarized torsion pendulum experiment [54] that looked
for diurnal changes in resonance frequency. They also determined a numeri-
cally stronger constraint using nuclear spins, however this involves four differ-
ent LV parameters, one for the photon, one for the up-down quark doublet,
and one each for the right handed up and down quark singlets. It also requires
a model of nuclear structure.

It is possible that an interesting constraint could be obtained from the
process of “helicity decay”[33]. If η+ and η− are unequal, say η+ > η−, then
a positive helicity electron can decay into a negative helicity electron and a
photon, even when the LV parameters do not permit the vacuum Čerenkov
effect. In this process, the large R or small (O(m/E)) L component of a pos-
itive helicity electron is coupled to the small R or large L component of a
negative helicity electron respectively. Such “helicity decay” has no thresh-
old energy, so whether this process can be used to set a constraint is solely
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a matter of the decay rate. It can be shown (assuming |ξ| � 10−3) that
for electrons of energy less than the transition energy (m2M/(η+ − η−))1/3,
the lifetime of an electron susceptible to helicity decay is greater than 4πM/
(η+ − η−)e2m2. At the limit of the best current bound |η+ − η−| < 4, the
transition energy is approximately 10 TeV and the lifetime for electrons be-
low this energy is greater than 104 seconds. This is long enough to preclude
any terrestrial experiments from seeing the effect. The lifetime above the tran-
sition energy is instead bounded below by E/e2m2, which is 10−11 seconds for
energies just above 10 TeV. The lifetime might therefore be short enough to
provide new constraints. Such a constraint might come from the Crab Nebula,
as explained below.

Vacuum Birefringence

The birefringence constraint arises from the fact that the LV parameters for
left and right circular polarized photons are opposite (10). The phase velocity
thus depends on both the wavevector and the helicity. Linear polarization is
therefore rotated through an energy dependent angle as a signal propagates,
which depolarizes any initially linearly polarized signal. Hence the observa-
tion of linearly polarized radiation coming from far away can constrain the
magnitude of the LV parameter.

In more detail, with the dispersion relation (10) the direction of linear
polarization is rotated through the angle

θ(t) = [ω+(k) − ω−(k)] t/2 = ξk2t/2M (13)

for a plane wave with wave-vector k over a propagation time t. The difference
in rotation angles for wave-vectors k1 and k2 is thus

∆θ = ξ(k2
2 − k2

1)d/2M , (14)

where we have replaced the time t by the distance d from the source to the
detector (divided by the speed of light). Note that the effect is quadratic in
the photon energy, and proportional to the distance travelled.

This effect has been used to constrain LV in the dimension three (Chern-
Simons) [55], four [53] and five [30, 33, 34] terms. The constraint shown in the
figure derives from the recent report [31] of a high degree of polarization of
MeV photons from GRB021206. The data analysis has been questioned [32],
so we shall have to wait and see if it is confirmed. The next best constraint
on the dimension five term was deduced by Gleiser and Kozameh [30] using
UV light from distant galaxies. While ten orders of magnitude weaker, it is
still very strong, |ξ| � 2 × 10−4.

Photon Time of Flight

Photon time of flight constraints [57] limit differences in the arrival time at
Earth for photons originating in a distant event [26, 56]. Time of flight can



Astrophysical Bounds on Planck Suppressed Lorentz Violation 117

vary with energy since the LV term in the group velocity is ξk/M . The arrival
time difference for wave-vectors k1 and k2 is thus

∆t = ξ(k2 − k1)d/M , (15)

which is proportional to the energy difference and the distance travelled. Using
the EFT result (10), the velocity difference of the two polarizations at a given
energy is 2|ξ|k/M , at least twice as large as the one arising from energy
differences. However, the time of flight constraint remains many orders of
magnitude weaker than the birefringence one from polarization rotation. In
Fig. 3 we use the EFT improvement of the constraint of Biller et al. [57] (this
is the best constraint to date for which a reliable distance is known), which
yields |ξ| < 63.

Vacuum Čerenkov Effect, Inverse Compton Electrons

In the presence of LV the process of vacuum Čerenkov radiation e → eγ can
occur. For example, if the photon dispersion is unmodified and the electron
parameter η (for one helicity) is positive, then the electron group velocity
vg = 1 − (m2/2p2) + (ηp/M) + · · · exceeds the speed of light when

pth = (m2M/2η)1/3 � 11TeV η−1/3 . (16)

This turns out to be the threshold energy for the vacuum Čerenkov process
with emission of a zero energy photon, which we call the soft Čerenkov thresh-
old. There is also the possibility of a hard Čerenkov threshold [5, 58]. For ex-
ample, if the electron dispersion is unmodified and the photon parameter ξ is
negative then at sufficiently high electron energy the emission of an energetic
positive helicity photon is possible. This hard Čerenkov threshold occurs at
pth = (−4m2M/ξ)1/3, and the emitted photon carries away half the incoming
electron momentum. It turns out that the threshold is soft when both η > 0
and ξ ≥ −3η, while it is hard when both ξ < −3η and ξ < η. The hard thresh-
old in the general case is given by pth = (−4m2M(ξ+η)/(ξ−η)2)1/3, and the
photon carries away a fraction (ξ − η)/2(ξ + η) of the incoming momentum.
In the general case at threshold, neither the incoming nor outgoing electron
group velocity is equal to the photon group velocity, so the hard Čerenkov
effect cannot simply be interpreted as being due to faster than light motion
of a charged particle.

The inverse Compton (IC) Čerenkov constraint uses the electrons of energy
up to 50 TeV inferred via the observation of 50 TeV gamma rays from the Crab
nebula which are explained by IC scattering. (The implications of a possible
high energy population of positrons is discussed below.) Since the vacuum
Čerenkov rate is orders of magnitude higher than the IC scattering rate, that
process must not occur for these electrons [5, 25]. (For a study of the vacuum
Čerenkov process in the Maxwell-Chern-Simons limit of the standard model
extension see [59].) The absence of the soft Čerenkov threshold up to 50 TeV
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produces the vertical IC Čerenkov line in Fig. 3. One can see from (16) that
this yields a constraint on η of order (11 TeV/50 TeV)3 ∼ 10−2. It could be
that only one electron helicity produces the IC photons and the other loses
energy by vacuum Čerenkov radiation. Hence we can infer only that at least
one of η+ and η− satisfies the bound.

We do not indicate the hard IC Čerenkov threshold constraint in Fig. 3
since it is superseded by the hard synchrotron Čerenkov constraint discussed
below.

Crab Synchrotron Emission

A constraint complementary to the Čerenkov one was derived in [38] by mak-
ing use of the very high energy electrons that produce the highest frequency
synchrotron radiation in the Crab nebula. For negative values of η the elec-
tron has a maximal group velocity less than the speed of light, hence there
is a maximal synchrotron frequency that can be produced regardless of the
electron energy [38]. In the Lorentz invariant case these electrons must have
an energy of at least 1500 TeV, which suggests that we should be able to
obtain a constraint many orders of magnitude stronger than the IC Čerenkov
one. We now explain how this indeed comes about.

Cycling electrons in a magnetic field B emit synchrotron radiation with a
spectrum that sharply cuts off at a frequency ωc given by the formula

ωc =
3
2
eB
γ3(E)
E

, (17)

where γ(E) = (1−v2(E)/c2)−1/2. Here v(E) is the electron group velocity, and
c is the usual low energy speed of light. (As shown in [38] the photon energy is
low enough to neglect any possible LV correction as long as |ξ| � 1011(−η)4/3.)
The formula (17) is based on the electron trajectory for a given energy in
a given magnetic field, the radiation produced by a given current, and the
relativistic relation between energy and velocity. As explained in [38], and also
in some more detail in [60] (which was written in response to the criticism
of [39]), only the last of these ingredients is significantly affected by LV in the
EFT framework we are considering. (See also [61] for another demonstration
that the electron trajectory is essentially unchanged.) Hence (17) holds in that
framework.

In standard relativistic physics, E = γm, so the energy dependence in (17)
is entirely through the factor γ2, which grows without bound as the energy
grows. In the LV case, the maximum synchrotron frequency ωmax

c is obtained
by maximizing øc (17) with respect to the electron energy, which amounts to
maximizing γ3(E)/E. Using the difference of group velocities

c− v(E) � m2

2E2
− η E

M
, (18)

we find that this maximization yields
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ωmax
c = 0.34

eB

m
(−ηm/M)−2/3 . (19)

This maximum frequency is attained at the energy Emax = (−2m2M/5η)1/3 =
10 (−η)−1/3 TeV. This is higher than the energy that produces the same cutoff
frequency in the Lorentz invariant case, but only by a factor of order unity.

The rapid decay of synchrotron emission at frequencies larger than ωc

implies that most of the flux at a given frequency in a synchrotron spectrum
is due to electrons for which ωc is above that frequency. Thus ωmax

c must
be greater than the maximum observed synchrotron emission frequency øobs.
This yields the constraint

η > −M
m

(
0.34 eB
møobs

)3/2

. (20)

The Crab synchrotron emission has been observed to extend at least up to
energies of about 100 MeV [62], just before the inverse Compton hump begins
to contribute to the spectrum. The magnetic field in the emission region has
been estimated by several methods which agree on a value between 0.15–
0.6 mG (see e.g. [63] and references therein.) Two of these methods, radio
synchrotron emission and equipartition of energy, are insensitive to Planck
suppressed Lorentz violation, hence we are justified in adopting a value of
this order for the purpose of constraining Lorentz violation. We use the largest
value 0.6 mG for B, since it yields the weakest constraint.

Our prior work assumed the high energy Crab radiation was produced
purely by electrons, not positrons. We consider here first this case. Then
we infer that at least one of the two parameters η± must be greater than
−7× 10−8. We cannot constrain both η parameters in this way since it could
be that all the Crab synchrotron radiation is produced by electrons of one
helicity.

Combined Synchrotron and IC Čerenkov Constraint

The η satisfying the synchrotron constraint must be the same η as satisfies the
IC Čerenkov constraint discussed above. If the synchrotron η did not satisfy
the IC Čerenkov constraint, the energy of these synchrotron electrons would
necessarily be under 50 TeV, rather than over the Lorentz invariant value of
1500 TeV. The Crab spectrum is well accounted for with a single population
of electrons responsible for both the synchrotron radiation and the IC γ-rays.
If there were enough extra electrons to produce the observed synchrotron flux
with thirty times less energy per electron, then those of the other helicity
would produce too many IC γ-rays [33], unless they were far fewer in number
in just the right proportion to agree with the self-consistent single population
model. While possible, such a conspiracy seems highly unlikely. It is important
that the same η, i.e. either η+ or η−, satisfies both the synchrotron and the IC
Čerenkov constraints. Otherwise, both constraints could have been satisfied
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by having one of these two parameters arbitrarily large and negative, and the
other arbitrarily large and positive.5

Possible Helicity Dependence Constraint

As alluded to above, a constraint on helicity dependence of the electron para-
meter η might be possible using the Crab Nebula. Suppose that η− is below
the synchrotron constraint (i.e. η− < −7×10−8), so that η+ must satisfy both
the synchrotron and Čerenkov constraints as explained above. Then positive
helicity electrons must have an energy of at least 50 TeV to produce the
observed synchrotron radiation. These must not decay to negative helicity
electrons (since those would be unable to produce the synchrotron emission).
This would require that the transition energy (discussed in the helicity depen-
dence section above) be greater than 50 TeV if the decay rate is fast enough.
This would yield the constraint η+ − η− < 10−2.

Possible Role of Positrons

If the population of high energy charges includes positrons as well as electrons,
as in some models [64], then the above constraint analysis must be modified.
The reasoning discussed so far implies only that at least one of the four para-
meters ±η± satisfies both the synchrotron and IC Čerenkov constraints, since
the emitting charge could be either an electron or a positron. In effect, this
reduces to the statement that one of |η±| satisfies the IC Cerenkov constraint.
We are currently investigating what constraints can be inferred if the amount
of radiation produced by each of the four populations of charges is accounted
for more quantitatively.

Vacuum Čerenkov Effect, Synchrotron Electrons

The existence of the synchrotron producing electrons can be exploited to ex-
tend the vacuum Čerenkov constraint. For a given η satisfying the synchrotron
bound, some definite electron energy Esynch(η) must be present to produce
the observed synchrotron radiation. (This is higher for negative η and lower
for positive η than the Lorentz invariant value [38].) Values of |ξ| for which the
vacuum Čerenkov threshold is lower than Esynch(η) for either photon helicity
can therefore be excluded [33]. This is always a hard photon threshold, since
the soft photon threshold occurs when the electron group velocity reaches the
low energy speed of light, whereas the velocity required to produce any finite
synchrotron frequency is smaller than this.
5 We thank G. Amelino-Camelia for focusing our attention on this point
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Photon Decay

In the presence of LV the process of photon decay γ → e+e− can occur. For
example, if the electron dispersion is unmodified and the photon parameter
ξ is positive, the positive helicity photon decays above the threshold energy
kth = (4m2M/ξ)1/3. If instead the photon dispersion is unmodified and if
electron and positron have the same dispersion with η < 0, then the threshold
occurs at kth = (−8m2M/η)1/3. The threshold for general ξ and η is found in
[5, 58].

Contrary to relativistic intuition, it turns out that when η < ξ < 0 the
electron and positron are not created with the same momentum. The reason
(cf. Sect. 4) is the electron and positron energy functions E(p) have negative
curvature at the threshold value of p. If the two momenta were equal, the
energy of the final state at fixed momentum could be lowered by making the
momentum of one particle smaller and one larger by an equal amount.

Previous work on observational constraints using photon decay and pho-
ton absorption (to be discussed below) were carried out before it was known
how the dispersion depends on helicity and particle vs. anti-particle. Since
these constraints are in any case not competitive now with others, we have
not attempted to fully account for these relations. Here we just make a few
remarks.

The strongest limit on photon decay came from the highest energy photons
known to propagate, which at the moment are the 50 TeV photons observed
from the Crab nebula [5, 58]. These photons must not decay before reaching
the earth, so we can rule out those LV parameters that lead to a threshold
below 50 TeV, provided the decay rate is fast enough.

Since we do not know the polarization of the observed photons however,
we can only exclude regions where both photon polarizations decay. Recall
that according to (10) positive and negative helicity photons have opposite
parameters ±ξ. A positive helicity photon carries a spin angular momentum
of one along the direction of motion. At threshold, where all momenta are
aligned, the electron and positron must therefore both have positive helicity.
Likewise a left-handed photon decays at threshold into a negative helicity
pair. Consider first the case η− = −η+ so that, according to (11), the elec-
tron and positron have the same dispersion parameter. Then the outgoing
pair both have parameter η+ for a positive helicity incoming photon and −η+
for a negative helicity one. We can then exclude those parameters for which
both (ξ, η+) and (−ξ,−η+) lead to photon decay thresholds below 50 TeV.
The allowed region is the intersection of that from the old photon decay con-
straint [5, 58] with its reflection about the ξ and η axes. It is a pair of wedges
in the upper-right and bottom left quadrants. Numerical work shows that this
wedge pattern is maintained for different choices of η− relative to η+, however
the exact orientation and shape of the wedges varies. A complete analysis of
constraints would also require examination of above threshold processes when
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the outgoing particles have orbital angular momentum and hence helicities
that are not determined solely by the incoming photon.

Photon Absorption

A process related to photon decay is photon absorption, γγ → e+e−. Unlike
photon decay, this is allowed in Lorentz invariant QED. If one of the photons
has energy ω0, the threshold for the reaction occurs in a head-on collision with
the second photon having the momentum (equivalently energy) kLI = m2/ω0.
For kLI = 10 TeV (which will be relevant for the observational constraints)
the soft photon threshold ω0 is approximately 25 meV, corresponding to a
wavelength of 50 microns.

In the presence of Lorentz violating dispersion relations the threshold for
this process is in general altered, and the process can even be forbidden. More-
over, as noticed by Kluźniak [65], in some cases there is an upper threshold
beyond which the process does not occur.6 The lower and upper thresholds
for photon annihilation as a function of the two parameters ξ and η were
obtained in [5], before the helicity dependence required by EFT was appre-
ciated. As the soft photon energy is low enough that its LV can be ignored,
this corresponds to the case where electrons and positrons have the same LV
terms. The analysis is rather complicated. In particular it is necessary to sort
out whether the thresholds are lower or upper ones, and whether they occur
with the same or different pair momenta.

The photon absorption constraint, neglecting helicity dependent effects,
came from the fact that LV can shift the standard QED threshold for an-
nihilation of multi-TeV γ-rays from nearby blazars, such as Mkn 501, with
the ambient infrared extragalactic photons [5, 58, 60, 65, 66, 67, 68]. LV de-
presses the rate of absorption of one photon helicity, and increases it for the
other. Although the polarization of the γ-rays is not measured, the possibility
that one of the polarizations is essentially unabsorbed appears to be ruled out
by the observations which show the predicted attenuation [68]. The electron
and positron spin angular momenta add to at most one. At threshold, where
the collision is head-on, the photons must therefore have opposite helicity,
and hence the electron and positron have opposite helicity. According to (11),
they therefore have opposite LV parameters. The threshold analysis has not
been redone to account for this.

Vacuum Photon Splitting

Another forbidden QED process that is allowed in the presence of LV is vac-
uum photon splitting into N photons, γ → Nγ. Unlike the other processes
considered here, this would be a loop effect. The lowest order Feynman dia-
gram contributing would be a fermion loop with various photon lines attached.
6 Our results agree with those of [65] only in certain limiting cases.
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The process has no threshold, so whether or not it can be used to set con-
straints depends on the rate.

Aspects of vacuum photon splitting have been examined in [5, 69]. An es-
timate of the rate, independent of the particular form of the Lorentz violating
theory, was given in [5]. It was argued that a lower bound on the lifetime is
δ−4E−1, where δ is a Lorentz violating factor. For a photon of energy 50 TeV,
this is 10−29δ−4 seconds. Such 50 TeV photons arrive from the Crab nebula,
about 1013 seconds away, so the best constraint (i.e. if there is is no further
small parameter such as αN or 1/16π2 in the decay rate) we could possibly
get on δ from photon splitting is δ � 10−10.

For a pn LV term with n = 2 in the dispersion relation, this is not compet-
itive with the other constraints already obtained. For higher n, each contribu-
tion arising from an operator of dimension greater than four will be suppressed
by at least one inverse power of the scale M . For example, contributions from
n = 3 would yield δ ∼ ξE/M . In this case the strongest conceivable constraint
on ξ would be of order ξ � 104, and even this is not competitive with the
other constraints.

5.3 Constraints at O(E/M) from UHE Cosmic Rays

If ultra-high energy cosmic rays (UHECR) are (as commonly assumed) pro-
tons, then we can derive strong constraints on n = 3 type dispersion by a) the
absence of a vacuum Čerenkov effect at GZK energies and b) the position of
the GZK cutoff. For a soft emitted photon with a long wavelength, the par-
tonic structure of a UHECR proton is presumably irrelevant. In this case we
can treat the proton as a point particle as in the QED analysis. With a GZK
proton of energy 5 × 1019 eV the constraint from the absence of a vacuum
Čerenkov effect is η < O(10−14). For a hard emitted photon, the partonic
nature of the proton is important and the relevant mass scale will involve
the quark mass. The exact calculation considering the partonic structure for
n = 3 has not been performed, however the threshold region will be similar
to that in [5]. The allowed region in the η − ξ plane will be bounded on the
right by the ξ axis (within a few orders of magnitude of 10−14) and below by
the line ξ = η [5]. These constraints apply to only one helicity of proton and
photon, since the UHECR could consist all of a single helicity. Also the differ-
ent quarks could have different dispersion parameters. See however Sect. 5.4
for remarks on the approach of [9] which can be applied to deduce combined
constraints in this case.

If the GZK cutoff is observed in its predicted place, this will place limits
on the parameters ηp and ηπ. For example, if the GZK cutoff is eventually
observed to be somewhere between 2 and 7 times 1019 eV then there are strong
constraints of O(10−11) on ηp and ηπ [5]. As a final comment, an interesting
possible consequence of LV is that with upper thresholds, one could possibly
reconcile the AGASA and Hi-Res/Fly’s Eye experiments. Namely, one can
place an upper threshold below 1021 eV while keeping the GZK threshold
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near 5×1019 eV. Then the cutoff would be “seen” at lower energies but extra
flux would still be present at energies above 1020 eV, potentially explaining
the AGASA results [5]. The region of parameter space for this scenario is
terribly small, however, again of O(10−11).

5.4 Constraints at O(E2/M2)?

As previously mentioned, CPT symmetry alone could exclude the dimension
five LV operators that give O(E/M) modifications to particle dispersion rela-
tion, and in any case the constraints on those have become nearly definitive.
Hence it is of interest to ask about the O(E2/M2) modifications. We close
with a brief discussion of the constraints that might be possible on those, i.e.
constraints at O(E2/M2).

As discussed above, the strength of constraints can be estimated by the
requirement η4p4/M2 � m2, which yields

η4 �
(√

m

1 eV
100TeV
p

)4

. (21)

Thus, for electrons, an energy around 1017 eV is needed for an order unity
constraint on η4, and we are probably not going to see any effects directly
from such electrons.

For protons an energy ∼1018 eV is needed. This is well below the UHE
cosmic ray energy cutoff, hence if and when Auger [7] confirms the identity of
UHE cosmic rays as protons at the GZK cutoff, we will obtain an impressive
constraint of order η4 � 10−5 from the absence of vacuum Čerenkov radiation
for 1020 eV protons. From the fact that the GZK threshold is not shifted, we
will obtain a constraint of order η4 � −10−2, assuming equal η4 values for
proton and pion.

In fact, if one assumes the cosmic rays near but below the GZK cutoff are
hadrons, one already obtains a strong bound [9]. Depending on the species
dependence of the LV coefficients, bounds of order 10−2 or better can be placed
on η4. The bounds claimed in [9] are actually two sided, and it is worthwhile
to explain how such bounds come about for a single source particle. Up to this
point it has been necessary to use at least two reactions with different source
particles to derive a two sided bounds. For example, the Crab constraints
rely on the existence of both 50 TeV electrons and photons, treating each
as a fundamental particle with its own LV coefficient. In contrast, the two
sided bounds in [9] are derived by using a parton model for particles where
the LV coefficients apply to the constituent partons. By considering many
different outgoing particle spectra from an incoming hadron in combination
with the parton approach the authors of [9] are able to find sets of reactions
that yield two sided bounds. Hence, the parton approach is extremely useful
as it dramatically increases the number of constraints that can be derived
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from a single incoming particle. However, it also requires more assumptions
about the behavior of the parton distributions at cosmic ray energies.

Impressive constraints might also be obtained from the absence of neutrino
vacuum Čerenkov radiation: putting in 1 eV for the mass in (21) yields an
order unity constraint from 100 TeV neutrinos, but only if the Čerenkov rate
is high enough. The rate will be low, since it proceeds only via the non-local
charge structure of the neutrino. Recent calculations [70] have shown that the
rate is not high enough at that energy. However, for 1020 eV UHE neutrinos,
which may be observed by the proposed EUSO and/or OWL satellite obser-
vatories, the rate will be high enough to derive a strong constraint. The value
of the constraint would depend on the emission rate, which has not yet been
computed. For a gravitational Čerenkov reaction, the rate (which is lower but
easier to compute than the electromagnetic rate) would be high enough for a
neutrino from a distant source to radiate provided η4 � 10−2. Hence in this
case one might obtain a constraint of order η4 � 10−2, or stronger in the
electromagnetic case.

A time of flight constraint at order (E/M)2 might be possible [71] if gamma
ray bursts produce UHE (∼1019 eV) neutrinos, as some models predict, via
limits on time of arrival differences of such UHE neutrinos vs. soft photons (or
gravitational waves). Another possibility is to obtain a vacuum birefringence
constraint with higher energy photons [34], although such a constraint would
be less powerful since EFT does not imply that the parameters for opposite
polarizations are opposite at order (E/M)2. If future GRB’s are found to be
polarized at ∼100 MeV, that could provide a birefringence constraint |ξ4+ −
ξ4−| � 1.

6 Conclusion

At present there are only hints, but no compelling evidence for Lorentz vio-
lation from quantum gravity. Moreover, even if LV is present, the use of EFT
for its low energy parametrization is not necessarily valid. Nevertheless, we
believe that the constraints derived from the simple ideas discussed here are
still important. They allow tremendous advances in observational reach to
be applied in a straightforward manner to limit reasonable possibilities that
might arise from fundamental Planck scale physics. Such guidance is espe-
cially welcome for the field of quantum gravity, which until the past few years
has had little connection with observed phenomena.
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