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The growth of data mining has raised concerns among privacy advocates.
Some of this is based on a misunderstanding of what data mining does. The
previous chapters have shown how data mining concentrates on extraction of
rules, patterns and other such summary knowledge from large data sets. This
would not seem to inherently violate privacy, which is generally concerned
with the release of individual data values rather than summaries.

To some extent, this has been recognized by privacy advocates. For ex-
ample, the Data-Mining Moratorium Act proposed in the U.S. Senate in Jan-
uary 2003 would have stopped all data-mining activity by the Department
of Defense[15]. A later version is more specific, defining “data-mining” as
searches for individual information based on profiles[25]. While data mining
may help in the development of such profiles, with the possible exception of
outlier detection data mining would not be a forbidden activity under the later
bill.

Although data mining results may have survived the scrutiny of privacy
advocates, the data mining process still faces challenges. For example, the
Terrorism Information Awareness (TIA) program, formerly known as To-
tal Information Awareness, proposed government use of privately held data-
bases (e.g., credit records) to aid in the discovery and prevention of terror-
ist activity[9]. This raised justifiable concerns, leading to a shutdown of the
program[22] and proposals for restriction on government use of privately held
databases[25]. The real problem is the potential for misuse of the informa-
tion. The TIA program did not propose collection of new data, only access
to existing collections. However, providing a single point of access to many
collections, and linking individuals across these collections, provides a much
more complete view of individuals than can be gleaned from any individual
collection. While this could significantly improve capabilities to identify and
track terrorists, it also makes it easier to misuse this information for uneth-
ical or illegal harassment of political dissidents, unpopular officials, or even
neighbors of a rogue agent or hacker who manages to break into the system.
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Information gives knowledge gives power, and many feel that the potential for
misuse of this power exceeds the benefit.

Privacy-preserving data mining has emerged as an answer to this problem.
The goal of privacy-preserving data mining is to develop data mining models
without increasing the risk of misuse of the data used to generate those models.
This is accomplished by ensuring that nobody but the original possessor of
data sees individual data values. Since no real or virtual “data warehouse”
providing integrated access to data is used, the potential for misuse of data is
not increased by the data mining process. While the potential for misuse of
the produced data mining models is not eliminated, these are considered to
be sufficiently removed from individual data values (or perhaps so important)
that the threat to individual privacy is not an issue.

Privacy-preserving data mining work is divided into two broad classes.
One, first proposed in [3], is based on adding noise to the data before providing
it to the data miner. Since real data values are not revealed (the noise can
be added at the data source), individual privacy is preserved. The challenge
in this class is developing algorithms that achieve good results in spite of the
noise in the data. While these techniques have been shown effective, there is
growing concern about the potential for noise reduction and thus compromise
of individual privacy[1, 10, 21]. As a result, we will touch only briefly on this
approach, giving a summary of how the method of [3] works in Sect. 2.

The second class of privacy-preserving data mining comes out of the cryp-
tography community[24]. The idea is that the data sources collaborate to ob-
tain data mining results without revealing anything except those results. This
approach is based on the definitions and standards that have guided the cryp-
tography community, in particular Secure Multiparty Computation[16, 38].
The disadvantage to this approach is that the algorithms are generally dis-
tributed, requiring active participation of the data sources. However, as this
model limits any privacy breach to that inherent in the results, this chapter
will emphasize this class of privacy-preserving data mining techniques.

1 Privacy-Preserving Distributed Data Mining

Privacy-preserving distributed data mining uses algorithms that require par-
ties to collaborate to get results, while provably preventing disclosure of data
except the data mining results. As a simple example, assume several supermar-
kets wish to collaborate to obtain global “market basket” association rules,
without revealing individual purchases or even the rules that hold at individual
stores. To simplify, assume we only wish to compute the global support count
for a single itemset, e.g., “beer” and “diapers”. Each market first computes
the number of market baskets it has that contain both items. A designated
starting market also generates a random number R. The starting party adds
its support count S1 to R, and sends R + S1 to the second market. The second
market adds its support count, sending R +S1 +S2 to the third market. This
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continues, with the nth market sending R +
∑n

i=1 Si to the first market. The
first market subtracts R to obtain the desired result.

A crucial assumption for security is that markets i + 1 and i − 1 do not
collude to learn Si. However, if we can assume no collusion, all operations take
place over a closed field, and the choice of R is uniformly distributed over the
field, we can see that no market learns anything about the other market’s
support counts except what can be inferred from the result and one’s own
data. While this does not guarantee that individual values are not revealed
(for example, if the global support count is 0, we know the count is 0 for
every market), it does preserve as much privacy as possible assuming we must
obtain the results (in this case, global support count.)

The concept of privacy in this approach is based on a solid body of theo-
retical work. We briefly discuss some of this work now, then describe several
techniques for privacy-preserving distributed data mining to demonstrate how
this theory can be applied in practice.

1.1 Privacy Definitions and Proof Techniques

Secure Multiparty Computation (SMC) originated with Yao’s Millionaires’
problem[38]. The basic problem is that two millionaires would like to know
who is richer, but neither wants to reveal their net worth. Abstractly, the
problem is simply comparing two numbers, each held by one party, without
either party revealing its number to the other. Yao presented a solution for
any efficiently computable function restricted to two parties and semi-honest
adversaries.

What do we mean by semi-honest? The secure multiparty computation
literature makes use of two models of what an adversary may do to try to
obtain information. These are:

Semi-Honest: Semi-honest (or Honest but Curious) adversaries will follow the
protocol faithfully, but are allowed to try to infer the secret information
of the other parties from the data they see during the execution of the
protocol.

Malicious: Malicious adversaries may do anything they like to try to infer se-
cret information (within the bounds of polynomial computational power).
They can abort the protocol at any time, send spurious messages, spoof
messages, collude with other (malicious) parties, etc.

Reference [16] extended Yao’s result to an arbitrary number of parties as well
as malicious adversaries. The basic idea is based on circuit evaluation: The
function is represented as a boolean circuit. Each party gives the other(s) a
randomly determined share of their input, such that the exclusive or of the
shares gives the actual value. The parties collaborate to compute a share of the
output of each gate. Although the exclusive or of the shares gives the output of
the gate, the individual shares are random in isolation. Since each party learns
nothing but its share, nothing is revealed, and these shares can be used in the
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next gate in the circuit. At the end, the shares are combined to produce the
final result. Since the intermediate shares were randomly determined, nothing
is revealed except the final result.

Informally, the definition of privacy is based on equivalence to having
a trusted third party perform the computation. Imagine that each of the
data sources gives their input to a (hypothetical) trusted third party. This
party, acting in complete isolation, computes the results and reveals them.
After revealing the results, the trusted party forgets everything it has seen. A
secure multiparty computation approximates this standard: no party learns
more than with the (hypothetical) trusted third party approach.

One fact is immediately obvious: no matter how secure the computation,
some information about the inputs may be revealed. If one’s net worth is
$100,000, and the other party is richer, one has a lower bound on their net
worth. This is captured in the formal SMC definitions: any information that
can be inferred from one’s own data and the result can be revealed by the
protocol. For example, assume one party attributes A and B for all individu-
als, and another party has attribute C. If mining for association rules, gives
that AB ⇒ C with 100% confidence, then if one knows that A and B hold for
some individual it is okay to learn C for that individual during the data min-
ing process. Since this could be inferred from the result anyway, privacy is not
compromised by revealing it during the process of data mining. Thus, there
are two kinds of information leaks; the information leak from the function
computed irrespective of the process used to compute the function and the
information leak from the specific process of computing the function. What-
ever is leaked from the function itself is unavoidable as long as the function
has to be computed. In secure computation the second kind of leak is prov-
ably prevented. There is no information leak whatsoever due to the process.
Some algorithms improve efficiency by trading off some security (leak a small
amount of information). Even if this is allowed, the SMC style of proof pro-
vides a tight bound on the information leaked; allowing one to determine if
the algorithm satisfies a privacy policy.

This leads to the primary proof technique used to demonstrate the security
of privacy-preserving distributed data mining: a simulation argument. Given
only its own input and the result, a party must be able to simulate what it sees
during execution of the protocol. Note that “what it sees” is not constant: for
example, what each party sees during the secure summation described above
is dependent on the first party’s choice of R. So the view to be simulated is
actually a distribution. The formal definition for secure multiparty computa-
tion captures this: the distribution of values produced by the simulator for a
given input and result must be equivalent to the distribution of values seen
during real executions on the same input. The key challenge is to simulate
this view without knowledge of the other party’s input (and based only on the
given party’s input and output). The ability to simulate shows that the view
of the party in a real protocol execution could actually have been generated
by itself (without any interaction and just been given the output). Therefore,
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anything that the party can learn, it can learn from its input and output
(because just running the simulation locally is equivalent to participating in
a real protocol).

This is captured in the following definition (based on that of [17], however
for readability we present it from the point of view of one party.)

Definition 1. Privacy with respect to semi-honest behavior.
Let f : {0, 1}∗×{0, 1}∗ �−→ {0, 1}∗×{0, 1}∗ be a probabilistic, polynomial-

time functionality. Let Π be a two-party protocol for computing f .
The view of a party during an execution of Π on (x, y), denoted V IEWΠ

(x, y) is (x, r,m1, . . . ,mt), where r represents the outcome of the party’s in-
ternal coin tosses, and mi represents the ith message it has received. The final
outputs of the parties during an execution are denoted OUTPUTΠ

1 (x, y) and
OUTPUTΠ

2 (x, y).
Π privately computes f if there exists a probabilistic polynomial time al-

gorithm S such that

{(S (x, f (x, y)) , )}x,y∈{0,1}∗

≡C
{(

VIEWΠ (x, y) ,OUTPUTΠ
2 (x, y)

)}
x,y∈{0,1}∗

where ≡C denotes computational indistinguishability. Note that a party’s own
output is implicit in its view.

The definition given above is restricted to two parties. The basic idea holds
for extension to more than two parties. Reference [17] proved that this defin-
ition is essentially equivalent to the “trusted third party” definition, showing
that any computation meeting this simulation argument in fact meets our
intuitive expectations of security. A similar, but considerably more complex,
definition exists for malicious adversaries. Because of the complexity, we will
stick to the semi-honest definition. However, many applications require some-
thing stronger than semi-honest protocols. Intermediate definitions are possi-
ble (e.g., the secure association rules discussed at the beginning of this section
is secure against malicious parties that do not collude), but formal frameworks
for such definitions remain to be developed.

One key point is the restriction of the simulator to polynomial time algo-
rithms, and that the views only need to be computationally indistinguishable.
Algorithms meeting this definition need not be proof against an adversary
capable of trying an exponential number of possibilities in a reasonable time
frame. While some protocols (e.g., the secure sum described above) do not
require this restriction, most make use of cryptographic techniques that are
only secure against polynomial time adversaries. This is adequate in prac-
tice (as with cryptography); security parameters can be set to ensure that
the computing resources to break the protocol in any reasonable time do not
exist.

A second key contribution is the composition theorem of [17], stated in-
formally here:
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Theorem 1. Composition Theorem for the semi-honest model.
Suppose that g is privately reducible to f and that there exists a protocol

for privately computing f . Then there exists a protocol for privately comput-
ing g.

Informally, the theorem states that if a protocol is shown to be secure except
for several invocations of sub-protocols, and if the sub-protocols themselves
are proven to be secure, then the entire protocol is secure. The immediate
consequence is that, with care, we can combine secure protocols to produce
new secure protocols.

While the general circuit evaluation method has been proven secure by
the above definition, it poses significant computational problems. Given the
size and computational cost of data mining problems, representing algorithms
as a boolean circuit results in unrealistically large circuits. The challenge of
privacy-preserving distributed data mining is to develop algorithms that have
reasonable computation and communication costs on real-world problems, and
prove their security with respect to the above definition. While the secure
circuit evaluation technique may be used within these algorithms, use must
be limited to constrained sub-problems. For example, by adding secure com-
parison to the protocol at the beginning of this Section, the protocol can
simply reveal if support and confidence exceed a threshold without reveal-
ing actual values. This mitigates the 100% confidence privacy compromise
described above.

We now describe several techniques whose security properties have been
evaluated using the standards described above. These examples demonstrate
some key concepts that can be used to develop privacy-preserving distributed
data mining algorithms, as well as demonstrating how algorithms are proven
to be secure.

1.2 Association Rules

Association Rule mining is one of the most important data mining tools used
in many real life applications. It is used to reveal unexpected relationships in
the data. In this section, we will discuss the problem of computing associa-
tion rules within a horizontally partitioned database framework. We assume
homogeneous databases: All sites have the same schema, but each site has
information on different entities. The goal is to produce association rules that
hold globally, while limiting the information shared about each site.

The association rules mining problem can formally be defined as follows[2]:
Let I = {i1, i2, . . . , in} be a set of items. Let DB be a set of transactions, where
each transaction T is an itemset such that T ⊆ I. Given an itemset X ⊆ I,
a transaction T contains X if and only if X ⊆ T . An association rule is an
implication of the form X ⇒ Y where X ⊆ I, Y ⊆ I and X ∩Y = ∅. The rule
X ⇒ Y has support s in the transaction database DB if s% of transactions in
DB contain X∪Y . The association rule holds in the transaction database DB
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with confidence c if c% of transactions in DB that contain X also contains
Y . An itemset X with k items is called a k-itemset. The problem of mining
association rules is to find all rules whose support and confidence are higher
than certain user specified minimum support and confidence.

Clearly, computing association rules without disclosing individual trans-
actions is straightforward. We can compute the global support and confidence
of an association rule AB ⇒ C knowing only the local supports of AB and
ABC, and the size of each database:

supportAB⇒C =
∑#sites

i=1 support countABC(i)
∑sites

i=1 database size(i)

supportAB =
∑#sites

i=1 support countAB(i)
∑sites

i=1 database size(i)

confidenceAB⇒C =
supportAB⇒C

supportAB

Note that this doesn’t require sharing any individual transactions. and pro-
tects individual data privacy, but it does require that each site disclose what
rules it supports, and how much it supports each potential global rule. What
if this information is sensitive? Clearly, such an approach will not be secure
under SMC definitions.

A trivial way to convert the above simple distributed method to a secure
method in SMC model is to use secure summation and comparison methods to
check whether threshold are satisfied for every potential itemset. For example,
for every possible candidate 1-itemset, we can use the secure summation and
comparison protocol to check whether the threshold is satisfied.

Figure 1 gives an example of testing if itemset ABC is globally supported.
Each site first computes its local support for ABC, or specifically the number
of itemsets by which its support exceeds the minimum support threshold
(which may be negative). The parties then use the previously described secure
summation algorithm (the first site adds a random to its local excess support,
then passes it to the next site to add its excess support, etc.) The only change
is the final step: the last site performs a secure comparison with the first site
to see if the sum ≥ R. In the example, R + 0 is passed to the second site,
which adds its excess support (−4) and passes it to site 3. Site 3 adds its
excess support; the resulting value (18) is tested using secure comparison to
see if it exceeds the Random value (17). It is, so itemset ABC is supported
globally.

Due to huge number of potential candidate itemsets, we need to have a
more efficient method. This can be done by observing the following lemma:
If a rule has support > k% globally, it must have support > k% on at least
one of the individual sites. A distributed algorithm for this would work as
follows: Request that each site send all rules with support at least k. For each
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Site 3
ABC: 20

DBSize= 300

Site 1
ABC: 5

DBSize= 100

Site 2
ABC: 6

DBSize=200

R+count-5%*DBsize
= 17+5-5%*100R=17

17+6-5%*20013+20-5%*300

ABC: Yes!

17

13

18 ≥≥≥≥ R?

Fig. 1. Determining if itemset support exceeds 5% threshold

rule returned, request that all sites send the count of their transactions that
support the rule, and the total count of all transactions at the site. From
this, we can compute the global support of each rule, and (from the lemma)
be certain that all rules with support at least k have been found. This has
been shown to be an effective pruning technique[7]. In order to use the above
lemma, we need to compute the union of locally large sets. We then use the
secure summation and comparison only on the candidate itemsets contained
in the union.

Revealing candidate itemsets means that the algorithm is no longer fully
secure: itemsets that are large at one site, but not globally large, would not
be disclosed by a fully secure algorithm. However, by computing the union
securely, we prevent disclosure of which site, or even how many sites, support a
particular itemset. This release of innocuous information (included in the final
result) enables a completely secure algorithm that approaches the efficiency
of insecure distributed association rule mining algorithms. The function now
being computed reveals more information than the original association rule
mining function. However, the key is that we have provable limits on what is
disclosed. We now demonstrate how to securely compute a union.

Secure Union of Locally Large Itemsets

One way to securely compute a union is to directly apply secure circuit eval-
uation as follows: For each possible large k-itemset, each site can create a 0/1
vector such that if the ith itemset is locally supported at the site, it will set
the ith bit of its vector to 1 otherwise it will set it to 0. Let’s denote this vec-
tor as vj for site j and let vj(i) be the ith bit of this vector. All the itemsets
are arranged according to lexicographic order. Now for any given itemset, we
can find its index i, and evaluate ∨n

j=1vj(i) where ∨ is the or gate. Assuming
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that we use a secure generic circuit evaluation for or gate (∨), the above pro-
tocol is secure and reveals nothing other than the set union result. However
expensive circuit evaluation is needed for each potential large k-itemset. This
secure method does not use the fact that local pruning eliminates some part
of the large itemsets. We will now give a much more efficient method for this
problem. Although the new method reveals a little more information than the
above protocol, a precise description of what is revealed is given, and we prove
that nothing else is revealed.

To obtain an efficient solution without revealing what each site supports,
we instead exchange locally large itemsets in a way that obscures the source
of each itemset. We assume a secure commutative encryption algorithm with
negligible collision probability. Intuitively, under commutative encryption, the
order of encryption does not matter. If a plaintext message is encrypted by two
different keys in a different order, it will be mapped to the same ciphertext.
Formally, commutativity ensures that Ek1(Ek2(x)) = Ek2(Ek1(x)). There are
several examples of commutative encryption schemes, RSA is perhaps the best
known.

The detailed algorithm is given in Algorithm 1. We now briefly explain
the key phases of the algorithm. The main idea is that each site encrypts
the locally supported itemsets, along with enough “fake” itemsets to hide the
actual number supported. Each site then encrypts the itemsets from other
sites. In Phases 2 and 3, the sets of encrypted itemsets are merged. Due to
commutative encryption, duplicates in the locally supported itemsets will be
duplicates in the encrypted itemsets, and can be deleted. The reason this oc-
curs in two phases is that if a site knows which fully encrypted itemsets come
from which sites, it can compute the size of the intersection between any set
of sites. While generally innocuous, if it has this information for itself, it can
guess at the itemsets supported by other sites. Permuting the order after en-
cryption in Phase 1 prevents knowing exactly which itemsets match, however
separately merging itemsets from odd and even sites in Phase 2 prevents any
site from knowing the fully encrypted values of its own itemsets.

Phase 4 decrypts the merged frequent itemsets. Commutativity of encryp-
tion allows us to decrypt all itemsets in the same order regardless of the order
they were encrypted in, preventing sites from tracking the source of each
itemset.

The detailed algorithm assumes the following representations: F represents
the data that can be used as fake itemsets. |LLei(k)| represents the set of the
encrypted k itemsets at site i. Ei is the encryption and Di is the decryption
by site i.

An illustration of the above protocol is given in Fig. 2. Using commutative
encryption, each party encrypts its own frequent itemsets (e.g., Site 1 encrypts
itemset C ). The encrypted itemsets are then passed to other parties, until all
parties have encrypted all itemsets. These are passed to a common party to
eliminate duplicates, and to begin decryption. (In the figure, the full set of
itemsets are shown to the left of Site 1, after Site 1 decrypts.) This set is then
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E1(C)

E2(E1(C))E3(E2(E1(C))) Site 3
C

Site 1
C

Site 2
D

E2(E3(C))
E2(E3(D))

E3(C)
E3(D)C

D

Fig. 2. Determining global candidate itemsets

passed to each party, and each party decrypts each itemset. The final result
is the common itemsets (C and D in the figure).

Clearly, Algorithm 1 finds the union without revealing which itemset be-
longs to which site. It is not, however, secure under the definitions of secure
multi-party computation. It reveals the number of itemsets having common
support between sites, e.g., sites 3, 5, and 9 all support some itemset. It does
not reveal which itemsets these are, but a truly secure computation (as good
as giving all input to a “trusted party”) could not reveal even this count.
Allowing innocuous information leakage (the number of itemsets having com-
mon support) allows an algorithm that is sufficiently secure with much lower
cost than a fully secure approach.

If we deem leakage of the number of commonly supported itemsets as ac-
ceptable, we can prove that this method is secure under the definitions of
secure multi-party computation. The idea behind the proof is to show that
given the result, the leaked information, and a site’s own input, a site can sim-
ulate everything else seen during the protocol. Since the simulation generates
everything seen during execution of the protocol, the site clearly learns noth-
ing new from the protocol beyond the input provided to the simulator. One
key is that the simulator does not need to generate exactly what is seen in any
particular run of the protocol. The exact content of messages passed during
the protocol is dependent on the random choice of keys; the simulator must
generate an equivalent distribution, based on random choices made by the
simulator, to the distribution of messages seen in real executions of the proto-
col. A formal proof that this proof technique shows that a protocol preserves
privacy can be found in [17]. We use this approach to prove that Algorithm
1 reveals only the union of locally large itemsets and a clearly bounded set of
innocuous information.
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Algorithm 1 [20] Finding secure union of large itemsets of size k

Require: N ≥ 3 sites numbered 0..N − 1, set F of non-itemsets.

Phase 0: Encryption of all the rules by all sites
for each site i do

generate LLi(k) (Locally Large k-itemsets)
LLei(k) = ∅
for each X ∈ LLi(k) do

LLei(k) = LLei(k) ∪ {Ei(X)}
end for
for j = |LLei(k)| + 1 to |CG(k)| do

LLei(k) = LLei(k) ∪ {Ei(random selection from F )}
end for

end for

Phase 1: Encryption by all sites
for Round j = 0 to N − 1 do

if Round j= 0 then
Each site i sends permuted LLei(k) to site (i + 1) mod N

else
Each site i encrypts all items in LLe(i−j mod N)(k) with Ei, permutes, and
sends it to site (i + 1) mod N

end if
end for{At the end of Phase 1, site i has the itemsets of site (i + 1) mod N
encrypted by every site}

Phase 2: Merge odd/even itemsets
Each site i sends LLei+1 mod N to site 1 − ((i + 1 mod N) mod 2)

Site 0 sets RuleSet1 = ∪�(N−1)/2�
j=1 LLe(2j−1)(k)

Site 1 sets RuleSet0 = ∪�(N−1)/2�
j=0 LLe(2j)(k)

Phase 3: Merge all itemsets
Site 1 sends permuted RuleSet1 to site 0
Site 0 sets RuleSet = RuleSet0 ∪ RuleSet1

Phase 4: Decryption
for i = 0 to N − 1 do

Site i decrypts items in RuleSet using Di

Site i sends permuted RuleSet to site i + 1 mod N
end for
Site N − 1 decrypts items in RuleSet using DN−1

RuleSet(k) = RuleSet − F
Site N − 1 broadcasts RuleSet(k) to sites 0..N − 2
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Theorem 2. [20] Algorithm 1 privately computes the union of the locally large
itemsets assuming no collusion, revealing at most the result ∪N

i=1LLi(k) and:

1. Size of intersection of locally supported itemsets between any subset of odd
numbered sites,

2. Size of intersection of locally supported itemsets between any subset of even
numbered sites, and

3. Number of itemsets supported by at least one odd and one even site.

Proof. Phase 0: Since no communication occurs in Phase 0, each site can
simulate its view by running the algorithm on its own input.

Phase 1: At the first step, each site sees LLei−1(k). The size of this set
is the size of the global candidate set CG(k), which is known to each site.
Assuming the security of encryption, each item in this set is computationally
indistinguishable from a number chosen from a uniform distribution. A site
can therefore simulate the set using a uniform random number generator. This
same argument holds for each subsequent round.

Phase 2: In Phase 2, site 0 gets the fully encrypted sets of itemsets from
the other even sites. Assuming that each site knows the source of a received
message, site 0 will know which fully encrypted set LLe(k) contains encrypted
itemsets from which (odd) site. Equal itemsets will now be equal in encrypted
form. Thus, site 0 learns if any odd sites had locally supported itemsets in
common. We can still build a simulator for this view, using the information
in point 2 above. If there are k itemsets known to be common among all
�N/2� odd sites (from point 1), generate k random numbers and put them
into the simulated LLei(k). Repeat for each �N/2�− 1 subset, etc., down to 2
subsets of the odd sites. Then fill each LLei(k) with randomly chosen values
until it reaches size |CGi(k)|. The generated sets will have exactly the same
combinations of common items as the real sets, and since the values of the
items in the real sets are computationally indistinguishable from a uniform
distribution, their simulation matches the real values.

The same argument holds for site 1, using information from point 2 to
generate the simulator.

Phase 3: Site 1 eliminates duplicates from the LLei(k) to generate RuleSet1.
We now demonstrate that Site 0 can simulate RuleSet1. First, the size of
RuleSet1 can be simulated knowing point 2. There may be itemsets in com-
mon between RuleSet0 and RuleSet1. These can be simulated using point
3: If there are k items in common between even and odd sites, site 0 selects
k random items from RuleSet0 and inserts them into RuleSet1. RuleSet1 is
then filled with randomly generated values. Since the encryption guarantees
that the values are computationally indistinguishable from a uniform distri-
bution, and the set sizes |RuleSet0|, |RuleSet1|, and |RuleSet0 ∩ RuleSet1|
(and thus |RuleSet|) are identical in the simulation and real execution, this
phase is secure.
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Phase 4: Each site sees only the encrypted items after decryption by the
preceding site. Some of these may be identical to items seen in Phase 2, but
since all items must be in the union, this reveals nothing. The simulator for
site i is built as follows: take the values generated in Phase 2 step N−1−i, and
place them in the RuleSet. Then insert random values in RuleSet up to the
proper size (calculated as in the simulator for Phase 3). The values we have not
seen before are computationally indistinguishable from data from a uniform
distribution, and the simulator includes the values we have seen (and knew
would be there), so the simulated view is computationally indistinguishable
from the real values.

The simulator for site N − 1 is different, since it learns RuleSet(k). To
simulate what it sees in Phase 4, site N −1 takes each item in RuleSet(k), the
final result, and encrypts it with EN−1. These are placed in RuleSet. RuleSet
is then filled with items chosen from F , also encrypted with EN−1. Since the
choice of items from F is random in both the real and simulated execution,
and the real items exactly match in the real and simulation, the RuleSet site
N − 1 receives in Phase 4 is computationally indistinguishable from the real
execution.

Therefore, we can conclude that above protocol is privacy-preserving in
the semi-honest model with the stated assumptions.

The information disclosed by points 1–3 could be relaxed to the number
of itemsets support by 1 site, 2 sites, . . . , N sites if we assume anonymous
message transmission. The number of jointly supported itemsets can also be
masked by allowing sites to inject itemsets that are not really supported lo-
cally. These fake itemsets will simply fail to be globally supported, and will be
filtered from the final result when global support is calculated as shown in the
next section. The jointly supported itemsets “leak” then becomes an upper
bound rather than exact, at an increased cost in the number of candidates
that must be checked for global support. While not truly zero-knowledge, it
reduces the confidence (and usefulness) of the leaked knowledge of the number
of jointly supported itemsets. In practical terms, revealing the size (but not
content) of intersections between sites is likely to be of little concern.

A complimentary problem of mining association rules over vertically parti-
tioned data is addressed in [34, 37]. While we do not describe these techniques
here, we would like to emphasize that the different model of distribution re-
quires very different solution techniques.

1.3 Decision Trees

The first paper discussing the use of Secure Multiparty Computation for data
mining gave a procedure for constructing decision trees[24], specifically run-
ning ID3 [31] between two parties, each containing a subset of the training
entities. Of particular interest is the ability to maintain “perfect” security in
the SMC sense, while trading off efficiency for the quality of the resulting
decision tree.
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Building an ID3 decision tree is a recursive process, operating on the de-
cision attributes R, class attribute C, and training entities T . At each stage,
one of three things can happen:

1. R may be empty; i.e., the algorithm has no attributes on which to make a
choice. In this case a leaf node is created with the class of the leaf being
the majority class of the transactions in T .

2. All the transactions in T may have the same class c, in which case a leaf
is created with class c.

3. Otherwise, we recurse:
(a) Find the attribute A that is the most effective classifier for transactions

in T , specifically the attribute that gives the highest information gain.
(b) Partition T based on the values ai of A.
(c) Return a tree with root labeled A and edges ai, with the node at the

end of edge ai constructed from calling ID3 with R − {A}, C, T (Ai).

In step 3a, information gain is defined as the change in the entropy relative
to the class attribute. Specifically, the entropy

HC(T ) =
∑

c∈C

−|T (c)|
|T | log

|T (c)|
|T | .

Analogously, the entropy after classifying with A is

HC(T |A) =
∑

a∈A

−|T (a)|
|T | HC(T (a)).

Information gain is

Gain(A)
def
= HC(T ) − HC(T |A).

The goal, then, is to find A that maximizes Gain(A), or minimizes HC(T |A).
Expanding, we get:

HC(T |A) =
∑

a∈A

|T (a)|
|T | HC(T (A))

=
1
|T |

∑

a∈A

|T (a)|
∑

c∈C

−|T (a, c)|
|T (a)| log

(
|T (a, c)|
|T (A)|

)

=
1
|T |

(

−
∑

a∈A

∑

c∈C

|T (a, c)| log(|T (a, c)|) +
∑

a∈A

|T (a)| log(|T (a)|)
)

(1)

Looking at this from the point of view of privacy preservation, we can
assume that R and C are known to both parties. T is divided. In Step 1 we
need only determine the class value of the majority of the transactions in
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T . This can be done using circuit evaluation 1. Since each party is able to
compute the count of local items in each class, the input size of the circuit is
fixed by the number of classes, rather than growing with the (much larger)
training data set size.

Step 2 requires only that we determine if all of the items are of the same
class. This can again be done with circuit evaluation, here testing for equality.
Each party gives as input either the single class ci of all of its remaining items,
or the special symbol ⊥ if its items are of multiple classes. The circuit returns
the input if the input values are equal, else it returns ⊥.1

It is easy to prove that these two steps preserve privacy: Knowing the tree,
we know the majority class for Step 1. As for Step 2, if we see a tree that
has a “pruned” branch, we know that all items must be of the same class,
or else the branch would have continued. Interestingly, if we test if all items
are in the same class before testing if there are no more attributes (reversing
steps 1 and 2, as the original ID3 algorithm was written), the algorithm would
not be private. The problem is that Step 2 reveals if all of the items are of
the same class. The decision tree doesn’t contain this information. However,
if a branch is “pruned” (the tree outputs the class without looking at all the
attributes), we know that all the training data at that point are of the same
class – otherwise the tree would have another split/level. Thus Step 2 doesn’t
reveal any knowledge that can’t be inferred from the tree when the tree is
pruned – the given order ensures that this step will only be taken if pruning
is possible.

This leaves Step 3. Note that once A is known, steps 3b and 3c can be
computed locally – no information exchange is required, so no privacy breach
can occur. Since A can be determined by looking at the result tree, revealing
A is not a problem, provided nothing but the proper choice for A is revealed.
The hard part is Step 3a: computing the attribute that gives the highest
information gain. This comes down to finding the A that minimizes (1).

Note that since the database is horizontally partitioned, |T (a)| is re-
ally |T1(a)| + |T2(a)|, where T1 and T2 are the two databases. The idea is
that the parties will compute (random) shares of each (|T1(a, c)| + |T2(a, c)|)
log(|T1(a, c)|+|T2(a, c)|), and (|T1(a)|+|T2(a)|) log(|T1(a)|+|T2(a)|). The par-
ties can then locally add their shares to give each a random share of HC(T |A).
This is repeated for each attribute A, and a (small) circuit, of size linear in
the number of attributes, is constructed to select the A that gives the largest
value.

The problem, then is to efficiently compute (x + y) log(x + y). Lindell and
Pinkas actually give a protocol for computing (x+y) ln(x+y), giving shares of
HC(T |A)·|T |·ln 2. However, the constant factors are immaterial since the goal
is simply to find the A that minimizes the equation. In [24] three protocols are

1The paper by Lindell and Pinkas gives other methods for computing this step,
however circuit evaluation is sufficient – the readers are encouraged to read [24] for
the details.
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given: Computing shares of ln(x+y), computing shares of x·y, and the protocol
for computing the final result. The last is straightforward: Given shares u1

and u2 of ln(x + y), the parties call the multiplication protocol twice to give
shares of u1 ·y and u2 ·x. Each party then sums three multiplications: the two
secure multiplications, and the result of multiplying its input (x or y) with
its share of the logarithm. This gives each shares of u1yu2x + u1x + u2y =
(x + y)(u1 + u2) = (x + y) ln(x + y).

The logarithm and multiplication protocols are based on oblivious poly-
nomial evaluation[27]. The idea of oblivious polynomial evaluation is that one
party has a polynomial P , the other has a value for x, and the party holding
x obtains P (x) without learning P or revealing x. Given this, the multiplica-
tion protocol is simple: The first party chooses a random r and generates the
polynomial P (y) = xy − r. The resulting of evaluating this on y is the second
party’s share: xy − r. The first party’s share is simply r.

The challenge is computing shares of ln(x+y). The trick is to approximate
ln(x + y) with a polynomial, specifically the Taylor series:

ln(1 + ε) =
k∑

i=1

(−1)i−1εi

i

Let 2n be the closest power of 2 to (x + y). Then (x + y) = 2n(1 + ε) for some
−1/2 ≤ ε ≤ 1/2. Now

ln(x) = ln(2n(1 + ε)) = n ln 2 + ε − ε2

2
+

ε3

3
− . . .

We determine shares of 2Nn ln 2 and 2N ε (where N is an upper bound on n)
using circuit evaluation. This is a simple circuit. ε · 2n = (x + y) − 2n, and n
is obtained by inspecting the two most significant bits of (x + y). There are a
small (logarithmic in the database size) number of possibilities for 2Nn ln 2,
and ε · 2N is obtained by left shifting ε · 2n.

Assume the parties share of 2Nn ln 2 are α1 and α2, and the shares of 2N ε
are β1 and β2. The first party defines

P (x) =
k∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− r

and defines it’s share u1 = β1 + r. The second party defines its share as
β2 +P (α2). Note that P (α2) computes the Taylor series approximation times
2N , minus the random r. Since 2N is public, it is easily divided out later, so
the parties do get random shares of an approximation of ln(x + y).

As discussed in Sect. 1.2, all arithmetic is really done over a sufficiently
large field, so that the random values (e.g., shares) can be chosen from a
uniform distribution. In addition, the values in the Taylor series are multiplied
by the least common multiple of 2, . . . , k to eliminate fractions.
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The key points to remember are the use of oblivious polynomial evalua-
tion, and the use of an efficiently computable (bounded) approximation when
efficiently and privately computing the real value is difficult.

There has also been a solution for constructing ID3 on vertically parti-
tioned data[12]. This work assumes the class of the training data is shared,
but some the attributes are private. Thus most steps can be evaluated locally.
The main problem is computing which site has the best attribute to split on –
each can compute the gain of their own attributes without reference to the
other site.

1.4 Third Party Based Solutions

The use of an outside party often enables more efficient solutions to secure
computations. The key issues are what level of trust is placed in this third,
outside party; and what level of effort is required of the third party. Generally
the trust issue is rooted in collusion: What happens if parties collude to violate
privacy? This gives us a hierarchy of types of protocols:

No trusted third party. The most general type of protocol meets the strong
statements of Definition 1: No party learns anything beyond what it can
infer from the results. If parties collude, they are treated as one from the
point of view of the definition: What can they infer from their combined
inputs and results?

Non-colluding untrusted third party protocol. These protocols allow all par-
ties to utilize an untrusted third party to do part of the computation.
The third party learns nothing by itself (it need not even see the results).
Provided this third party does not collude with one or more of the other
parties, this method preserves privacy as well as a fully secure protocol.
Typically data is sent to this party in some “encrypted” form such that
it cannot make any sense of the data by itself. This party performs some
computations and replies to the local parties, which then remove the effect
of the encryption to get back the final result. The key is that the untrusted
third party does not see any “cleartext” data and is assumed to not collude
with any of the other parties.

Commodity server protocol. Commodity server protocols also requires a non-
colluding third party. They differ from non-colluding untrusted third
party protocols in that only one way communication is allowed from the
commodity server to the other parties. Because of this, the commodity
server clearly learns nothing (absent collusion). The general approach is
to use the commodity server to generate complementary data (e.g., public-
private encryption key pairs), each part of which is given to a different
party.
The commodity server model has been proven to be powerful enough to do
all secure computation[5]. Thus, in terms of scope and power commodity
server protocols are equivalent to protocols with an untrusted third party.
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They are simpler to prove secure though typically more complicated than
untrusted third party protocols.

Trusted third party protocol. The gold standard for security is the assump-
tion that we have a trusted third party to whom we can give all data.
The third party performs the computation and delivers only the results –
except for the third party, it is clear that nobody learns anything not in-
ferable from its own input and the results. The goal of secure protocols is
to reach this same level of privacy preservation, without the (potentially
insoluble) problem of finding a third party that everyone trusts.

The complexity of fully secure protocols generally increases with an in-
creasing number of parties. Simple (completely secure) solutions for two par-
ties do not extend easily to more than two parties. In such scenarios, it is
often worthwhile to reduce the single complex problem to a series of two-
party sub-problems. One approach is to make use of untrusted non-colluding
third party protocols, using some of the participating parties to serve as “un-
trusted” parties for other parties in the protocol. If the target function consists
of additive sub-blocks, or the target function can be reduced to a combination
of associative functions, such an approach is possible. The key is to find an un-
trusted third party solution to the two-party problem, then securely combine
the two-party results in a way that gives the desired final result.

We now give a couple of examples typifying these cases, and show so-
lutions that illuminate the basic concept. First consider the following geo-
metric function: Consider an n-dimensional space split between r different
parties, P1, . . . , Pr. Pi owns a variable number ni of dimensions/axes such
that

∑r
i=1 ni = n. A point X in this n-dimensional space would have its n

co-ordinates split between the r parties. Thus, party i would know ni of the
co-ordinates of the point X. We assume that there is some way of linking the
co-ordinates of the same point together across all the parties (i.e., a join key).
Now, assume there are k points Y1, . . . , Yk split between the r parties. The
target function is to jointly compute the index i of the point Yi that is the
“closest” to point X according to some distance metric D.

Why is this problem interesting? K-means clustering over vertically par-
titioned data can be easily reduced to this problem. K-means clustering is
an iterative procedure that starts with K arbitrary cluster means. In each
iteration, all of the points are assigned to the current closest cluster (based on
distance from mean). Once all the points are assigned, the cluster means are
recomputed based on the points assigned to each cluster. This procedure is
repeated until the clusters converge. One easy convergence condition is to stop
when the difference between the old means and the new means is sufficiently
small. The key step, assigning a point to a cluster, is done by finding the clos-
est cluster to the point. This is solved by our earlier “abstract” geometrical
problem.2

2A solution for clustering in horizontally partitioned data has also been developed
[23], this relies heavily on secure summation.
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One possible distance metric is the Minkowski distance, dM . The
Minkowski distance dM between two points X and Y is defined as

dM =

{
n∑

i=1

(xi − yi)m

} 1
m

Note that m = 2 gives the Euclidean distance, while m = 1 gives the Man-
hattan distance. Instead of comparing two distances, we get the same result
by comparing the mth power of the distances. Note that if we do not take the
mth root, the target function is additive. We can exploit this additiveness to
get an efficient protocol.

The problem is formally defined as follows. Consider r parties P1, . . . , Pr,
each with their own k-element vector Xi:

P1 has X1 =








x11

x21

...
xk1








, P2 has








x12

x22

...
xk2








, . . . , Pr has








x1r

x2r

...
xkr








.

The goal is to compute the index l that represents the row with the minimum
sum. Formally, find

argmin
i=1..k




∑

j=1..r

xij





For use in k-means clustering, xij = |µij − pointj |, or site Pj ’s component of
the distance between a point and the cluster i with mean µi.

The security of the algorithm is based on three key ideas.

1. Disguise the site components of the distance with random values that cancel
out when combined.

2. Compare distances so only the comparison result is learned; no party knows
the distances being compared.

3. Permute the order of clusters so the real meaning of the comparison results
is unknown.

The algorithm also requires three non-colluding sites. These parties may be
among the parties holding data, but could be external as well. They need
only know the number of sites r and the number of clusters k. Assuming they
do not collude with each other, they learn nothing from the algorithm. For
simplicity of presentation, we will assume the non-colluding sites are P1, P2,
and Pr among the data holders.

The algorithm proceeds as follows. Site P1 generates a length k random
vector Vi for each site i, such that

∑r
i=1 Vi = 0. P1 also chooses a permutation

π of 1..k. P1 then engages each site Pi in the permutation algorithm (see
Sect. 1.4) to generate the sum of the vector Vi and Pi’s distances Xi. The
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resulting vector is known only to Pi, and is permuted by π known only to P1,
i.e., Pi has π(Vi + Xi), but does not know π or Vi. P1 and P3 . . . Pr−1 send
their vectors to Pr.

Sites P2 and Pr now engage in a series of secure addition/comparisons to
find the (permuted) index of the minimum distance. Specifically, they want
to find if

∑r
i=1 xli +vli <

∑r
i=1 xmi +vmi. Since ∀l,

∑r
i=1 vli = 0, the result is∑r

i=1 xli <
∑r

i=1 xmi, showing which cluster (l or m) is closest to the point.
Pr has all components of the sum except X2 + V2. For each comparison,
we use a secure circuit evaluation that calculates a2 + ar < b2 + br, without
disclosing anything but the comparison result. After k − 1 such comparisons,
keeping the minimum each time, the minimum cluster is known.

P2 and Pr now know the minimum cluster in the permutation π. They do
not know the real cluster it corresponds to (or the cluster that corresponds to
any of the others items in the comparisons.) For this, they send the minimum
i back to site P1. P1 broadcasts the result π−1(i), the proper cluster for the
point.

Algorithm 2 reproduces the full algorithm from [36]. We now describe
the two key building blocks borrowed from the Secure Multiparty Compu-
tation literature. The secure addition and comparison consists of a circuit
that has two inputs from each party, sums the first input of both parties
and the second input of both parties, and returns the result of comparing
the two sums. This (simple) circuit is evaluated securely using the generic
algorithm. Though the generic algorithm is impractical for large inputs
and many parties, it is quite efficient for a limited number invocations of
the secure add and compare function. For two parties, the message cost is
O(circuit size), and the number of rounds is constant. We can add and com-
pare numbers with O(m = log(number of entities)) bits using an O(m) size
circuit. A graphical depiction of stages 1 and 2 is given in Figs. 3(a) and 3(b).

We now give the permutation algorithm of [11], which simultaneously com-
putes a vector sum and permutes the order of the elements in the vector.

The permutation problem is an asymmetric two party algorithm, formally
defined as follows. There exist 2 parties, A and B. B has an n-dimensional
vector X = (x1, . . . , xn), and A has an n-dimensional vector V = (v1, . . . , vn).
A also has a permutation π of the n numbers. The goal is to give B the result
π(X + V), without disclosing anything else. In particular, neither A nor B
can learn the other’s vector, and B does not learn π. For our purposes, the V
is a vector of random numbers from a uniform random distribution, used to
hide the permutation of the other vector.

The solution makes use of a tool known as Homomorphic Encryption. An
encryption function H : R → S is called additively homomorphic if there is
an efficient algorithm Plus to compute H(x + y) from H(x) and H(y) that
does not reveal x or y. Many such systems exist; examples include systems
by [6, 26, 28], and [30]. This allows us to perform addition of encrypted data
without decrypting it.
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Algorithm 2 closest cluster[36]: Find minimum distance cluster
Require: r parties, each with a length k vector X of distances. Three of these

parties (trusted not to collude) are labeled P1, P2, and Pr.
1: {Stage 1: Between P1 and all other parties}
2: P1 generates r random vectors Vi summing to 0 (see Algorithm 3).
3: P1 generates a random permutation π over k elements
4: for all i = 2 . . . r do
5: Ti (at Pi) = add and permute(Vi, π(at P1),Xi(at Pi)) {This is the permu-

tation algorithm described in Sect. 1.4}
6: end for
7: P1 computes T1 = π(X1 + V1)
8:
9: {Stage 2: Between all but P2 and Pr}

10: for all i = 1, 3 . . . r − 1 do
11: Pi sends Ti to Pr

12: end for
13: Pr computes Y = T1 +

∑r
i=3 Ti

14:
15: {Stage 3: Involves only P2 and Pr}
16: minimal ← 1
17: for j=2..k do
18: if secure add and compare(Yj + T2j < Yminimal + T2minimal) then
19: minimal ← j
20: end if
21: end for
22:
23: {Stage 4: Between Pr (or P2) and P1}
24: Party Pr sends minimal to P1

25: P1 broadcasts the result π−1(minimal)

Algorithm 3 genRandom[36]: Generates a (somewhat) random matrix Vk×r

Require: Random number generator rand producing values uniformly distributed
over 0..n − 1 spanning (at least) the domain of the distance function −D.

Ensure: The sum of the resulting vectors is 0.
1: for all i = 1 . . . k do
2: PartSumi ← 0
3: for j = 2 . . . r do
4: Vij ← rand()
5: PartSumi ← PartSumi + Vij (mod n)
6: end for
7: Vi1 ← −PartSumi (mod n)
8: end for
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Fig. 3. Closest Cluster Computation

The permutation algorithm consists of the following steps:

1. B generates a public-private keypair (Ek,Dk) for a homomorphic encryp-
tion scheme.

2. B encrypts its vector X to generate the encrypted vector X′ = (x′
1, . . . , x

′
n),

x′
i = Ek(xi).

3. B sends X′ and the public key Ek to A.
4. A encrypts its vector V generating the encrypted vector V′ = (v′

1, . . . , v
′
n),

v′
i = Ek(vi).

5. A now multiplies the components of the vectors X′ and V′ to get T′ =
(t′1, . . . , t

′
n), t′i = x′

i ∗ v′
i.

Due to the homomorphic property of the encryption,

x′
i ∗ v′

i = Ek(xi) ∗ Ek(vi) = Ek(xi + vi)

so T′ = (t′1, . . . , t
′
n), t′i = Ek(xi + vi).

6. A applies the permutation π to the vector T′ to get T′
p = π(T′), and sends

T′
p to B.

7. B decrypts the components of T′
p giving the final result Tp = (tp1, . . . , tpn),

tpi = xpi + vpi.

Intersection

We now give an algorithm that demonstrates another way of using untrusted,
non-colluding third parties. The specific algorithm is for computing the size
of set intersection. This is useful for finding association rules in vertically
partitioned data.
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Assume the database is a boolean matrix where a 1 in cell (i, j) represents
that the ith transaction contains feature j. The TID-list representation of
the database has a transaction identifier list associated with every feature/
attribute. This TID-list contains the identifiers of transactions that contain
the attribute. Now, to count a frequency of an itemset <AB> (where A and
B are at different sites), it is necessary to count the number of transactions
having both A and B. If we intersect the TID-lists for both A and B, we
get the transactions containing both A and B. The size of this intersection
set gives the (in)frequency of the itemset. Thus, the frequency of an itemset
can be computed by securely computing the size of the intersection set of the
TID-lists.

In addition to being useful for association rule mining, the algorithm illu-
minates a general technique that we can use to extend untrusted third party
solutions for two parties to multiple parties. This works whenever the target
function is associative. As in Sect. 1.2, the approach leaks some innocuous
information, but can be proven to leak no more than this information. We
start with the general technique, then discuss the specific application to set
intersection.

Given k parties, the goal is to compute a function y ∈ Fg, where
y = f(x1, . . . , xk), where x1, . . . , xk are the local inputs of the k parties.
If the function can be decomposed into smaller invocations of an associative
function, we can rewrite y = x1 ⊗ x2 ⊗ · · · ⊗ xk. If we have a protocol fs to
securely compute the two-input function ⊗, we can construct a protocol to
compute y as follows.

The key idea is to create two partitions P0 and P1. Split the k parties
equally into the two partitions. We can now use the parties in partition Pi as
untrusted third parties to evaluate partition P1−i. To visualize this, construct
a binary tree on the partition Pi with the leaves being the parties in Pi

(Fig. 4).3 There can be at most |Pi| − 1 interior nodes in the binary tree.
Due to the (almost) equi-partitioning, the following invariant always holds:
|P1−i| ≥ |Pi| − 1, for both values of i. Thus, there are sufficient parties in the
other partition to act as interior nodes. The role of the parties in partition
P1−i is to act as the commodity server or untrusted third party for the parties
in partition Pi.

In the first round, the k/4 of the parties from the other partition act
as third parties for the k/2 parties in the first partition. For the remaining
log k/2 − 1 rounds the other k/4 parties of the 2nd partition act as third
parties upwards along the tree. Each third party receives some form of the
intermediate result, and utilizes it in the next round. It is important to analyze
the amount of data revealed to the third party at this point and modify the
protocol if necessary to limit the information disclosure. The entire process
is illustrated in Fig. 4, where we show the process for partition P0 consisting

3While the example assumes k is a power of 2, a proper assignment of parties to
partitions is also possible if the tree is not complete. This is described in [37].



332 C. Clifton et al.

P

Stage   (log   k/2)

1,..,k/2

k/2−2,..,k/2

...
3k/4−1k/2+2k/2+1

P

P

PP

P

P

1,2,3,4

k2,k33,4 P

P

P Stage 1

k/2k/21P4321 PPPP

kP

P1,2 3k/4P

2

Stage 2

Fig. 4. The general protocol process applied on partition P0

of the first k/2 parties. Thus, all of the parties Pk/2+1, . . . , Pk act as third
parties/commodity servers in a single call to the protocol fs when applied to
the parties at the leaf nodes. There are a total of log k/2 rounds in which
several calls to the protocol fs are made in parallel.

Once a similar process is done for the other partition P1, the two topmost
representatives of the two parties use a secure two party protocol f ′ to com-
pute the final result. Every party possibly acquires some information about a
few of the other parties, which goes against the precept of secure multi-party
computation. But as long as the information revealed is held within strict
(and provable) bounds, it is often worthwhile to trade this limited informa-
tion disclosure for efficiency and practicality.

We summarize the use of this approach to solve secure set intersection
[35, 37]. The problem is defined as follows. There are k parties, P1, . . . , Pk,
each with a local set Sk drawn from a common (global) universe U . They
wish to compute | ∩k

j=1 Sj |, i.e., the cardinality of the common intersection
set. This is useful for several applications for example data mining association
rules (see [37] for details.)

We now outline a two party protocol f∩ using a third untrusted party to
compute |Sa∩Sb| for two parties A and B. The key idea behind protocol f∩ is
to use commutative encryption (as described in Sect. 1.2) to allow comparing
items without revealing them. Parties A and B generate encryption keys Ea

and Eb respectively. A encrypts the items in its set Sa with Ea and sends
them to B. Similarly, B encrypts the items in Sb with Eb and sends them to
A. Each site now encrypts the received items with its own key, and sends the
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doubly-encrypted sets S′
a and S′

b to U . U now finds the intersection of these
two sets. Because of commutativity of the encryption, an item x ∈ Sa ∩ Sb

will correspond to an item Ea(Eb(x)) = Eb(Ea(x)) that appears in both S′
a

and S′
b. Therefore, the size of the intersection |S′

a ∩ S′
b| = |Sa ∩ Sb|. Thus U

learns the size of the intersection, but learns nothing about the items in the
intersection.

Extending this to more than two parties is simple. We use the tree based
evaluation for each partition. The lowest layer (consisting of leaves) proceeds
as above. At the higher layers, the parties encrypt with the keys of their
sibling’s children. Since a party never sees any of the values from the sibling’s
children (even after encryption), knowing the keys gives no information. More
details are given in [37].

2 Privacy Preservation through Noise Addition

The other approach to privacy-preserving data mining is based on adding
random noise to the data, then providing the noisy dataset as input to the
data mining algorithm. The privacy-preserving properties are a result of the
noise: Data values for individual entities are distorted, and thus individually
identifiable (private) values are not revealed. An example would be a survey:
A company wishes to mine data from a survey of private data values. While
the respondents may be unwilling to provide those data values directly, they
would be willing to provide randomized/distorted results.

What makes this work interesting is how the mining of the noisy data set
is done. Näıvely running a data mining algorithm on the data may work – for
example, adding noise from a gaussian distribution centered at 0 will preserve
averages – but does not always give good results. However, using knowledge
of how the noise was generated enables us to do better. In particular, what is
used is knowledge of the distribution that the noise came from (e.g., uniform
or gaussian and the appropriate parameters). Knowing the distribution the
random values came from does not reveal the specific values used to mask each
entity, so privacy is still preserved. However, as we shall see the knowledge of
the distribution of the noise does enable us to improve data mining results.

The problem addressed in [3] was building decision trees. If we return to
the description of ID3 in Sect. 1.3, we see that Steps 1 and 3c do not reference
the (noisy) data. Step 2 references only the class data, which is assumed to be
known (for example, the survey may be demographics of existing customers –
the company already knows which are high-value customers, and wants to
know what demographics correspond to high-value customers.)

This leaves Steps 3a and 3b: Finding the attribute with the maximum
information gain and partitioning the tree based on that attribute. Looking
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Fig. 5. Original distribution vs. distribution after random noise addition

at (1), the only thing needed is |T (a, c)| and |T (a)|.4 |T (a)| requires parti-
tioning the entities based on the attribute value, exactly what is needed for
Step 3b. The problem is that the attribute values are modified, so we don’t
know which entity really belongs in which partition.

Figure 5 demonstrates this problem graphically. There are clearly peaks in
the number of drivers under 25 and in the 25–35 age range, but this doesn’t
hold in the noisy data. The ID3 partitioning should reflect the peaks in the
data.

A second problem comes from the fact that the data is assumed to be
ordered (otherwise “adding” noise makes no sense.) As a result, where to
divide partitions is not obvious (as opposed to categorical data). Again, re-
constructing the distribution can help. We can see that in Fig. 5 partitioning
the data at ages 30 and 50 would make sense – there is a natural “break”
in the data at those points anyway. However, we can only see this from the
actual distribution. The split points are not obvious in the noisy data.

Both these problems can be solved if we know the distribution of the
original data, even if we do not know the original values. The problem remains
that we may not get the right entities in each partition, but we are likely to
get enough that the statistics on the class of each partition will still hold (In
[3] experimental results are given demonstrating this fact.)

4Reference [3] actually uses the gini coefficient rather than information gain.
While this may affect the quality of the decision tree, it has no impact on the
discussion here. We stay with information gain for simplicity.
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What remains is the problem of estimating the distribution of the real
data (X) given the noisy data (w) and the distribution of the noise (Y ). This
is accomplished through Bayes’ rule:

F ′
X(a) ≡

∫ a

−∞
fX(z|X + Y = w)dz

=
∫ a

−∞

fX+Y (w|X = z)fX(z)
fX+Y (w)

dz

=
∫ a

−∞

fX+Y (w|X = z)fX(z)
∫ ∞
−∞ fX+Y (w|X = z′)fX(z′)dz′

dz

=

∫ a

−∞ fX+Y (w|X = z)fX(z)dz
∫ ∞
−∞ fX+Y (w|X = z)fX(z)dz

=

∫ a

−∞ fY (w − z)fX(z)dz
∫ ∞
−∞ fY (w − z)fX(z)dz

Given the actual data values wi = xi + yi, we use this to estimate the distri-
bution function as follows:

F ′
X(a) =

1
n

n∑

i=1

F ′
Xi

=
1
n

n∑

i=1

∫ a

−∞ fY (wi − z)fX(z)dz
∫ ∞
−∞ fY (wi − z)fX(z)dz

Differentiating gives us the posterior density function:

f ′
X(a) =

1
n

n∑

i=1

fY (wi − a)fX(a)
∫ ∞
−∞ fY (wi − z)fX(z)dz

(2)

The only problem is, we don’t know the real density function fX . However,
starting with an assumption of a uniform distribution, we can use (2) to
iteratively refine the density function estimate, converging on an estimate of
the real distribution for X.

In [3] several optimizations are given, for example partitioning the data
to convert the integration into sums. They also discuss tradeoffs in when to
compute distributions: Once for each attribute? Separately for each class? For
only the data that makes it to each split point? They found that reconstructing
each attribute separately for each class gave the best performance/accuracy
tradeoff, with classification accuracy substantially better than näıvely running
on the noisy data, and approaching that of building a classifier directly on the
real data.

One question with this approach is how much privacy is given? With the
secure multiparty computation based approaches, the definition of privacy is
clear. However, given a value that is based on the real value, how do we know
how much noise is enough? Agrawal and Srikant proposed a metric based
the confidence in estimating a value within a specified width: If it can be
estimated with c% confidence that a value x lies in the interval [xl, xh], then



336 C. Clifton et al.

the privacy at the c% confidence level is |xh − xl|. The quantify this in terms
of a percentage: The privacy metric for noise from a uniform distribution
is the confidence times twice the interval width of the noise: 100% privacy
corresponds to a 50% confidence that the values is within two distribution
widths of the real value, or nearly 100% confidence that it is within one width.
They have an equivalent definition for noise from a gaussian distribution.

Agrawal and Aggarwal (not the same Agrawal) pointed out problems with
this definition of privacy[1]. The very ability to reconstruct distributions may
give us less privacy than expected. Figure 5 demonstrates this. Assume the
noise is known to come from a uniform distribution over [−15, 15], and the
actual/reconstructed distribution is as shown by the bars. Since there are no
drivers under age 16 (as determined from the reconstructed distribution), a
driver whose age is given as 1 in the “privacy-preserving” dataset is known
to be 16 years old – all privacy for this individual is lost. They instead give a
definition based on entropy (discussed in Sect. 1.3). Specifically, if a random
variable Y has entropy H(Y ), the privacy is 2H(Y ). This has the nice property
that for a uniform distribution, the privacy is equivalent to the width of the
interval from which the random value is chosen. This gives a meaningful way
to compare different sources of noise.

They also provide a solution to the loss of privacy obtained through re-
constructing the original data distribution. The idea is based on conditional
entropy. Given the reconstructed distribution X, the privacy is now 2H(Y |X).
This naturally captures the expected privacy in terms of the interval width
description: a reconstruction distribution that eliminates part of an interval
(or makes it highly unlikely) gives a corresponding decrease in privacy.

There has been additional work in this area, such as techniques for associ-
ation rules[14, 32]. Techniques from signal processing have also been applied
to distribution reconstruction [21], generalizing much of this work. One prob-
lem is the gap between known abilities to reconstruct distributions and lower
bounds on ability to reconstruct actual data values: the jury is still out on
how effective these techniques really are at preserving privacy.

3 Conclusions and Recommendations

While privacy-preserving data mining does have the potential to reconcile the
concerns of data mining proponents and privacy advocates, it has not reached
the level of an effective panacea. Two issues remain.

First, the rigor required of the cryptography and security protocols com-
munities must be brought to this field. While some of the work in this field
does approach this level of rigor, much of the work does not. For some work,
particularly with the noise addition approach, it is not clear if a determined
adversary could compromise privacy (and in some cases, it is clear that they
can [ 21, ].) The distributed approach has a clear set of standards borrowed
from the cryptography community, it is important that work be judged against

10
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these standards. In particular, work must move beyond the semi-honest model.
This could mean developing efficient solutions secure against malicious adver-
saries, or possibly new definitions such as “proof against collusion” that meet
practical needs and are defined with the rigor of the semi-honest and malicious
definitions.

The second problem may be more challenging. Privacy-preserving data
mining has operated under the assumption that data mining results do not of
themselves compromise privacy. This is not necessarily true. While there has
been some work on restricting data mining results [4, 1 33 ], this has
emphasized protection against revealing specific results
address connections between the results and compromise
While work on limiting classification strength may add
proposed method also prevents the data from being u
in any form. Achieving a reasonable connection betwe
and data mining results is still an open problem. Until
concerns of privacy advocates will not have been addre

That said, privacy-preserving data mining in its cu
practical applications. In some circumstances, the valu
results may exceed the potential cost to individual priva
true where the individual data items reflect commercial
property) rather than personal information. For examp
frowns on the general sharing of information between
if the shared information is limited to that absolutely
some consumer benefit the sharing is likely to pass le
cept that use of information is allowed when necessary
European Community privacy recommendations[13], r
with the potential privacy breach of data mining res
privacy-preserving data mining techniques are used to
results are disclosed.

In summary, while privacy-preserving data mining h
success, many challenges remain.
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