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Summary. A correct selection of features (attributes) is vital in data mining. For
this aim, the complete set of features is constructed. Here are some important results:
(1) Isomorphic relational tables have isomorphic patterns. Such an isomorphism
classifies relational tables into isomorphic classes. (2) A unique canonical model for
each isomorphic class is constructed; the canonical model is the bitmap indexes or its
variants. (3) All possible features (attributes) is generated in the canonical model.
(4) Through isomorphism theorem, all un-interpreted features of any table can be
obtained.
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1 Introduction

Traditional data mining algorithms search for patterns only in the given set of
attributes. Unfortunately, in a typical database environment, the attributes
are selected primarily for record-keeping, not for understanding of real world.
Hence, it is highly possible that there are no visible patterns in the given set
of attributes; see Sect. 2.2. The fundamental question is: Is there a suitable
transformation of features/attributes so that

• The “invisible” patterns become visible in this new set?

Fortunately, the answer is yes. To answer this question, we critically analyze
the essence of association mining. Based on it, we are able

• To construct the complete set of features for a given relational table.

Many applications will be in the forth coming volumes [10]. Here are some im-
portant results:(Continue the count from the abstract) (5) all high frequency
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patterns (generalized association rules) of the canonical model can be gener-
ated by a finite set of linear inequalities within polynomial time. (6) Through
isomorphism theorem, all high frequency patterns of any relational table can
be obtained.

1.1 Basics Terms in Association Mining (AM)

First, we recall (in fact, formalize) some basic terms. In traditional association
rule mining, two measures, called the support and confidence, are the main
criteria. Among the two, support is the essential measure. In this paper, we
will consider the support only. In other words, we will be interested in the
high frequency patterns that are not necessary in the form of rules. They
could be viewed as undirected association rules, or just associations.

Association mining is originated from the market basket data [1]. However,
in many software systems, the data mining tools are added to general DBMS.
So we will be interested in data mining on relational tables. To be definitive,
we have the following translations:

1. a relational table is a bag relation (i.e., repeated tuples are permitted [8])
2. an item is an attribute value,
3. a q-itemset is a subtuple of length q, or simply q-subtuple,
4. A q-subtuple is a q-association or (high frequency) q-pattern, if its occur-

rences are greater than or equal to a given threshold.

2 Background and Scope

2.1 Scope – A Feature Theory Based on the Finite Data

A feature is also called an attribute; the two terms have been used inter-
changeably. In the classical data model, an attribute is a representation of
property, characteristic, and so forth [17]. It represents a human view of the
universe (a slice of real world) – an intension view [5]. On the other hand,
in modern data mining (DM), we are extracting information from the data.
So in principle, the real world, including features (attributes), is encoded by
and only by a finite set of data. This is an extension view or data view of the
universe.

However, we should caution that each techniques of data mining often
use some information (background knowledge) other than data [6]. So the
encoding of the universe is different for different techniques. For examples
association mining (AM) (Sect. 3) uses only the relational table, while clus-
tering techniques utilize not only the table (of points), but also the geometry
of the ambient space. So the respective feature theories will be different. In
this paper, we will focus on Association Mining.

Next, we will show some peculiar phenomena of the finite encoding. Let
Table 1θ and 2θ be the new tables derived from the tables in Sect. 2.2 by
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Table 1. Ten point in (X,Y)-coordinate and Rotated coordinate

Segment# Y X’ Y’

S1 2 0 1.99 0.17

S2

√
3 = 1.73 1 1.64 1.15

S3

√
2 = 1.41

√
2 1.29 1.53

S4 1
√

3 0.85 1.81

S5 0 2 −0.17 1.99

X-Y coordinate Rotates -5 degree
Table 1A Table 1B

rotating the coordinate systems θ degree. It should be easy to verify that (see
Sect. 4.1 for the notion of isomorphism).

Proposition 2.1.1. Table 1A, 1B and 1θ are isomorphic, so are the Table
2A, 2B and 2θ.

This proposition says even though the rotations of the coordinate system
generate infinitely many distinct features/attributes, they reduce to the same
feature/attribute if the universe is encoded by a relational table. The main
result of this paper is to determine all possible features of the encoded world.

2.2 Background – Mining Invisible Patterns

Let us consider a table of 5 points in X-Y-plane, as shown in Table 1A. The
first column is the universe of the geometric objects. It has two attributes,
which are the “X-Y coordinates.” This table has no association rule of length
2. By transforming, the “X-Y coordinates” to “Polar coordinate system”
(Table 2A), interestingly

Associations of length 2 appear .

The key question is how can we find such appropriate new features (polar
coordinates).

Table 2. Ten points in polar coordinate and rotated coordinate

Segment# Length Direction Length Direction

S1 2.0 0 2.0 5

S2 2.0 30 2.0 35

S3 2.0 45 2.0 45

S4 2.0 60 2.0 65

S5 2.0 90 2.0 95

X-Y coordinate Rotates -5 degree
Table 2A Table 2B
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3 Formalizing Association Mining

In this section, we will critically analyze the association (rule) mining. Let us
start with a general question: What is data mining? There is no universally
accepted formal definition of data mining, however the following informal
description (paraphrase from [7]) is rather universal:

• Deriving useful patterns from data.

This “definition” points out key ingredients: data, patterns, methodology of
derivations and the real world meaning of patterns (useful-ness). We will an-
alyze each of them.

3.1 Key Terms “Word” and “Symbol”

First we need to precisely define some key terms.
A symbol is a string of “bit and bytes.” It has no formal real world mean-

ing, more precisely, any real world interpretation (if there is one) does not
participate in formal processing or computing. Mathematicians (in group the-
ory, more specifically) use the term “word” for such purpose. However, in this
paper, a “word” will be more than a symbol. A symbol is termed a word,
if the intended real world meaning does participate in the formal processing
or computing. In AI, there is a similar term, semantic primitive [2]; it is a
symbol whose real world interpretation is not implemented. So in automated
computing, a semantic primitive is a symbol.

3.2 What are Data? – A Table of Symbols

To understand the nature of the data, we will examine how the data is created:
In traditional data processing, (1) we select a set of attributes, called relational
schema. Then (2) we (knowledge) represent a set of real world entities by a
table of words.

Kmap : V → Kword ; v −→ k

where Kword is a table of words (this is actually the usual relational table).
Each word, called an attribute value, represents a real world fact (to human);
however the real world semantic is not implemented. Since Kword is a bag
relation [8], it is more convenient to use the graph Kgraph = {(v,K(v) | v ∈
V }. If the context is clear, we may drop the subscript, so K is a map, an
image or a graph.

Next, how is the data processed? In traditional data processing environ-
ment, for example, the attribute name COLOR means exactly what a human
thinks. Therefore its possible values are yellow, blue, and etc. More impor-
tantly,

• DBMS processes these data under human commands, and carries out the hu-
man perceived-semantics. Such processing is called Computing with Words.



Features and Foundations 67

However, in the system, COLOR, yellow, blue, and etc are “bits and bytes”
without any meaning, they are pure symbols.

The same relational table is used by Association Mining (AM). But, the
data are processed without human interventions, so the table of words Kword

is processed as a table Ksymbol of symbols.

DM : Kword ⇒ Ksymbol

In summary,

• The data (relational table) in AM is a table of symbols.

3.3 What are Patterns? and Computing with Symbols

What are the possible patterns? The notion depends on the methodology. So
we will examine the algorithms first. A typical AM algorithm treats words as
symbols. It just counts and does not consult human for any possible real world
meaning of any symbol. As we have observed in previous section no real world
meaning of any symbols is stored in the system. So an AM algorithm is merely
a computing of pure symbols. AM transforms a table Ksymbol of symbols
into a set Asymbol of association (rules)s of symbols. These associations are
“expressions” of symbols. Therefore,

• All possible patterns of AM are expressions of the symbols of the relational
table.

3.4 Interpretation and Realization of Patterns

The output of an AM algorithm is examined by human. So each symbol is
alive again. Its interpretation (to human only) is assigned at the data creation
time. So the patterns are interpreted by these interpretations of symbols.

1. Interpretation: A pattern, an expression of symbols, is an expression of
words (to human). So a pattern is a mathematical expression of real world
facts.

2. Realization: A mathematical expression of real world facts may or may not
correspond to a real world phenomenon.

4 Understanding the Data – A Table of Symbols

In the previous section, we have concluded that the input data to AM is a
table of symbols. In this section, we will explore the nature of such a table.
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4.1 Isomorphism – Syntactic Nature of AM

We have explained how data is processed in (automated) data mining: The
algorithms “forget” the real world meaning of each word, and regard the input
data as pure symbols. Since no real world meaning of each symbol participates
in the computing process if we replace the given set of symbols by a new set,
then we can derive new patterns by simply replacing the symbols in “old”
patterns. Formally, we have (Theorem 4.1. of [12])

Theorem 4.1.1. Isomorphic relational tables have isomorphic patterns.

Though this is a very important theorem, its proof does not increase the
understanding. Its proof is in the appendix. Isomorphism is an equivalence
relation defined on the family of all relational tables, so it classifies the tables
into isomorphic classes.

Corollary 4.1.2. A pattern is a property of an isomorphic class.

The impacts of this simple theorem are rather far reaching. It essentially de-
clares that patterns are syntactic in nature. They are patterns of the whole
isomorphic class, even though many somorphic relations may have very dif-
ferent semantics.

Corollary 4.1.3. The probability theory based on the item counting is a prop-
erty of isomorphic class.

We will illustrate the idea by an example. The following example is adopted
from ([8], pp 702):

Example 4.1.4. In this example, we will illustrate the notion of isomorphism
of tables and patterns. In Table 3, we present two “copies” of relational tables;
they are obviously isomorphic (by adding prime’ to one table you will get the
other one). For patterns (support = 2), we have the following:

Isomorphic tables K and K′ have isomorphic q-associations:

1. 1-association in K: 30, 40, bar, baz,
2. 1-association in K′: 30′, 40′, bar′, baz′,
3. 2-association in K: (30, bar) and (40, baz),
4. 2-association in K’: (30′, bar′) and (40′, baz′).

Two sets of q-association (q = 1,2) are obviously isomorphic in the sense that
adding prime ′ to associations in K become associations in K ′.
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Table 3. A Relational Table K and its Isomorphic Copy K′

V → F G V → F ′ G′

e1 → 30 foo e1 → 30′ foo′

e2 → 30 bar e2 → 30′ bar′

e3 → 40 baz e3 → 40′ baz′

e4 → 50 foo e4 → 50′ foo′

e5 → 40 bar e5 → 40′ bar′

e6 → 40 bar e6 → 40′ bar′

e7 → 30 bar e7 → 30′ bar′

e8 → 40 baz e8 → 40′ baz′

4.2 Bitmaps and Granules – Intrinsic Representations

Due to the syntactic nature, as we have observed in last section, we can have
a more intrinsic representation, that is a representation in which only the
internal structure of the table is important, the real world meaning of each
attribute value can be ignored.

We will continue to use the same example. The following discussions es-
sential excerpt from ([8], pp 702). Let us consider the bitmap indexes for K
(see Table 3) the first attributes, F , would have three bit-vectors. The first,
for value 30, is 11000110, because the first, second, sixth, and seventh tuple
have F = 30. The other two, for 40 and 50, respectively, are 00101001 and
00010000. A bitmap index for G would also have three bit-vectors: 10010000,
01001010, and 00100101. It should be obvious that we will have the exact
same bitmap table for K ′.

Next, we note that a bit vector can be interpreted as a subset of V , called
an elementary granule. For example, the bit vector, 11000110, of F = 30 repre-
sents the subset {e1, e2, e6, e7}. Similarly, 00101001, of F = 40 represents the
subset {e3, e5, e8}, and etc. Let us summarize the discussions in the following
proposition:

Proposition 4.2.1. Using Table 4 as a translation table, we transform a table
of symbols (Table 3) into its respective

1. a bitmap table, and Table 5.
2. a granular table, Table 6.

Conversely,

Proposition 4.2.2. Using Table 4 as an interpretation table that interpret

1. Table 5 and Table 6 into Table 3, where (to human) each symbol corre-
sponds to a real world fact.

2. Note that F -granules (and G-granules too) are mutually disjoints and form
a covering of V . So the granules of each attribute induces a partition on V
(an equivalence relation).
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Table 4. Translation Table

F -Value Bit-Vectors Granules

30 = 11000110 ({e1, e2, e6, e7})
40 = 00101001 ({e3, e5, e8})
50 = 00010000 ({e4})

G-Value = Bit-Vectors Granules

Foo = 10010000 ({e1, e4})
Bar = 01001010 ({e2, e5, e7})
Baz = 00100101 ({e3, e6, e8})

Table 5. Contrasting Tables of Symbols and Bitmaps

Table K Bitmap Table BK

V → F G F -bit G-bit

e1 → 30 foo 11000110 10010000

e2 → 30 bar 11000110 01001010

e3 → 40 baz 00101001 00100101

e4 → 50 foo 00010000 10010000

e5 → 40 bar 00101001 01001010

e6 → 30 baz 11000110 00100101

e7 → 30 bar 11000110 01001010

e8 → 40 baz 00101001 00100101

Table 6. Contrasting Tables of Symbols and Granules

Table K Granular Table GK

U → F G EF EG

v1 → 30 foo {e1, e2, e6, e7} {e1, e4}
v2 → 30 bar {e1, e2, e6, e7} {e2, e5, e7}
v3 → 40 baz {e3, e5, e8} {e3, e6, e8}
v4 → 50 foo {e4} {e1, e4}
v5 → 40 bar {e3, e5, e8} {e2, e5, e7}
v6 → 30 baz {e1, e2, e6, e7} {e3, e6, e8}
e7 → 30 bar {e1, e2, e6, e7} {e2, e5, e7}
e8 → 40 baz {e3, e5, e8} {e3, e6, e8}

3. Each elementary granule, for example, the elementary granule {e1, e2, e6, e7}
of F = 30, consists of all entities that have (are mapped to) the same at-
tribute value, in this case, F -value 30. In other words, F -granule {e1, e2, e6,
e7} is the inverse of the value F = 30.

It should be obvious that these discussions can be generalized: They are sum-
marize in Proposition 5.1.1.
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5 The Model and Language of High Frequency Patterns

As we have observed in Sect. 3.3, informally patterns are expressions (sub-
tuples) of the symbols of the relational table. Traditional association mining
considers only the “conjunction of symbols.” Are there other possible ex-
pressions or formulas? A big Yes, if we look at a relational table as a logic
system. There are many such logic views, for example, deductive database
systems, Datalog [21], and Decision Logic [19] among others. For our purpose,
such views are too “heavy”, instead, we will take an algebraic approach. The
idea is stated in [13] informally. There, the notion of “logic language” was
introduced informally by considering the “logical formulas” of the names of
elementary granules. Each “logical formula” (of names) corresponds to a set
theoretical formula of elementary granules. In this section, we shall re-visit
the idea more formally.

5.1 Granular Data Model (GDM) – Extending
the Expressive Power

Based on example, we have discussed granular data model in Sect. 4.2. Now
we will discuss the general case.

Let V be set of real world entities, A = {A1, A2, . . . , An} be a set of
attributes. Let their (active) attribute domains be C = {C1, C2, . . . , Cn},
where active is a database term to emphasize the fact that Cj is the set
of distinct values that occur in the current representation. Each Cj , often
denoted by Dom(Aj), is a Cantor set.

A relational table K can be regarded as a map (knowledge representation)

Kmap : V −→ Dom(A) = Dom(A1) × . . . Dom(An)

Similarly, an attribute is also a map

Aj : V −→ Dom(Aj) ; v −→ c .

The inverse of such an attribute map defines a partition on V (hence an
equivalence relation); we will denote it by Qj and list some of its properties in:

Proposition 5.1.1

1. The inverse image S = (Aj)(−1)(c) is an equivalence class of Qj . We say S
is elementary granule, and c is the name of it.

2. For a fixed order of V , S can be represented by a bit-vector. We also say
c is the name of the bit vector.

3. By replacing each attribute value of the table Ksymbol by its bit-vector or
elementary granule (equivalence class), we have the bitmap table BK or
granular table GK respectively.

4. The equivalence relations, Q = {Q1, Q2, . . . , Qn}, play the role of attributes
in Table GK and BK .
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5. For uniformity, we write V/Qj = Dom(Qj), namely, we regard the quotient
set as the attribute domain.

6. Theoretically, GK and BK conceptually represent the same granular data
model; the difference is only in representations and is an internal matter.

7. We will regard the table K as an interpretation of GK and BK . The in-
terpretation is an isomorphism (via a table similar to Table 4) By The-
orem 4.1.1., the patterns in K,GK , BK are isomorphic and hence is the
same (identified via interpretation).

• It is adequate to do the AM in GK .

The canonical model GK is uniquely determined by its universe V , and the
family Q of equivalence relations. In other words, the pair (V,Q) determines
and is determined by GK .

Definition 5.1.1. The pair (V,Q) is called granular data model (GDM).

(V,Q) is a model of some rather simple kind of logic, where the only
predicates are equivalence predicates (predicates that satisfy the reflexive,
symmetric and transitive properties). It was considered by both Pawlak and
Tony Lee and has been called knowledge base, relation lattice, granular
strucutre [9, 13, 19].

Note that the set of all elementary granule in (V,Q) generate a sub-Boolean
algebra of the power set of V . By abuse of notation, we will use (V,Q) to denote
this algebra. Since GK is a table format of (V,Q), we need to describe how
GK is “embedded” into the Boolean algebra. We will extend Proposition 5.1.1,
Item 7 into

Proposition 5.1.2. An attribute value of GK , which is an elementary gran-
ule, is mapped to the same granule in (V,Q). A subtuple of GK , consisting of
a set of elementary granules is mapped into the granule that is the intersection
of those elementary granules; note two subtuples may be mapped to the same
granule.

5.2 Algebraic Language and Granular Boolean Algebra

The attribute values in K are pure symbols. Now we will introduce a new
Boolean algebra LK as follows: We will use ∪ and ∩ as the join and meet of
this Boolean algebra. LK is a free Boolean algebra subject to the following
conditions:

The ∩ between symbols in the same columns are

Bj
i ∩ Bj

k = ∀i �= k ∀j

This condition reflects the fact that the elementary granules of the same col-
umn are mutually disjoint.

We can give a more algebraic description [3]. Let F be the free Boolean
Algebra generated by the symbols in K. Let I be the ideal generated by
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Bj
i ∩ Bj

k ∀ i, k, j

Then the quotient algebra F/I = LK .
We will regard this Boolean algebra as a language and call it

Granular algebraic language .

An attribute value in K can be regarded as the name of the corresponding
elementary granule in GK and the elementary granule is the meaning set of
the name. Recall that GDM (V,Q) can be regarded as Boolean algebra of
elementary granules, and GK is “embedded” in (V,Q) (Proposition 5.1.2.)
So the name-to-meaning set assignment, K → GK , can be extended to a
homomorphism of Boolean algebras:

name-to-meaning: LK −→ (V,Q); formula → meaning set .

• High frequency patterns of AM are formulas with large meaning set (the
cardinality is large).

6 The Formal Theory of Features in AM

The theory developed here is heavily depended on the nature of association
mining (AM) that are formalized in Sect. 3.

6.1 Feature Extractions and Constructions

Let us examine some informal assertions, e.g., [18]: “All new constructed fea-
tures are defined in terms of original features,. . . .” and “Feature extraction is
a process that extracts a set of new features from the original features through
some functional mapping.” In summary the new feature is derived (by con-
struction or extraction) from the given set of attributes. We will formalize
the idea of features in association mining (AM). Perhaps, we should re-iterate
that we are not formalizing the general notion of features that involves human
view.

Let K be the given relational table that has attributes A = {A1, . . . An}.
Next, let An+1 . . . An+m be the new attributes that are constructed or ex-
tracted. As we remark in Sect. 5.1, an attribute is a mapping from the universe
to a domain, so we have the following new mappings.

An+k : V −→ Dom(An+k) .

Now, let us consider the extended table, Ka, that includes both old and ad-
ditional new attributes {A1, . . . An . . . An+m}. In this extended table, by the
meaning of feature construction, An+k, should be (extension) functionally
dependent (EFD) on A. This fact implies, by definition of EFD, there is a
mapping
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fn+k : Dom(A1) × . . . × Dom(An) −→ Dom(An+k) .

such that An+k = fn+k ◦ (A1 × . . . × An.
Those new extracted or constructed features, such as fn+k is called derived

feature.

6.2 Derived Features in GDM

Now we will consider the situation in GK , the granular table of K. In this
section, we will express EFD fn+k in granular format, in other words, the
granular form of fn+k is:

V/(Q1 ∩ . . . ∩ Qn) = V/Q1 × . . . × V/Qn −→ V/Qn+k

The first equality is a simple property of quotient sets. The second map is
fn+k in its granular form. The granular form of fn+k implies that Qn+k is a
coarsening of (Q1 ∩ . . . ∩ Qk). So we have the following

Proposition 6.2. Qn+k is a derived feature of GK if and only if Qn+k is a
coarsening of (Q1 ∩ . . . ∩ Qn).

Let the original Table K have attributes A = {A1, . . . An}. Let B ⊆ A and
Y ∈ A (e.g., Y = An+k and YE = Qn+k).

Proposition 6.3. Y is a feature constructed from B if and only if the induced
equivalence relation YE is a coarsening of the induced equivalence relation
BE = (Qj1 ∩ . . . ∩ Qjm), where Y ∈ A and B ⊆ A

The proposition says all the new constructed features are coarsening of
the intersection of the original features.

7 Universal Model – Capture the Invisibles

Let ∆(V ) be the set of all partitions on V (equivalence relations); ∆(V ) forms
a lattice, where meet is the intersection of equivalence relations and join is
the “union,” where the “union,” denoted by ∪jQ

j , is the smallest coarsening
of all Qj , j = 1, 2, . . . ∆(V ) is called the partition lattice.

Let (V,Q = {Q1, . . . , Qn}) be a GDM. Let L(Q) be the smallest sublattice
of ∆(V ) that contains Q, and L∗(Q) be the set of all possible coarsenings of
(Q1 ∩ . . .∩Qn). L∗(Q) obviously forms a sublattice of ∆(V ); the intersection
and “union” of two coarsenings is a coarsening. From Proposition 6.2., we can
easily establish

Theorem 7.1. Let GK be a granular table; its GDM is (V,Q). Then (V,L∗(Q))
is a GDM that consists of all possible features for GK .
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The set of all possible features of GK is the set D of all those derived features.
By Proposition 6.2., D is the set of all those coarsenings of (Q1 ∩ . . . ∩ Qn).
SO (V,L∗(Q)) is the desirable one.

Definition 7.2. The (V,L∗(Q)) is the completion of (V,Q) and is called the
universal model of K.

We should point out that the cardinal number of L∗(Q)) is enormous; it is
bounded by the Bell number Bn, where n is the cardinality of the smallest
partition in L∗(Q) [4].

8 Conclusions

1. A feature/attribute, from human view, is a characteristic or property of
the universe (a set of entities). Traditional data processing takes such a
view and use them to represent the universe (knowledge representation).

2. A feature/attribute, in data mining, is defined and encoded by data. So
a feature in association mining is a partition of the universe. Under such
a view, we have shown that a set of infinite many distinct human-view-
features (rotations of coordinate systems) is reduced to a single data-
encoded-feature (Sect. 2.1).

3. Such views are shared by those techniques, such as classification, that uti-
lize only the relational table of symbols in their algorithms. The other
techniques, such as clustering and neural network, that utilize additional
background knowledge, do not share the same view.

4. In association mining, we have the following applications [10, 11]: All gen-
eralized associations can be generated by a finite set of integral linear in-
equalities within polynomial time.

5. Finally, we would like to note that by the isomorphism theorem, two iso-
morphic relations may have totally distinct semantics. So relations with
additional structures that capture some semantics may be worthwhile to
be explored; see [13, 15].

9 Appendix

9.1 General Isomorphism

Attributes Ai and Aj are isomorphic if and only if there is a one-to-one and
onto map, s : Dom(Ai) −→ Dom(Aj) such that Aj(v) = s(Ai(v)) ∀ v ∈ V .
The map s is called an isomorphism. Intuitively, two attributes (columns)
are isomorphic if and only if one column turns into another one by properly
renaming its attribute values.

Let K = (V,A) and H = (V,B) be two information tables, where
A = {A1, A2, . . . An} and B = {B1, B2, . . . Bm}. Then, K and H are said
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to be isomorphic if every Ai is isomorphic to some Bj , and vice versa. The
isomorphism of relations is reflexive, symmetric, and transitive, so it classifies
all relations into equivalence classes; we call them isomorphic classes.

Definition 9.1.1. H is a simplified relational table of K, if H is isomorphic
to K and only has non-isomorphic attributes.

Theorem 9.1.2. Let H be the simplified relational table of K. Then the pat-
terns (large itemsets) of K can be obtained from those of H by elementary
operations that will be defined below.

To prove the Theorem, we will set up a lemma, in which we assume there are
two isomorphic attributes B and B′ in K, that is, degree K – degree H = 1.
Let s : Dom(B) −→ Dom(B′) be the isomorphism and b′ = s(b). Let H be
the new table in which B′ has been removed.

Lemma 9.1.3. The patterns of K can be generated from those of H by ele-
mentary operations, namely,

1. If b is a large itemset in H, then b’ and (b, b’) are large in K.
2. If (a. ., b, c. . . ) is a large itemset in H, then (a. ., b’, c. . . ) and (a. ., b, b’,

c,. . . ) are large in K.
3. These are the only large itemsets in K.

The validity of this lemma is rather straightforward; and it provides the critical
inductive step for Theorem; we ill skip the proof.

9.2 Semantics Issues

The two relations, Tables 7 and 8, are isomorphic, but their semantics are
completely different. One table is about part, the other is about suppliers.
These two relations have Isomorphic association rules;

1. Length one: TEN, TWENTY, March, SJ, LA in Table 7 and

Table 7. An Relational Table K

V K (S# Business Birth CITY)
Amount (in m.) Day

v1 −→ (S1 TWENTY MAR NY

v2 −→ (S2 TEN MAR SJ

v3 −→ (S3 TEN FEB NY

v4 −→ (S4 TEN FEB LA

v5 −→ (S5 TWENTY MAR SJ

v6 −→ (S6 TWENTY MAR SJ

v7 −→ (S7 TWENTY APR SJ

v8 −→ (S8 THIRTY JAN LA

v9 −→ (S9 THIRTY JAN LA
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Table 8. An Relational Table K′

V K (S# Weight Part Material
Name

v1 −→ (P1 20 SCREW STEEL

v2 −→ (P2 10 SCREW BRASS

v3 −→ (P3 10 NAIL STEEL

v4 −→ (P4 10 NAIL ALLOY

v5 −→ (P5 20 SCREW BRASS

v6 −→ (P6 20 SCREW BRASS

v7 −→ (P7 20 PIN BRASS

v8 −→ (P8 30 HAMMER ALLOY

v9 −→ (P9 30 HAMMER ALLOY

2. Length one: 10, 20, Screw, Brass, Alloy in Table 8
3. Length two: (TWENTY, MAR), (Mar, SJ), (TWENTY, SJ)in one Table 7,
4. Length two: (20, Screw), (screw, Brass), (20, Brass), Table 8

However, they have very non-isomorphic semantics:

1. Table 7: (TWENTY, SJ), that is, the business amount at San Jose is likely
20 millions; it is isomorphic to (20, Brass), which is not interesting.

2. Table 8: (SCREW, BRASS), that is, the screw is most likely made from
Brass; it is isomorphic to (Mar, SJ), which is not interesting.
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