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Abstract People suffering from obesity and associated metabolic disorders includ-
ing diabetes are increasing exponentially around the world. Adipose tissue
(AT) distribution and alteration in their biochemical properties play a major role in
the pathogenesis of these diseases. Emerging evidence suggests that AT heteroge-
neity and depot-specific physiological changes are vital in the development of
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insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots
are classified into white adipose tissue (WAT) and brown adipose tissue (BAT);
WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic
heat production. The discovery of beige adipocyte clusters in WAT depots indicates
AT heterogeneity has a more central role than hither to ascribed. Therefore, we have
discussed in detail the current state of understanding on cellular and molecular origin
of different AT depots and their relevance toward physiological metabolic homeo-
stasis. A major focus is to highlight the correlation between altered WAT distribu-
tion in the body and metabolic pathogenesis in animal models and humans. We have
also underscored the disparity in the molecular (including signaling) changes in
various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial
alteration in WAT physiology/distribution that protects against metabolic disorders
is evolving. Here we have discussed the depot-specific biochemical adjustments
induced by different forms of exercise. A detailed understanding of the molecular
details of inter-organ crosstalk via substrate utilization/storage and signaling through
chemokines provide strategies to target selected WAT depots to pharmacologically
mimic the benefits of exercise countering metabolic diseases including diabetes.

Keywords Adipomyokines diabetes · Beiging · Brown fat · Exercise · Insulin
resistance · White fat
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YBX1 Y-box binding protein 1
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1 Introduction

In the last few decades, obesity and its related disorders have taken the form of a
pandemic affecting more than two billion people worldwide. Obesity is a physio-
logical state with complex metabolic alterations impacting multiple organ systems of
the body. Epidemiological studies have shown that obesity worsens the conditions of
several other diseases including Type2 diabetes mellitus (T2DM), cardiovascular
diseases, stroke, and even cancers (Kyrou et al. 2018). Obesity originates from a
misbalance in the utilization and storage of energy substrates (lipids and sugars) that
alter the canonical mechanisms in WAT and other tissues associated with the
progression of T2DM and other metabolic disorders (Ormazabal et al. 2018; Romieu
et al. 2017). Among mammals, the major site of energy storage is WAT which is
distributed in different parts of the body as discrete depots. Apart from white,
another major type of AT found in mammals is termed BAT. In addition to energy
storage, WAT is shown to meet some other physiological needs such as physical
protection as shock absorption and insulation as blubber layer (Choe et al. 2016).
While WAT primarily serves as an energy storage organ, BAT serves as fat
utilization site in converting the chemical energy of substrates into heat that is
employed to maintain internal body temperature. Except for being fatty, these two
AT (WAT and BAT) have nothing in common; they differ in developmental lineage,
morphological appearance, texture, cellular biochemistry as well as physiological
function (Billon and Dani 2012). The activities of these two tissues have been shown
to greatly influence the whole-body metabolic rate of mammals including humans
and as obvious this topic has attracted significant research attention. Interestingly,
some recent studies have indicated the possibility of interconversion between BAT
andWAT (Lee et al. 2014a), but whether this switching is partial or complete as well
as its mechanism is not fully defined.

The structural and functional heterogeneity of various AT sites has also generated
an idea that these adipocytes can group as distinct fat depots other than being pure
WAT or BAT. One such transitional form of adipocyte cluster is termed as “Beige”
adipocytes discovered in subcutaneous WAT (sWAT) depots in rodents as well as in
humans (Brown 2020; Sidossis et al. 2015). Also, beige adipocyte abundance and
degree of beiging depend upon physiological signals that vary across WAT depots
(Romieu et al. 2017; Rabiee 2020).Their transient appearance and disappearance of
beige adipocytes are highly correlated with whole-body metabolic demand (energy
surplus and deficient states) (Rabiee 2020). It is suggested that the beige adipocytes
are recruited for thermogenesis within WAT and are induced by external stimuli like
cold, exercise (Valgas et al. 2019; Phillips 2019; Rowland et al. 2015). BAT was
traditionally considered as a thermo active metabolic sink, but after the discovery of
beige cells, WAT is also being proposed to provide such a site. The seesaw
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equilibrium of energy storage–energy utilization lies greatly in functional capacities
of AT depots. Therefore, different adipocytes including BAT, WAT, and beige have
been targeted by pharmacological agents to enhance energy consumption and
counter metabolic diseases (González et al. 2017; Thyagarajan and Foster 2017).
In mammals, WAT depots govern metabolic homeostasis by influencing nutrient
mobilization and thermogenesis mediated by several signaling pathways including
insulin (Chait and den Hartigh 2020). Interestingly, exercise or elevated physical
activity status directly influences WAT physiology including its beiging in different
depots (Dewal and Stanford 2019). Recent studies have identified several adipo-
cytes, myokines, and hepatocytes mediating functional crosstalk between fat tissue
and muscle during various physiological and/or pathological states (Dewal and
Stanford 2019; Rodríguez et al. 2017). It has been proposed that pharmacological
activation of WAT or skeletal muscle (SkM) function mimicking exercise can retard
metabolic diseases (Yu et al. 2021; Piccirillo 2019; Olesen et al. 2014; Cabrero et al.
2001). However, WAT heterogeneity is an important aspect that can affect the
outcome by a pharmacological agent and may be a major cause of not being able
to effectively enhance whole-body energy status. In obese individuals, these depot-
specific differences transform into fat distribution patterns that also display gender-
based variations implying T2DM (Jensen 2008; Karastergiou et al. 2012). Therefore,
the differential role of WAT depots needs more detailed investigation to gain insight
in selective targeting of some individual WAT depots. Here, we are trying to
highlight the structure/function of different WAT depots and their biochemical and
physiological roles in metabolic diseases.

2 Heterogeneity of Fat Depots: Morphology, Molecular
Variability, and Differentiation

Adipocytes are localized distinctly as aggregated masses termed as AT or depot in
different parts of the mammalian body as shown in Fig. 1. Moreover, in the AT the
relative abundance of components such as preadipocytes, endothelial cells, macro-
phages, lymphocytes, blood vessels, and loose connective tissue varies across the
different depots (Frese et al. 2016). Due to this, each depot displays uniqueness in
their protein expression profile, texture, shape, and 3-dimensional arrangement. This
process is regulated developmentally as well as in a gender-specific manner (Rod-
gers and Sferruzzi-Perri 2021; Keuper and Jastroch 2021).The initial biogenesis of
the major adipocytes (white, brown, and beige) occurs during perinatal development
from the mesenchymal stem cells (MSCs) regulated by a set of common transcrip-
tion factors (TFs) (Chooi et al. 2019; Harms and Seale 2013). MSCs undergo
differentiation and become committed preadipocytes that are unique for white and
brown lineages (Fig. 2). This initial adipogenic differentiation program is regulated
by PPARγ that is induced by C/EBP family members, especially C/EBP-β and
C/EBP-δ (Ambele et al. 2020). During the latter part of adipogenesis, C/EBP-α
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plays a key role in maintaining PPARγ expression and both these TFs cooperatively
modulate the expression of adipocyte-specific genes involved in lipid metabolism,
storage, and cytokine secretion (Moseti et al. 2016). Despite the similarity in early
adipogenesis, each of the adipose depots shows remarkable variability in several
attributes.

2.1 Not All White Adipose Tissue (WAT)s Are Physiologically
Identical

The unique MSCs that generate white adipocytes during development do not express
the key TF, Myf5 (Fig. 2). The commitment in these MSCs is induced by bone
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Fig. 2 Scheme showing pathways and processes involved in white-beige-brown fat/adipocyte
interconversions. The BAT and WAT depots have a distinct developmental origin. While BAT is
close to skeletal muscle, WAT is close to smooth muscle in their cellular lineage. PRDM16 is the
key transcription factor that determines the differentiation of mesenchymal stem cell precursors into
BAT lineage. Another transcription factor “ZFP423” helps in the induction of commitment toward
WAT cellular lineage. The molecular markers of mature BAT, WAT, and beige adipocytes are
shown in blue fonts. The possibility of interconversion of BAT to WAT and vice versa has been
proposed and several stimuli and transcription factors/cytokines are shown suggested to mediate
this process. Created withBioRender.com. Factors regulating adipocytes differentiation are
represented in colored box as such: Zinc finger proteins , Cytokines , angiogenesis factor

, thermogenic gene , transcription coactivators for energy metabolism , transcription
factor for differentiation , cell signaling pathway regulators , and precursor cell markers
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morphogenetic protein (BMP) family cytokines (especially BMP2 and BMP4) by
the modulation of the SMAD pathway, converting them into preadipocytes. It is
interesting to point out that BMP4 is capable of the conversion of brown adipocytes
to white in the BAT (Qian et al. 2013; Denton et al. 2019). While zinc finger protein
(ZFP) 423, T-cell-specific factor 7 like 1 (TCF7l), and early B cell factor (EBF)
1 positively induce white adipogenesis; contrastingly ZFP521 and WNT1-inducible
signaling pathway protein (WISP) 2 negatively regulate the process (Addison et al.
2014; Shao et al. 2016a; Cristancho et al. 2011; Hammarstedt et al. 2013; Gupta et al.
2010). ZFP423 drives early-stage adipogenesis by SMAD and BMP pathways and
suppressing factors like EBF2, Prdm16 in the white adipocyte precursors (Addison
et al. 2014; Shao et al. 2016a; Gupta et al. 2010). ZFP423 also regulated EBF1 by the
formation of a heterodimer, which is inhibited by ZFP521 and WISP2 retarding the
adipogenesis process. TCF7l1 promotes adipogenesis by repressing the WNT path-
way and cell structural genes while enhancing the expression of PPARγ (Cristancho
et al. 2011). C/EBPβ works in close association with PPAR to promote WAT
adipogenesis (Rosen et al. 1999). Another protein called secreted frizzled-related
protein 4 (SFRP4) reduces commitment toward brown adipocyte lineage and medi-
ates white adipogenesis in a depot-specific manner; while positively in vWAT and
eWAT, negatively in iWAT (Guan et al. 2018, 2021). White adipocytes also express
receptors for several hormones like insulin, glucagon, catecholamines, and gluco-
corticoids mediating interorgan-crosstalk regulating energy homeostasis (Kuo et al.
2015). The mature white adipocytes are typified by the expression of some tran-
scriptional genes and genes for lipid droplets associated proteins (TCF2, ASC-1,
RIP140, HOXC8, PLIN1, and TLE3) (Giordano et al. 2016; Shijun et al. 2020;
Ussar et al. 2014; Onogi et al. 2020; Inagaki et al. 2016; Nanduri 2021; Ma et al.
2015).

Depending on the location in the body WAT has been categorized as visceral AT
(vWAT, primarily around visceral organs) and subcutaneous AT (sWAT, located
below the skin). Types of WAT are shown in Fig. 1. Rodents, especially mice have
been used as a model for studying whole-body energy homeostasis. Interestingly, the
distributions of WAT, as well as its sexual dimorphism, do differ between humans
and rodents. In humans, the anterior sWAT has been distinguished based on depth as
superficial subcutaneous WAT (ssWAT) or deep subcutaneous WAT (dsWAT),
which is absent in rodents (Chusyd et al. 2016). The posterior sWAT in the human
body is mainly localized in the abdomen, buttocks, and thighs and has been
considered to be analogous to the iWAT of rodents. In women, sWAT is more
conspicuous and vWAT is lesser than men (Demerath et al. 2007; Després et al.
2000). Further, in obese women, the adipocytes in anterior sWAT undergo hyper-
trophy, as opposed to hyperplasia in the posterior sWAT during weight gain (Jensen
et al. 1989). Due to this, women and men after becoming obese display characteristic
pear and apple body shapes, respectively (Karastergiou et al. 2012; Bloor and
Symonds 2014). In contrast, rodents do not exhibit a clear sexual dimorphism
(Chusyd et al. 2016). Additionally, rodent sWAT is separated from dermal AT by
a smooth muscle layer whereas; in humans, the sWAT is continuous with dermal AT
(Luong et al. 2019). The mass of perigonadal and peritoneal vWAT depots in
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comparison to body weight is higher in rodents than humans. It has been observed
that rodent females tend to accumulate more fat in posterior sWAT while women
accumulate more in anterior sWAT (Chusyd et al. 2016). So, the different WAT
depots show distinct features which can imply metabolic pathogenesis in a gender-
specific manner (Keuper and Jastroch 2021).

2.2 Brown Adipose Tissue (BAT): House of Futile
Mitochondria

In contrast to WAT, the BAT is a primary thermogenic organ that is highly
vascularized with a lesser amount of loose connective tissue. BAT is abundant in
several clades of eutherian mammals especially during neonatal stages and hiberna-
tion (Tapia et al. 2018); but, is found in most rodents throughout their life (Cannon
and Nedergaard 2004). The brown adipocytes are characterized by their multilocular
appearance due to small lipid droplets and the presence of numerous cristae-dense
mitochondria that express UCP1 abundantly in the inner membrane (Ikeda et al.
2018; Michurina et al. 2021). Its function is coordinated through β-adrenergic
stimulation and synergistic inputs from various endocrine mediators, especially the
thyroid and steroids. The other proteins hallmarking BAT are FGF21, ZIC1, BMP7,
PRDM16, CIDEA, PGC1α, Eva1, EBF3, Hspb1, P2RX5, and PAT2 (Harms and
Seale 2013; Ussar et al. 2014; Rockstroh et al. 2015; Sharp et al. 2012; Waldén et al.
2012). The BAT in neonatal rodents can be considered as classical BAT with
relatively uniform small lipid droplets and numerous mitochondria with highly
abundant UCP1 expression. Postnatally, however, UCP1 and Tfam expression is
gradually decreased, indicating the reduction of mitochondrial abundance, along
with the increase in lipid droplet size (Liu et al. 2020). Moreover, mitochondrial
activity, protein synthesis, and metabolism were higher in neonates compared to
adult BAT (Liu et al. 2020). In rodents, the major BAT depot is located interscapular
under the skin, whereas in humans its abundance is reduced during early life
(Nedergaard et al. 2007). Interestingly, recent PET studies revealed the presence
of BAT in limited quantities discretely in interscapular, supraclavicular, cervical,
axillary, periaortic, peri-vertebral, and suprarenal areas in the human adults and that
even respond to cold exposure (Ogawa et al. 2018).

The BAT adipocytes originate from myogenic precursor MSCs that express
Myf5, EN1, and PAX7, thus a distinct cellular lineage than WAT (Fig. 2) (Wang
and Seale 2016). During early gastrulation, in these progenitor cells, two factors,
namely, Ewing sarcoma (EWS) and its binding partner Y-box binding protein
1 (YBX1) are upregulated, which activate BMP7 expression inducing commitment
for BAT adipogenesis by modulating the key TFs such as PRDM16, PGC1α,
PPARγ, C/EBPβ (Park et al. 2013). PRDM16 in partnership with EBF2 repress
myogenesis by downregulating the expression of MyoD, myogenin in Myf5-
expressing preadipocytes (Wang et al. 2014). Post-natal development and regulation
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of BAT are much more complex due to the involvement of several reported factors
such as FOXC2 (Forkhead box C2, a member of forkhead family protein), BMP8B,
TAF7L (TATA-binding protein-associated factor 7L), FGF9 (fibroblast growth
factor) (Xue et al. 2008; Zhou et al. 2013, 2014; Whittle Andrew et al. 2012;
Cederberg et al. 2001; Mueller 2016; Shamsi et al. 2020). This early differentiation
of BAT requires sympathetic activation and is reliant on mitochondrial biogenesis
and the expression of thermogenic genes. While FOXC2 works through
β-adrenergic-cAMP-Protein kinase A (PKA) signaling cascade (Cederberg et al.
2001), BMP8B mediates its effect through the SMADs/p38 MAPK pathway (Whit-
tle Andrew et al. 2012). Interestingly, loss of TAF7L has been shown to cause
activation of myocyte factors in BAT (Zhou et al. 2014), whereas loss of FGF9
affects UCP1 expression leading to impaired BAT development and thermogenesis
(Shamsi et al. 2020). Further, differentiated BAT is highly responsive to caloric
availability and plays a critical role in metabolic disorders.

2.3 Beige Fat: A Recent Discovery

In the last decade, exciting discoveries identified specialized preadipocytes in some
of the WAT depots that can acquire BAT-like features and have been termed as
“Beige adipocytes” (Fig. 2) (Wu et al. 2012). The stimuli for inducing beige fat can
be external like cold, exercise, PPARγ agonists or internal such as immune function,
chronic β-adrenergic response, and cancer cachexia (Arroyave et al. 2020; Chang
et al. 2019; Markussen et al. 2017; Petruzzelli et al. 2014). The appearance of beige
adipocytes and increased vascularization are suggested as the two major attributes of
WAT-to-beige conversion (Harms and Seale 2013). These adipocytes express
LHX8, Cox7a, PAT2, and P2RX5 similar to BAT and show low-level UCP1
expression associated with accelerated mitochondrial biogenesis as well as other
thermogenic proteins like PGC1α (Ussar et al. 2014; Di Franco et al. 2014; Fang
et al. 2020). In addition, beige adipocytes are unique in expressing proteins specific
to themselves, not found in BAT or WAT. Such beige markers are TBX1, TMEM26,
CD137, Epsti1, Ear2, SP100, CD40, CITED1, and CAR4 (Wu et al. 2012; Garcia
et al. 2016; Wang et al. 2016; De Jong et al. 2015). The beige adipocytes cluster
predominantly in the iWAT and anterior sWAT in mice, whereas gluteofemoral
sWAT and supraclavicular area in humans (Luong et al. 2019).

The origin of beige adipocytes has been a topic of hot debate. Studies have also
claimed that these cells are derived from (1) smooth muscle cell precursors ((Long
et al. 2014), (Tran et al. 2012)) or (2) white adipocyte precursors (Wu et al. 2012;
Garcia et al. 2016) or (3) transdifferentiated directly from existing white adipocytes
(Barbatelli et al. 2010). Cold exposure is suggested to induce beiging in rodents by
the activation of pro-opiomelanocortin (POMC)-expressing neurons increasing sym-
pathetic tone in WAT that recruit PRDM16, PGC1α (Zhu et al. 2016; Contreras et al.
2014; Lee et al. 2014b). Cold exposure and cAMP upregulated a transcriptional
co-partner of PGC-1α named interferon regulatory factor (IRF) 4. IRF 4 acts as a
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dominant transcriptional effector of thermogenesis and beiging in adipocytes (Kong
et al. 2014). Adding to this, in vitro studies and shotgun proteomics analysis revealed
that cold exposure also induces PKA-dependent proteasomal degradation of homeo-
box protein 10 (HOXC10, negative regulator of beiging) thereby promoting brow-
ning in white adipocytes (Tan et al. 2021). Similarly, Kruppel-like factor
11 (KLF11) is a target of PPARγ, as well as a cofactor of PPARγ super-enhancers
of beiging, leading to increased mitochondrial oxidative capacity in rosiglitazone-
induced beiging in human adipocytes (Loft et al. 2015). Whereas Foxp1 directly
represses β3-AR transcription thereby playing the role of the master repressor of
browning and thermogenesis (Liu et al. 2019). Interestingly, several immunomod-
ulators (both cytokines and cells) have been shown to influence beiging thereby
linking energy metabolism with immunity (Ding et al. 2016; Villarroya et al. 2018;
Lv et al. 2016; Lee et al. 2015; Rao et al. 2014). WAT browning is determined by an
equilibrium between pro-inflammatory [inducible nitric oxide synthase (iNOS),
TNFα, IL6, and MCP-1] and anti-inflammatory cytokines (Rao et al. 2014;
Cawthorn et al. 2007). Other immune cells (eosinophils and ILC2) induce M2
macrophage to produce anti-inflammatory cytokines mediating beiging, which is
also modulated by meteorin-like hormone (METRNL) secreted from SkM and
adipocytes (Lee et al. 2015; Rao et al. 2014). ILC2 cells induce beiging by the
differentiation of PDGFRα+ (smooth muscle) precursors through recruitment of
eosinophils or via the secretion of methionine-enkephalin (Met-Enk) in white
adipocytes (Lee et al. 2015; Brestoff et al. 2015; Man et al. 2017). A recent study
shows that a pro-inflammatory cytokine, TNF super family protein 14 (TNFSF14)
attenuates WAT adipogenesis and beige adipocyte differentiation by blocking JNK
signaling, thereby playing a key role in diverting energy in favor of immune
activation. Its deficiency caused diet-induced obesity, glucose intolerance, InR in
the KO mouse model suggesting it as a regulator of AT homeostasis (Kou et al.
2019). Other cytokines originating from different organs can also influence beige
adipocyte development include BDNF (CNS), TGF-β (immune cells), FGF21
(liver), betatrophin (WAT), ANF (heart), suggesting that beige fat tissues are
versatile regulators of body energy equilibrium (Kajimura et al. 2015; Liao et al.
2020; Luce et al. 2020; Kleiner et al. 2012; Wang and Yang 2017). Therefore,
inducing beiging to treat metabolic disorders has been an attractive weapon and
several different approaches for its application are being tested.

3 BAT as a Coordinating Center of Metabolism

Since the discovery of activatedable BAT in adult humans’ extensive studies have
been performed to define its role in health and disease. However, the mechanistic
understanding of the BAT function comes primarily from studies in rodents, where
BAT is abundant during adulthood (Cannon and Nedergaard 2004). BAT mainly
relies on UCP1-mediated heat production in mitochondria as shown in Fig. 3. Recent
studies suggest BAT also possesses noncanonical futile cycling mechanisms like
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creatine and Ca2+ (via SERCA2b) (Kazak et al. 2015; Bertholet et al. 2017). BAT
function is mainly regulated by norepinephrine (NE) and thyroid both during cold
and diet-induced thermogenesis. Interestingly, UCP1 is activated in the BAT by free
FA and succinate while it is inhibited by purine nucleotides (Fromme et al. 2018;
Fedorenko et al. 2012). In addition to thermogenesis, BAT is important in the
regulation of energy expenditure, glucose (substrate) utilization, reliving oxidative
stress thereby protecting against obesity and diabetes (Jung et al. 2021; Carpentier
et al. 2018; Fernández-Verdejo et al. 2019; McNeill et al. 2020; Lee et al. 2019). In
rodents, BAT has been demonstrated to have a very high capacity for utilizing both
lipid and glucose. BAT also has high rates of de novo lipogenesis with some lipid
storage capacity (Sanchez-Gurmaches et al. 2018; Townsend and Tseng 2014). The
lipid reserve in the BAT can be mobilized by NE and recruited for NST in
coordination with several factors like PGC, insulin, thyroid. PGC1 (α and β)
downregulates lipogenesis and promotes mitochondrial biogenesis priming the
BAT for NST and energy utilization (Kim et al. 2018; Worsch et al. 2018). Insulin
also plays an important role in substrate fluxes into the BAT and this response is
blunted during metabolic disorders (Smith et al. 2018).

3.1 Amino Acids as Substrate

During the scarce availability of sugars, amino acids play a major role in energy
metabolism. Studies in rodents show that amino acids can be used as metabolic
(anaplerotic) substrates by the BAT (Carpentier et al. 2018). During cold exposure, a
specialized protein called SLC25A44 is expressed in BAT mitochondria that facil-
itate uptake of amino acids, more specifically the branched-chain amino acids
(BCAAs) (Yoneshiro et al. 2019, 2021). BAT mitochondria can also use the
BCAAs to generate heat (McNeill et al. 2020; Cannavino et al. 2021). Reduced
BCAAs uptake by BAT has been suggested to be associated with obesity and T2DM
(White et al. 2021; Bloomgarden 2018).

Fig. 3 (continued) on the plasma membrane and SLC25A44 (Solute Carrier Family 25 Member 44)
located on the mitochondria. Thyroid, NE, and insulin are major hormones that influence the
substrate metabolism of brown adipocytes. Both thyroid and NE induce UCP1 expression via
transcriptional upregulation and function in the BAT. Insulin signaling, on the other hand, enhances
glucose uptake via Glut4, which is essential to support elevated BAT metabolism and UCP1-
mediated heat production. Abbreviations: D2: type 2 deiodinase; TRE: a thyroid or T3 response
element; CRE: cAMP response element; PPRE: PPAR response element; ATGL: Adipose triglyc-
eride lipase; modLDL: modified LDL; VLSC: very long-chain acyl-CoA-synthetase. Created with
BioRender.com
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3.2 BAT as a Sugar Sink

Activated BAT has been shown to uptake a significant amount of glucose and
reduces serum glucose both in rodents and humans serving as a “Sugar sink”
(Bloomgarden 2018; Sandoval and D'Alessio 2015). Studies suggest NE-induced
β3-adrenoceptor-stimulated acute glucose uptake to depend on cAMP-mediated
rapid de novo synthesis of GLUT1 and its translocation to the plasma membrane
by mTORC2 (Chernogubova et al. 2004; Mukaida et al. 2017). Other studies report
that glucose disposal into BAT is via postprandial activation of the RalA-glut4-axis,
which might be altered in obesity and diabetes (Karunanithi et al. 2014; Olsen et al.
2014). Depending on the physiological state glucose inside the brown adipocytes
can enter either anabolic or catabolic pathways (McNamara 1991). While at rest, it
might enter anabolic pathways such as lipogenesis, during the cold challenge it
would enter catabolic pathways leading to heat production via UCP1 in mitochon-
dria (Schlein et al. 2021; Boon et al. 2014). Interestingly, the glucose uptake in BAT
is enhanced by hypothalamic nuclei (ARC and POMC) via the secretion of α-MSH
that exerts its effects by acting on the sympathetic innervations in the BAT (Han
et al. 2021; Labbé et al. 2015; Timper and Brüning 2017). Further, BAT glucose
utilization is closely associated with Rev-Erbα circadian rhythm that regulates Glut4
and UCP1 functions (Heyde et al. 2021; Lee et al. 2016). Other studies suggest that
expanded BAT mass can provide a sink for the excess of glucose in the body and
compensate for InR (Virtanen et al. 2005; Mitrou et al. 2009; Bernardis 1985).

3.3 Lipid Clearance by BAT

The BAT has also been proposed as a sink for lipid substrates, as it has been found
that the rate of lipid uptake into BAT coincides with plasma lipid metabolism and
clearance of triglycerides (Hauton et al. 2009; Hoeke et al. 2016). Studies have
demonstrated that BAT-mediated lipid utilization is regulated at two levels: one, by
plasma levels of NEFA, triglyceride-rich lipoproteins (TRL) like chylomicrons,
VLDL those are mostly synchronized with circadian rhythm; second, by the activity
of local mediators of lipid utilization in BAT-like LPL activity, CD36, and
angiopoietin-like 4 (ANGPTL4) (Hoeke et al. 2016; Singh et al. 2018; Bartelt
et al. 2011). Higher BAT lipid uptake affects vascular lipoprotein homeostasis
protecting hyperlipidemia and the development of other cardiovascular diseases
(Shao et al. 2016b; Berbée et al. 2015). Many studies confirm that the reduction of
intracellular triglyceride content in the BAT during acute cold exposure is indepen-
dent of age and diabetic status, influencing body insulin sensitivity (Remie et al.
2021; Iwen et al. 2017; Hanssen et al. 2016). Based on these observations it has been
suggested that browning can be recruited for clearance of FFA in systemic circula-
tion to ameliorate the progression of the T2DM phenotype (Crandall and Wahl
2021).
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4 WAT: More Than an Inert Fat Storage Site

Different WAT depots have distinct functions not necessarily energy storage, like
the fat layers in the skin and around internal organs are primarily intended to be
shock absorbers and/or connective tissue. But, it is true in mammals that WAT is the
major organ of fat storage capable of up-taking both FFA and glucose from the
plasma and reserve fat during energy surplus (fed) states. During conditions of high
energy demand such as cold, exercise, and low energy intake (starvation), WAT
releases FFA. So, switching from fed to the fasted state, WAT becomes a lipid
buffering site: during fed state lipid flux into WAT increases, whereas in fasted state
lipid efflux predominates (Ruge et al. 2009). In addition to lipid storage and
remobilization, WAT has several important functions such as shock absorption,
insulation, hormone/cytokine secretion (Rondinone 2006; Zwick et al. 2018).
Through the cytokines (adipokines), WAT influences the function of many organs
including the brain, heart, and liver (Rondinone 2006; Castillo-Armengol et al.
2019). Therefore, WAT metabolism is closely associated with whole-body energy
status and plays a critical role in InR and the progression of metabolic syndrome.

4.1 Fat Remobilization

Retrieval of stored lipids in WAT is facilitated largely by perilipin 1 and hormone-
sensitive lipase (HSL) regulated by insulin and catecholamines (Frühbeck et al.
2014). Perilipin 1 coats the lipid droplet in adipocytes and serves as a physical
barrier protecting them from breakdown by HSL, thereby regulating lipid metabo-
lism (Moore et al. 2005). Studies show that loss of perilipin 1 action leads to
increased basal lipolysis and reduction of WAT size. The phosphorylation of
perilipin 1 by cAMP-dependent PKA facilitates HSL translocation to the lipid
droplet promoting lipolysis and release of FA (Holm 2003). Elevation of perilipin1
expression has been found in people with obesity, without significant correlation
with peripheral InR (Pinhel et al. 2017). Reduced adipose O-GlcNAc transferase
(OGT) increases O-GlcNAcylation of perilipin1 that inhibits lipolysis in eWAT and
promotes diet-induced obesity (Yang et al. 2020). On the other hand, reduced HSL
function (haploinsufficiency or inhibitor treatment) improves insulin-stimulated
lipogenesis in WAT in mice models and human-derived primary adipocytes
(Girousse et al. 2013). This de novo lipogenesis along with reduced lipolysis
reshapes FA uptake in the WAT, which also increases glucose uptake thereby
minimizing the systemic load inducing whole-body insulin sensitivity in coordina-
tion with other peripheral organs like the liver and SkM (Solinas et al. 2015).
Lipolysis of WAT and subsequent release of NEFA is also dependent on the action
of LPL and ANGPTL4. LPL located at capillary endothelium hydrolyzes
triacylglycerol (TAG)-rich plasma lipoproteins to glycerol and NEFAs depending
on tissue nutritional status and also is regulated by hormones. ANGPTL4 inhibits
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LPL and its expression correlates with alterations in circulating lipids both in mouse
models and humans. Further, fat remobilization from the WAT is regulated via
CNS-derived hormones like the GH, which modulates FA metabolism in two ways:
(1) by increasing glycerol production and (2) through decreasing the amount of FA
reconversion to triglyceride (Goodman 1988; Møller and Jørgensen 2009). Overall,
blunted lipolysis and lipogenesis from glucose in WAT are major factors in
protecting against InR and pathogenesis of T2DM.

4.2 Vascularization of WAT

According to the bodily energy demand, the lipid fluxes from/to the WAT require
appropriate vascularization (Choe et al. 2016). It is observed mostly that sWAT has a
higher vascularization capacity than that of vWAT in humans (Caputo et al. 2021).
The original blood vessels in the WAT depots are formed during embryonic stages
by vasculogenesis from the mesodermal angioblasts. In contrast, neovascularization
of adult WAT is more closely regulated by the involvement of pro- and anti-
angiogenic factors, which is tuned to lipid flux to the WAT. This process involves
primarily two types of progenitor cells; one for new endothelial cell generation and
the other (pericytes) for generation of smooth muscle and supporting cells blood
vessels in the WAT depots are formed during embryonic stages by vasculogenesis
from the mesodermal angioblasts (Corvera and Gealekman 2014). While, physio-
logical stresses that cause lipid efflux from WAT like cold, exercise, starvation
promote neovascularization; conditions of lipid influx like obesity induce the reduc-
tion of capillary density in both vWAT and sWAT (Fan et al. 2021; Fuster et al.
2016). The factor most highlighted as WAT angiogenesis regulator is VEGF-A,
which is also suggested in WAT browning independent of IL-4R activation (Park
et al. 2017). While adipocyte-specific overexpression of VEGF-A promotes vascu-
larization, the depletion of VEGF-A in the adipocytes reduces vascularization in
mouse model leading to impaired insulin sensitivity inducing inflammation (Corvera
and Gealekman 2014; Sun et al. 2012). Intriguingly, it has been observed that upon
significant reduction of capillary density in the WAT, larger blood vessels are
upregulated potentially due to the elevated local hypoxia and induction of HIF1
(Gaspar and Velloso 2018). In fat from obese individual and mouse models,
capillary density is often reduced which is also associated with increased levels of
endogenous angiogenic inhibitors in WAT such as pigment epithelium-derived
factor (PEDF), angiostatin, endostatin (Cheng and Ma 2015). In addition, endothe-
lial cell activation in the capillaries of WAT is observed during obesity, which
catalyzes the recruitment of immune cells like macrophages and T-cells (Cho et al.
2007; Leung et al. 2018). Therefore, WAT vascularization serves as a connecting
link between the pathogenesis of metabolic diseases and the immune system of the
individual.
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4.3 Browning of WAT

It has been reported that selective WAT depots are prone to browning; while,
abdominal omental vWAT (oWAT) in humans, sWAT in rodents (Cleal et al.
2017). Several physiological stimuli have been proposed to induce browning such
as exercise and cold adaptation (Wang and Seale 2016; Arroyave et al. 2020; Chang
et al. 2019; Markussen et al. 2017; Petruzzelli et al. 2014). Recent studies have
identified several exercise-induced myokines such as irisin, myostatin, METRNL,
and β-amino isobutyric acid (BAIBA) that are suggested to cause WAT browning
mostly in mice models (Rodríguez et al. 2017; Rao et al. 2014; Murphy et al. 2020;
Roberts et al. 2014; Maalouf and El Khoury 2019). Metabolic benefits of WAT
browning have been highlighted, which include increased glucose utilization and
reduction in adiposity. A major regulator of WAT browning, PRDM16, has also
been shown to influence the metabolic demand of the beige adipocytes via promot-
ing futile Ca2+-cycling through the SERCA2b-RyR2 pathway (Ikeda et al. 2017).
WAT browning induced by cold adaptation has been difficult to be defined as
lipolysis-mediated changes can also produce similar WAT phenotypes (Schreiber
et al. 2017). Studies show that WAT browning is controlled by neurons in the
hypothalamus involved in the regulation of the caloric status of the body. While
POMC and RIP-Cre neurons promote, agouti-related peptide (AgRP) neurons usu-
ally retard the browning of iWAT and vWAT (Wang et al. 2018; Bi and Li 2013;
Dodd et al. 2015; Ruan et al. 2014). Stress-induced WAT browning is complex as
well as interesting because of its association with neuro-hormonal factors and
metabolic diseases. The HPA and HPT axes along with cytokine regulators like
IL4, IL6, and IL13 have been suggested to critically influence WAT browning
(Stephens and Wand 2012; Fekete and Lechan 2014; Reinehr 2010). This process
of browning is more complex due to the further involvement of hormones such as
insulin, leptin, IGF1, catecholamines (Dodd et al. 2015; Boucher et al. 2016;
Yasmeen et al. 2018). During the progression of obesity, most of these factors are
altered reducing WAT browning (Chen et al. 2017; Ye 2013; Bose et al. 2009).
Chronic β-adrenergic stimulus enhances glycogen accumulation, glycogen turnover
in sWAT, which is driving UCP1 expression and thermogenesis via the ROS
mediated p38MAPK pathway (Keinan et al. 2021). Interestingly, an experiment
mimicking WAT browning by ectopic overexpression of UCP1 in sWAT was
shown to improve insulin sensitivity and whole-body glucose homeostasis providing
evidence for beneficial effects of browning (Poher et al. 2015).

4.4 Pathological Changes in WAT Distribution

Different WAT depots having discrete functions can have differential fat storage
capacity. It is believed that metabolic disorders during energy surplus start after
storing capacity of preferentially fat-storing WATs is exhausted causing the
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recruitment of the alternate sites not primarily meant for energy storage (Lanktree
et al. 2010; Akinci et al. 2018; Fiorenza et al. 2011). The altered WAT distribution
also has significant metabolic consequences and is classified into two main types:
lipodystrophy (including lipoatrophy) and ectopic adiposity. Lipodystrophy is
defined as a lack of adipocyte expandability with reduced lipid accumulation
capacity in the adipocytes; ectopic adiposity describes the condition when fat
accumulation is found in tissues other than WAT like SkM, liver, kidney, and
pancreas (Bombardier et al. 2013; Purcell and Taylor 2019; Guebre-Egziabher
et al. 2013; Chung and Qi 2019; Singh et al. 2017; van der Zijl et al. 2011).
Lipodystrophy can be observed in any fat depot iWAT, vWAT, etc. These condi-
tions may arise due to either the dysregulation of storage (including substrate uptake)
or the secretion of fat from the adipocytes (Lim et al. 2020). Obviously, in most
obese individuals the fat-storing capacity of adipocytes is already exhausted leading
to hypertriglyceridemia along with higher fatty substances in circulation that induce
ectopic adiposity (Laclaustra et al. 2007). On the other hand, lipodystrophy is closely
associated with altered adipokine (leptin and adiponectin) production leading to
impaired InR in the skeletal muscle and liver that is often associated with reduced
energy expenditure (Fiorenza et al. 2011). The hepatic and SkM lipodeposition
shows similarity while the deposition of lipid in the pancreas during pathogenesis
slightly differs in humans compared to rodents (Pajed et al. 2021; Yki-Järvinen
2002). The pancreas is more susceptible than the liver as 20-folds higher lipid
infiltration is observed after 15 weeks of HFD feeding in mice. This fat infiltration
to the pancreas is associated with de novo lipogenesis and the accumulation of
unsaturated fatty acids. In contrast, the fat deposition in the human pancreas is more
extensive encompassing both exocrine and endocrine parts. This differential fat
accumulation enriches the paracrine effects of leptin and adipokines in the proximity
of pancreatic islet leading to altered insulin secretion (Pinnick et al. 2008).
Lipodystrophy patients usually have a lower circulating level of leptin and beneficial
effects of leptin replacement have been reported (Oral et al. 2002). The increased
ectopic adiposity is often associated with an increase in systemic FFA,
diacylglycerol (DAG), and ceramide that promotes T2DM (Pararasa et al. 2015).

5 Altered WAT Function in Diabetic Pathogenesis

During diabetic pathogenesis, the various WAT depots undergo several key alter-
ations both in human and animal models. This as a cause or an effect can be
debatable, but the changes in WAT overlap with the progression of diabetic patho-
genesis from a quite early stage indicating a cause.
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5.1 Insulin Signaling Is a Major Determiner of WAT

Obviously, the insulin signaling pathway is heavily impacted; several other cyto-
kines also exhibit marked changes that lead to altered glucose and lipid homeostasis
in WAT. Interestingly in humans, the expression of IR, IR substrate 2 (IRS-2), p85,
Glycogen synthase kinase 3 (GSK-3), mitogen-activated protein kinase (MEK), and
ERK is higher in vWAT than sWAT, whereas IRS-1 and AKT show equivalent
expression (Laviola et al. 2006). Negative regulators of insulin signaling such as
inositol phosphate (IP) 7 and mTOR working in concert with S6K and Grb10 also
play a critical role in WAT function (Hsu et al. 2011; Yu et al. 2011). Insulin along
with IGF-1 increases IP7 that reduces AKT-signaling, while mTOR along with S6K
reduces insulin signaling by altering phosphorylation of IRS and Grb10. The action
of these pathways is profoundly altered during metabolic imbalance due to stress,
high-fat-diet (HFD), high sugar diet, and obesity that impacts the pathogenesis of
T2DM. It has been shown that insulin-mediated anti-lipolytic effects differ in
various fat depots; sWAT being more responsive than vWAT, suggesting a less
robust intracellular insulin signaling pathway (Perrini et al. 2003; Giorgino et al.
2005; Perrini et al. 2008). Insulin signaling is initiated in WAT adipocyte upon
insulin binding to its receptor via IRS-1 and IRS-2 along with the Shc proteins (i.e.,
p66Shc, p52Shc, and p46Shc) that recruit downstream signaling cascade as shown in
Fig. 4 (Li et al. 2019). The speed of insulin action varies across WAT depots. It has
been shown that intravenous insulin administration induces phosphorylation of IR
and the p85 regulatory site of PI3K within 6 min in vWAT much higher than in the
sWAT. While receptor phosphorylation comes back to baseline in vWAT within
30 min, it remains high in sWAT (Li et al. 2019). The next signaling protein AKT
undergoes differential phosphorylation upon insulin administration. In the vWAT
(especially oWAT), Ser-473 and Thr-308 sites of AKT become phosphorylated at a
faster rate than in the sWAT on insulin injection (Li et al. 2019). Similarly,
phosphorylation of GSK-3α, ERK-1, and ERK-2 was found to be higher within a
few minutes of insulin injection in the vWAT compared to sWAT. In addition to
phosphorylation, an increase in protein expression of insulin signaling intermediates
like PI3K, MEK was shown to be more pronounced in vWAT than sWAT.

It is commonly observed that WAT adipocytes from obese people and mice
models exhibit impaired insulin signaling resulting in poor Glut4 translocation,
thus glucose uptake (Freidenberg et al. 1988). Surprisingly, the initial signaling
events of insulin receptor tyrosine kinase activity in adipocytes from obese insulin-
resistant patients are normal (de Mutsert et al. 2018), suggesting an alteration in
downstream intracellular signaling. Weaker association of IRS-1 to PI3K in obese
individual-derived adipocytes upon insulin action is suggested as a major cause of
impaired insulin signaling. Few other alterations suggested for insulin signaling in
the adipocytes upon obesity are; changes in protein expression of p85α subunit,
impaired AKT phosphorylation. Interestingly, gender-specific differences in WAT
depot insulin signaling were reported. Epidemiological studies showed that in men,
Swat in the abdominal part and vWAT are associated with InR to a similar extent;
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whereas, in women, it is particularly vWAT (Björnholm et al. 2002). Adipocytes
isolated from sWAT of obese women exhibit markedly impaired IRS-1 associated
PI3K activity, while increased IRS-2 associated PI3K activity. Further, a reduction
in protein expression of Glut4 (37%) and p85α-subunit of PI3K (55%) was observed
in obese women compared to lean subjects (Boura-Halfon and Zick 2009).

5.2 Signals Opposing Insulin Action Are Equally Important

Inhibitory regulation of insulin signaling is also equally important that is primarily
governed via inhibitory Ser/Thr phosphorylation of IR, IRS-1, and -2. These path-
ways are recruited in the adipocytes by factors like cytokines, fatty acids, hypergly-
cemia, and insulin itself via the activation of multiple kinases (JNK, hTBC1, and
MAPK) (Davis et al. 2000; Gao et al. 2002; Zhang et al. 2008; Geraldes and King
2010; Hilton et al. 2000). Atypical PKC-ζ also reduces insulin signaling via
Ser-phosphorylation of IRS-1 and Thr-34 phosphorylation of AKT, thereby
blocking its translocation to the plasma membrane (Geraldes and King 2010;
Goldstein et al. 1998). Some transmembrane phosphatases including protein tyrosine
phosphatase (PTP) 1B dephosphorylate activated IR and IRS proteins thereby
deterring insulin signaling (Emamgholipour et al. 2020). The role of PTP1B is
demonstrated by the finding that PTP1B KO shows improved IR phosphorylation
and resistance to HFD-induced obesity and associated InR (Holt and Siddle 2005).
Some cytoplasmic adaptor proteins like Grb10 and Grb14 have been shown to
decrease IR activity by preventing access of substrates to the activated receptors
(Youngren 2007; Smith et al. 2007; Liu et al. 2014). Grb10 overexpression in
adipocytes results in impaired growth, glucose intolerance, and InR. Upregulation
in Grb14 expression was found in AT of insulin-resistant animal models and type-2
diabetic patients (Béréziat et al. 2002; Errico 2018). Interestingly, insulin signaling is
down-regulated by the suppressor of cytokine signaling (SOCS) proteins, especially
SOCS1 and SOCS3 (Hilton et al. 2000; Rui et al. 2002). Their expression is
increased in WAT during obesity and they induce InR via either the inhibition of

Fig. 4 (continued) complex. Upon insulin binding to its receptor on the WAT adipocyte two major
pathways, namely, AKT and MAPK pathways are activated. The AKT pathway is the most
abundant in WAT insulin signaling that is regulated mostly via phosphorylation and substrates
mainly glucose. Lipid load on WAT adipocyte also influences AKT pathway and some lipids like
palmitate induce ER stress that may have multiple effects such as transcriptional changes, inflam-
mation, autophagy. Points of dysfunction during T2DM are shown by “red circle with a white
minus sign ( )” and blunted (red) arrows, while that are points of negative regulation during
physiological states is shown by “red circle with a black minus sign ( )” and blunted (black)
arrows. The signaling steps that are activated during normal physiological states are shown by
“green circle with a black plus sign ( ).” Abbreviations: AS160: AKT substrate of 160 kDa,
RAC1: Rac Family Small GTPase 1, TSC1/2: Tuberous sclerosis proteins 1/2,4EBP1: Eukaryotic
translation initiation factor 4E-binding protein 1. Created with BioRender.com
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the tyrosine kinase activity of the IR or targeting the IRS proteins to degradation (Rui
et al. 2002; Palanivel et al. 2012). However, the overexpression of SOCS3 alone in
pre-eWAT causes local InR, but not sufficient to cause systemic InR (Shi et al. 2006;
Sleeman et al. 2005).

Obesity and InR in WAT are also found to be initiated via some other interme-
diary signaling pathways. Enhanced PERK and IRE1α activity in WAT of obese
mice is suggested to cause JNK and IKK activation inducing Ser307-phosphorylation
of IRS-1. Protein phosphatases (PPs) are important regulators of rate-limiting
enzymes in glucose and lipid metabolism in the WAT, including glycogen synthase,
hormone-sensitive lipase, acetyl CoA carboxylase. A protein phosphatase –

PHLPP1 impairs AKT and glycogen synthase kinase 3 (GSK3) activities in adipo-
cytes, resulting in decreased glycogen synthesis and glucose uptake. Upregulated
PHLPP1 has been observed in WAT from obese and diabetic patients that correlate
with reduced AKT2 phosphorylation. Lipid phosphatases regulate insulin signaling
by modulating PIP3 levels which are dephosphorylated by PTEN, thus antagonizing
PI3K signaling in adipocytes. Consistently, the deletion of PTEN in mice AT
increases insulin sensitivity. A subunit of PI3K called p85α has been shown to
enhance PTEN activity regulating both generation and degradation of PIP3. Another
phosphatase called SH2 domain-containing inositol 5-phosphatases (SHIP) 2 is
ubiquitously expressed and plays a role in insulin signaling in WAT through the
AKT pathway (Tang et al. 2005).

5.3 Metabolites May Have a More Critical Role in WAT
Regulation

The regulation of WAT function by substrates (glucose and lipids) and metabolites
has also been studied in recent decades. Elevated circulating levels of FFAs are
observed in obesity and induce activation of JNK, IKK, PKC, and IRS-1 Ser307

phosphorylation in the WAT (Davis et al. 2009). Among the FFAs, palmitate (16:0),
DAG, and ceramide have a critical role in InR. In WAT, palmitate causes InR by
inducing JNK activation and ER stress (Guo et al. 2007; VandeKopple et al. 2017),
while DAG by inducing the activation of PKCh which inhibits PI3K, whereas
ceramides by activating PP2A and PKCf that inhibit insulin signaling. Interestingly,
the induced anomalies of fat metabolism in the WAT depots increase FFA flux to
non-adipose tissues that amplify dyslipidemia, hepatic steatosis, and peripheral
tissue InR. Recent studies in cultured adipocytes suggest that NF-κB signaling
downregulates PPARγ that impairs triglyceride storage. This can occur through
the expressional regulation of triglyceride metabolism enzymes such as phospho-
enolpyruvate carboxykinase (PEPCK), fatty acid synthase (FAS), Acyl-CoA syn-
thetase (ACS), lipoprotein lipase (LPL), and proteins associated with lipid droplet
including CIDEA, FSP27, perilipin, and HILPDA (Shijun et al. 2020; Ahmadian
et al. 2013; Morigny et al. 2021; Foretz et al. 2005).
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5.4 Altered Chemokines and Adipomyokines in Diabetes

Many adipokines have been identified in recent decades and shown to affect WAT
pathophysiology including the progression of T2DM. Several types of immune cells
reside within WAT and contribute to adipokine secretion that plays a critical role in
pathological conditions. Adiponectin (primarily produced by sWAT) enhances
glucose and fat use in SkM as well as adipocytes and its reduced circulatory level
is associated with obesity (Cătoi et al. 2014). Omentin-1 is produced primarily by
vWAT correlates with InR, oxidative stress, and chronic inflammation in morbidly
obese patients (Li et al. 2008). Vaspin (visceral adipose tissue-derived serine prote-
ase inhibitor) is another newly defined adipokine that reduces InR and metabolic
disorders (Ruigrok et al. 2021). Another adipokine, Leptin, is known to affect
substrate utilization in the SkM and nutrient sensing in the brain, thereby influencing
whole-body energy consumption and InR (Gerrits et al. 2012). Apart from these
adipokines, several cytokines are also produced by several other tissues but still are
considered to be adipokines and contribute to InR in the WAT. Such ubiquitous
adipokines are PAI-1, resistin, BMP, NRG-4, FGF21, SFRP5, visfatin; which can
affect the function of other tissues in addition to WAT (Feijóo-Bandín et al. 2020;
Christian 2015). Interestingly, resident immune cells (macrophages, T-cells, neutro-
phils, etc.) secrete cytokines like MCP-1, IL1β, TNF-α that affect the inflammation
of WAT during obesity and associated T2DM (Panee 2012; Mazur-Bialy et al.
2017). These cytokines act through several pathways in the WAT including the
activation of Ser/Thr phosphatases and SOCS3, decreasing IRS-1, expressional
regulation of GLUT4, and PPARγ. MCP-1 secreted by macrophages attracts mono-
cytes into WAT causing macrophage accumulation and InR (Mazur-Bialy et al.
2017). Further, some adipokines are also substantially secreted by muscles and are
now classified as adipomyokines such as IL-6, TNF-α, irisin (Luo et al. 2020; Bal
et al. 2017a). These muscle-derived cytokines affect substrate (glucose and fatty
acid) fluxes into/out of adipocytes, influence mitochondrial metabolism, and mod-
ulate insulin action in WAT. The role of adipomyokines in muscle-AT crosstalk
during physiological challenges (Bal et al. 2017b; Sahu et al. 2019), like cold,
exercise, starvation, and pathological states such as obesity and T2DM needs more
detailed understanding.

6 Why Does Exercise Improve WAT Metabolism?

It is well documented that exercise, both acute and chronic, enhances cardiac output
and muscular activities. However, the way different forms of exercise work on WAT
metabolism is still not fully explained (Pedersen 2017a). Exercise may impact WAT
function in two ways: first, by creating an energy demand it stimulates WAT to
undergo lipolysis releasing of FFAs; second, by affecting other organ function it
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modulates circulatory cytokines (hepatokines and cardiokines) levels that indirectly
affect WAT physiology.

6.1 Exercise-Induced Myokines

Acute bout of exercise increases the secretion of Interleukin-6 (IL-6), irisin, BAIBA,
IL-15, and METRONL that signals to the WAT. Acute exercise of 60 min increases
IL-6 output depending on the intensity and continues to be released post-exercise
(Carey et al. 2006). In WAT (mainly sWAT), IL-6 is involved in glucose utilization
and AMPK-mediated fat remobilization (Steensberg et al. 2003). Intriguingly, IL-6
induces mononuclear immune cells to produce IL-10 (Opp et al. 1995), which retard
the synthesis of pro-inflammatory cytokines such as TNF-a thereby reducing the IR
of WAT (Tsuchiya et al. 2014). The high-intensity acute exercise was shown to
induce higher irisin production compared to low-intensity (Löffler et al. 2015). Irisin
is suggested to cause mitochondrial biogenesis in WAT and PGC1α-dependent
browning in both mice and humans. Reports showed a positive association between
circulating irisin and BMI along with improved glucose homeostasis by both acute
exercise and training (Crujeiras et al. 2014; Stengel et al. 2013; Boström et al. 2012).
A study by Rodríguez et al. showed that leptin crosstalk with irisin differentially in
fat and SkM. This antagonizes the thermogenic mechanism of irisin in sWAT while
promoting SkM myogenesis during exercise. It suggests that higher leptin concen-
tration in obesity hinders irisin’s role in sWAT although physical exercise is applied
(Rodríguez et al. 2015). Interestingly, the rate of IL-6 release from muscle is retarded
upon long-term exercise; other myokines are suggested to mediate the beneficial
effects of chronic exercise in WAT. Different exercise training has been found to
have differential effects on WAT in various individuals, which may depend on
myokines secretion. Basal irisin level was increased following long-term resistance
training, while simple aerobic training had no effects (Kim et al. 2016; Stautemas
et al. 2019). A novel myokine, BAIBA, was shown to increase following 30 min of
acute exercise (Stautemas et al. 2018; Riechman et al. 2004) as well as 16–20 weeks
of aerobic exercise training only in the normal subjects compared to the sedentary
and obese individuals (Roberts et al. 2014; Stautemas et al. 2019). However,
sedentary subjects can also increase circulating BAIBA upon regular exercise
reducing WAT mass (Roberts et al. 2014). The secretion of other myokines,
IL-15, in acute vs. chronic physical activity is unclear as opposing results have
been published. While Riechman et al. showed transient increase following acute
resistance exercise and no change with age training, few other studies showed no
change upon sub-maximal acute exercise and increase in basal IL-15 level following
long-term endurance training (Riechman et al. 2004; Rinnov et al. 2014; Ostrowski
et al. 1998). The elevated level of IL-15 in trained humans has been suggested to
induce lipolysis of visceral fat thereby regulating abdominal obesity (Pedersen
2017b). IL-15 influences WAT physiology by decreasing lipid deposition in
preadipocytes, adiponectin secretion, and TNFα secretion (especially in patients
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with low-grade chronic inflammation) (Carbó et al. 2001; Sánchez-Jiménez and
Alvarado-Vásquez 2013). METRNL production in muscles was shown to be
increased by a single bout of downhill treadmill-running exercise in both mice and
humans (Rao et al. 2014). Both aerobic and resistance training increase circulating
METRNL levels that induce WAT browning and reduce adiposity (Rao et al. 2014;
Bae 2018; Amano et al. 2020).

6.2 Exercise-Induced Chemokines from Other Organs

Exercise affects the function of other organs like the adrenal, heart, liver, and
pancreas to produce factors that have been shown to indirectly influence WAT
physiology. Acute resistance exercise induces epinephrine production that is
known to cause lipolysis of WAT, especially ipWAT and sWAT/ ingWAT in
both humans and mice. Studies in humans have identified follistatin as an
exercise-inducible hepatokine that is produced during recovery from an exercise
bout. Follistatin enhances the expression of thermogenic markers in WAT and also
reduces the production of myostatin that lowers WAT mass (Braga et al. 2014; Allen
et al. 2008). The liver also produces FGF21 and Soluble Fibronectin type III domain-
containing 4 (sFNDC4) upon both acute and chronic exercise. FGF21 is known to
decrease body weights by a reduction in WAT mass leading to improved whole-
body insulin sensitivity (Sarruf et al. 2010; Coskun et al. 2008). On the other hand,
sFNDC4 binds to its G-Protein coupled Receptor (GPR) 116 in the WAT (mostly
iWAT) that is suggested to improve insulin tolerance in prediabetic mice (Georgiadi
et al. 2021). Recent studies have described a few other hepatokines like Activin-E,
Growth differentiation factor 15 (GDF15), ANGPTL6, Lipocalin 13; that modulate
WAT metabolism-regulating fat mass and weight gain. Heart with the greater load
during exercise secretes cardiokines like atrial natriuretic peptide (ANP) and B-type
natriuretic peptide (BNP). Acute exercise with the highest workload causes a
twofold increase in ANP, while ~30% increase in BNP secretion (Barletta et al.
1998). Both ANP and BNP are shown to induce lipolysis and AT remodeling
enhancing lipid mobilization in human sWAT. Surprisingly, long-term exercise
training induces no rise in BNP secretion, whereas rise in ANP continues although
at a reduced rate. The physiological rise in ANP and BNP levels is impaired in the
case of overweight and obese individuals, which is however improved by endurance
exercise training (Lafontan et al. 2005). Interestingly, the kidney also participates in
this exercise-induced inter organ-crosstalk by secreting erythropoietin that promotes
vascularization in sWAT in trained runners after prolonged exercise (Bodary et al.
1999; Schwandt et al. 1991). Hence, increased physical activity exerts its beneficial
effects by decreasing total, truncal, and limb AT, reducing triglyceride levels,
increasing HDL cholesterol levels that in turn improve peripheral insulin sensitivity
in humans, especially important for obese patients.
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7 Outlook and Future Direction

In humans, adipose depot-specific differences are documented that are influenced by
age, gender, genetic predisposition, and environmental factors. These inter- and
intra-depot heterogeneity also drastically modulate embryonic development, cellular
composition, and whole-body phenotype of the offspring. Studies have shown a
depot-dependent disparity in physiology (vascularity), metabolic function (nutrient
uptake and clearance), and endocrine function. The sWAT is lipolytically less active
with high insulin sensitivity unlike vWAT excepting oWAT. Hence, the sWAT
plays a protective role in the nutrient surplus state, whereas vWAT is associated with
central obesity and InR. The literature supports the differential role of WAT depots
in physiological and pathological conditions that can be targeted for weight man-
agement and potentially counter metabolic disorders. In light of emerging research
on the impact of different forms of exercise on different fat depots as well as ectopic
fat accumulation can be expected to be beneficial to halt the progression of T2DM.
Further understanding into molecular details of exercise as an antioxidant and anti-
inflammatory agent can provide better targets to future pharmacological agents.

Unlike appreciated by many in the field WAT depots can be categorized into
more subtypes than merely sWAT and vWAT. In most mammals including rodents
and humans, the unique anatomical and physiological roles of epicardial WAT,
eWAT, and oWAT depots are being unraveled by recent discoveries. One of the
interesting aspects is that different WAT depots originate from diverse precursor
cells, which are regulated by many endocrine agents and growth factors. The
mechanistic details of preadipocytes differentiation in different WAT depots are
not well understood and insight on this aspect will help in defining the role of distinct
WAT depots in the progression of metabolic syndrome. Similarly, the post-natal
expansion of WAT should be studied to understand the role of vascularity and
epigenetic effect in the different WAT depots. These studies will help in better
delineating the mechanism behind lipodystrophy and lipoatrophy.

Increasing energy expenditure has been proposed as an attractive target to counter
obesity and to some extent T2DM. Although classically energy-dispensing proper-
ties of BAT were being suggested as the main target, the discovery of beige
adipocytes has brought WAT onto the center stage. However, distinct WAT depots
display the differential ability to undergo beiging, which may mean that not all WAT
can be pharmacologically targeted to similar extents. Further, health outcomes (both
obesity and T2DM) of pharmacological targeting of different WAT depots need to
be carefully evaluated. In traditional medicine, plant-derived agents have been used
to target different WAT depots especially for T2DM that needs to be reassessed with
modern biomedical research approaches.

In the literature, the two terms beiging and browning of WAT have been used
very loosely and, in many cases, interchangeably. However, “Beiging” is a transi-
tional state due to pharmacological intervention and/or external stimuli, while
browning of WAT is a more durable conversion primarily due to sustained patho-
logical state. Hence, the requisite conditions and therefore the molecular mechanism
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must be different. Research should be conducted for clarification of the distinction
between beiging and browning of WAT to understand whether beiging can be used
to modulate nutrient metabolism in a regulated manner.

Emerging facts suggest obesity-associated inflammation is mainly caused by
cytokines released by resident immune cells in AT; integrating the immune system
with glucose utilization. The imbalances of pro-inflammatory and anti-inflammatory
cytokines worsen the insulin signaling in various fat depots and SkM. A vivid
understanding of these cytokines will provide much-needed insight into the genesis
of metabolic imbalance leading to obesity. Further, cytokines from other organs
(especially hepatokine and cardiokine) describe the influence of other organs in the
WAT substrate cycling. Future studies should be addressed to unravel the molecular
details of inter-organ cytokine crosstalk and might provide strategies to target lipid
mobilization in selected WAT depots and the suppression of ectopic fat deposition.
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