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Abstract Survival in the circulation, extravasation from vasculature, and coloniz-
ing new tissues represent major steps of the metastatic cascade and pose a big
challenge for metastasizing tumor cells. Tumor cells circulating in blood and
lymph vessels need to overcome anoikis, cope with mechanical stimuli including
shear stress, and defeat attacks by the immune system. Once adhered to the vessel
wall, a circulating tumor cell (CTC) can trick the endothelial cells into loosening
their intercellular junctions so that the endothelium becomes penetrable for the tumor
cell. Since tumor cells tend to metastasize to predestinated target organs and tissues,
called organotropism, the distribution of metastases is anything but random. The
molecular-physiological mechanisms underlying CTC survival, extravasation, and
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organotropism are very likely to include the presence and activity of ion channels/
transporters due to the latter’s key function in cytophysiological processes. To date,
a very limited number of studies explicitly show the involvement of ion transport.
This review describes the contribution of ion channels and transporters to CTC
survival, extravasation, and organotropism where known and possible. In addition,
supposed connections between ion transport and CTC behavior are demonstrated
and imply the potential to be therapeutically taken advantage of.

Keywords Ca2 + · Homing · Intravascular milieu · Mechanosensitivity ·
Premetastatic niche

1 Introduction

The degree of malignancy of a tumor disease is determined by the tumor cells’
propensity to invade surrounding tissue, to spread and metastasize. These steps of
the metastatic cascade also include the cells’ long-distance transport by blood and
lymph flow as well as their ability to adhere to the vessel wall in order to extravasate
at a distant organ site far away from the primary tumor (Valastyan and Weinberg
2011). During the course of these events blood cells play a double-edged role. While
natural killer (NK) cells represent serious opponents of circulating tumor cells
(CTCs), platelets, neutrophils and monocytes/macrophages may even help them to
survive the intravascular milieu, extravasate and colonize a new tissue or organ.

In respect of rolling and adhesion to the vessel wall, CTCs quite often mimic or
avail themselves of the mechanisms used by leukocytes (Strell and Entschladen
2008). The receptor-ligand pairs involved in rolling are mostly the same in leuko-
cytes and tumor cells, with E- and P-selectins expressed on endothelia as well as
(peritoneal) mesothelia being the major receptors (Gebauer et al. 2013; Köhler et al.
2010). In contrast, the receptor-ligand pairs that mediate tumor cell adhesion to the
endothelium are quite different from those involved in leukocyte adhesion (Strell
and Entschladen 2008). Specific interactions between structures on the tumor cell
surface and tissue-/organ-specifically expressed proteins on the endo-/mesothelium,
including locally released chemokines (please see Sect. 5.1), contribute significantly
to the organ distribution of metastases which is anything but random (Langley and
Fidler 2011; Paget 1989). The preference of tumor cells to metastasize to predesti-
nated target-organs is called “organ-specific metastasis” or “metastatic
organotropism.”

The present review article describes the travel route of metastasizing tumor cells
from the moment of intravasation through to the colonization of the target-organ,
including indispensable survival mechanisms. There is hardly any direct evidence
for the contribution of ion transport to these steps of the metastatic cascade.
However, due to their pivotal role in regulating cellular functions, ion channels
and transporters must be inevitably involved. Their involvement will be described
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and explained where known and possible. In other cases, presumed links between
ion transport and the survival of metastasizing cells are pointed up. Central modu-
lators affecting, and being affected by, ion channels and transporters are pH and
cytosolic Ca2+ concentrations together with signaling events.

2 Surviving the Intravascular Milieu

Being swept away by the blood flow represents a major challenge for tumor cells.
From thousands up to millions of cells that come off the primary tumor every day
(Butler and Gullino 1975; Swartz et al. 1999), less than one out of ten thousand
circulating tumor cells (<0.01%) may eventually end up as a metastasis (Fidler
1970, 2003; Strilic and Offermanns 2017). In breast cancer patients, the half-life of
circulating tumor cells (CTCs) was found to be 1–2.4 h (Meng et al. 2004). Most of
these CTCs die due to hemodynamic shear stress in the circulation (Fan et al. 2016)
or anoikis, i.e. the loss of cell–cell or cell–matrix contacts including the absence of
extracellular matrix-derived survival signals (Kim et al. 2012). A third obstacle to be
overcome by CTCs is the immune surveillance, particularly the clutches of natural
killer (NK) cells of the innate immune system (Morvan and Lanier 2016).

To cope with all these challenges, CTCs use a number of (molecular) mechanisms
(Strilic and Offermanns 2017).

2.1 Coping with Mechanical Stress

In order to resist mechanical destruction by hemodynamic forces, CTCs activate
both the RhoA/actomyosin axis and actin-nucleating formins in response to fluid
shear stress which, including the activity of myosin II, protects them from plasma
membrane damage (Moose et al. 2020). Accordingly, short-term inhibition of
myosin II delays metastasis of circulating prostate cancer cells in a mouse model
(Moose et al. 2020). Since the CaM-dependent activity of myosin II needs Ca2+, and
the resistance to fluid shear stress requires the presence of extracellular Ca2+ (Barnes
et al. 2012), CTC adaptation to mechanical stress definitely involves Ca2+ transport
across the plasma membrane. In general, a number of mechanosensitive ion channels
have a share in Ca2+ signaling of tumor cells: while direct Ca2+ influx can be
mediated by Ca2+ conducting channels such as Piezo or TRP channels, K+ outward
currents carried by, inter alia, mechanosensitive members of the two-pore domain K+

channel family keep up the electrochemical gradient essential for Ca2+ influx (Pethö
et al. 2019). Albeit there is no study to date explicitly proving the nature of the Ca2+

channels and transport mechanisms that are involved in CTCs’ shear stress resis-
tance, exposure to fluid shear stress does trigger Ca2+ influx accompanied by an
increase in cell stiffness. Transformed prostate cancer cells (PC-3) show a graduated
increase in stiffness in response to the level of shear stress whereas non-transformed
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prostate epithelial cells (PrEC LH) do not show a significant change (Chivukula et al.
2015). In addition to channels and transporters mediating Ca2+ influx provoked by
fluid shear stress, the Na+/H+ exchanger NHE1 may contribute to the increase in
stiffness and thus facilitate CTC survival. Its overexpression, typical of a multitude
of tumor entities, leads to a reorganization of the cortical cytoskeleton accompanied
by a significant increase in cortical stiffness of human melanoma (MV3) cells
(Keurhorst et al. 2019). This effect is based on the mere presence of NHE1 as a
structural element independently of its ion transport function.

An additional strategy by which single CTCs can protect themselves from
mechanical stress-induced death is the recruitment of thrombocytes (platelets) and
monocytes/macrophages in order to form a physical shield (Schlesinger 2018;
Stegner et al. 2014). To this end, CTCs express tissue factor at their surface (Bourcy
et al. 2016; Hisada and Mackman 2019). The tissue factor triggers the coagulation
cascade including the activation of platelets which results in the formation of a
protective platelet clot around the tumor cells. The clot then recruits monocytes/
macrophages to the CTCs (Gil-Bernabé et al. 2012, 2013), and the accruing clusters
or microaggregates not only protect the CTCs from mechanical stress but also help
them adhere to the endothelium and extravasate at a distant site (Strilic and
Offermanns 2017). According to this, an inhibition of mechanisms underlying
tumor cell–platelet interaction causes a significant decrease in metastasis (Labelle
and Hynes 2012; Mammadova-Bach et al. 2020; Takagi et al. 2013).

Another survival mechanism has been found in highly metastatic human breast
cancer cells expressing significant amounts of a truncated form of the channel
protein Pannexin 1 (PANX1) (Furlow et al. 2015). PANX1 is an ATP-permeable
channel and, under normal cellular conditions, auto-inhibited because it is plugged
by its C-terminal tail. During apoptosis, cleavage of the C-terminus by caspase 3 or
7 activates PANX1 and allows ATP release (Chekeni et al. 2010; Ruan et al. 2020;
Sandilos et al. 2012). In highly metastatic breast cancer cells, however,
co-expression of a truncated form of PANX1 with full-length wild-type PANX1
protects from apoptosis (Furlow et al. 2015). The presence of truncated PANX1 is
accompanied by an elevated ATP release through mechanosensitive full-length
PANX1 activated by membrane stretch during deformation in the microvasculature.
By autocrine binding to purinergic P2Y receptors the released ATP induces a
signaling cascade that suppresses deformation-induced apoptosis of the circulating
breast cancer cell. Consequently, therapeutic inhibition of PANX1 by small-
molecule inhibitors can reduce breast cancer metastasis (Furlow et al. 2015).

2.2 Resistance to Anoikis

A loss of integrin-mediated cell adhesion to extracellular matrix proteins normally
induces anoikis, a special type of apoptosis (Tajbakhsh et al. 2019). CTCs utilize a
variety of mechanisms to counteract anoikis (Buchheit et al. 2014). An efficient way
to avoid anoikis is the retention of cell–cell or even fragmented cell–matrix
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adhesions within the circulating tumor cell clusters, also termed circulating
microemboli. These circulating microemboli can either originate from collectively
migrating tumor cells that enter the blood stream via chaotically structured and leaky
tumor vessels typical of highly angiogenic tumors (Hou et al. 2011) or they arise
from the disintegration of the primary tumor into the vasculature (Liotta et al. 1976).
Although circulating tumor cell clusters are rather rare compared to single CTCs,
these clusters have a 23–50-fold increased metastatic potential (Aceto et al. 2014).

Since the focal adhesion kinase (FAK) is a central player in integrin-mediated
adhesion signaling, single CTCs establish alternative ways of FAK phosphorylation
or even bypass FAK signaling. Thus, FAK phosphorylation and signaling in
non-adherent cells may be ensured by endosomes that carry integrin dimers while
containing integrin-binding extracellular matrix components such as fibronectin
(Alanko et al. 2015). Another way to maintain FAK signaling may be integrin-
mediated self-stimulation by self-secreted fibronectin or collagen. Stimulation of β1
integrin by fibronectin or collagen causes activation of Kv11.1 (human ether-a-go-
go-related gene potassium channel hERG, KCNH2), which is essential for direct
FAK phosphorylation (Cherubini et al. 2005; Jehle et al. 2011). FAK phosphoryla-
tion in response to Kv11.1 activation may enable detached cells to resist anoikis. In
fact, overexpression of both FAK and Kv11.1 has been shown to enhance dissem-
ination and invasiveness of tumors (Kornberg 1998; Lastraioli et al. 2004).

Moreover, fibronectin can promote cell survival, mediate chemo- and
radioresistance, and inhibit apoptosis in breast and lung cancer cells (Aoudjit and
Vuori 2012; Naci et al. 2015). In pancreatic cancer cells, an increased Wnt2
expression correlates with a TGFβ-activated kinase 1 (TAK1; MAP 3 K7)-depen-
dent upregulation of fibronectin, suppresses anoikis, and facilitates adhesion-
independent sphere formation (Yu et al. 2012).

Aside from fibronectin, CTCs could potentially also make use of serum
vitronectin and other serum proteins, e.g. osteopontin, thrombospondin or reelin,
as ligands in order to keep up integrin-mediated signaling and thus resist anoikis
(Bera et al. 2020; Cooper et al. 2002; Lal et al. 2009; Rouanne et al. 2016).

Beyond that, FAK-mediated anoikis resistance has been found to correlate with
the expression of carcinoembryonic antigen-related cell adhesion molecule
6 (CEACAM6), also known as CD66c (Duxbury et al. 2004; Johnson and
Mahadevan 2015; Lee et al. 2018). As a bypass or an alternative to missing FAK
signaling, anti-apoptotic, pro-survival pathways are upregulated or tumor suppres-
sors and suppressing pathways are downregulated. For instance, the PI3/Akt signal-
ing pathway, which normally is inducible by FAK as well, or the MAPK/ERK
pathway is stimulated by overexpressed receptor tyrosine kinases and
downregulation of the tumor suppressor PTEN (Paoli et al. 2013). A moderately
increased ROS production is often found in tumor cells (Perillo et al. 2020) and helps
to counteract anoikis by modulating the activities of redox-sensitive proteins of the
PI3/Akt and MAPK signaling pathways and prominent transcription factors such as
p53, NF-κB, HIF, AP-1, and Nrf2 (Groeger et al. 2009).

Finally, although not shown explicitly in CTCs, the detachment from the extra-
cellular matrix could induce autophagic and antioxidant effector pathways whose
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concerted action might (i) enable increased survival in the bloodstream and
(ii) facilitate the formation of metastases (Dey et al. 2015). In more detail, cells
react to the loss of substrate adhesion by activating a cytoprotective ER stress
response consisting of three pathways that are normally kept inactive by the
ER-located chaperone GRP-78 (also known as “binding immunoglobulin protein”
(BiP) or “heat shock 70 kDa protein 5” (HSPA5)) (Korennykh andWalter 2012): the
ATF6 (transmembrane activating transcription factor 6), the IRE1 (iron responsive
element 1), and the PERK (transmembrane protein kinase RNA-like endoplasmic
reticulum kinase; located in the ER membrane) pathway (Dey et al. 2015;
Wakabayashi and Yoshida 2013). Activated PERK directly activates transcription
factor Nrf2 and phosphorylates eIF2α (eukaryotic (translation) initiation factor 2α).
peIF2α leads to upregulated translation of the cAMP-dependent transcription factor
ATF4. ATF4 then triggers a cytoprotective program by upregulating key genes of
autophagy, and, by cooperating with Nrf2, activates the antioxidant protein HO-1
(heme oxygenase 1) in order to antagonize the increasing oxidative stress induced by
the loss of cell-matrix adhesion (Dey et al. 2015).

In breast cancer cells of the MCF-7 line, incorporation of the STAT3 (signal
transducer and activator of transcription 3)-controlled zinc transporter ZIP6
(SLC39A6) into the plasma membrane induces EMT (epithelial-mesenchymal tran-
sition), cell detachment, resistance to anoikis and an ongoing proliferative activity of
cells in suspension (Hogstrand et al. 2013). ZIP6-mediated Zn2+ influx inactivates
the glycogen synthase kinase 3β (GSK-3β) leading to activation of the transcription
factor Snail. Snail then oppresses the transcription of E-cadherin resulting in cell
rounding and detachment (Hogstrand et al. 2013). Snail is generally considered to be
one of the key players inducing EMT accompanied by resistance to anoikis (Paoli
et al. 2013; Peyre et al. 2021; Smit et al. 2009).

The Ca2+ activated Cl� channel regulators 1 and 2 (CLCA1, 2; also called Cl�

channel accessory 1, 2) are secretory, self-cleaving, Zn2+-dependent
metalloproteases that activate Ca2+-dependent Cl� currents (Liu and Shi 2019;
Yurtsever et al. 2012). They are involved also in apoptosis (Hutchings et al. 2019;
Winpenny et al. 2009). Their downregulation, however, results in resistance to
anoikis (Elble and Pauli 2001). While CLCA2 overexpression leads to increased
Cl� currents accompanied by a decrease in intracellular pH, a reduced expression of
CLCA2 is associated with increases in proliferation, migration, and invasion, and a
higher risk of metastasis (Walia et al. 2009, 2012).

2.3 Defeating Attacks by the Immune System

Once in the circulation, tumor cells encounter a huge number of immunosurveilling
cells such as natural killer (NK) cells. NK cells express NKG2D (NK group 2d)
receptors on their surface in order to recognize and bind their ligands (NKG2DL)
which are primarily the cell surface glycoproteins MICA, MICB (MHC class I
chain-related molecules A and B), and ULBPs 1–6 (Duan et al. 2019; Ghadially
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et al. 2017; Molfetta et al. 2017). Basically, the transcription factor Sp1 mediates an
upregulation of NKG2DL-expression during EMT resulting in an increased immu-
nogenicity (Huergo-Zapico et al. 2014). However, NKG2DL-expression decreases
as the tumor cells continue to dedifferentiate and is completely absent in poorly
differentiated human colorectal cancer samples (López-Soto et al. 2013). For cam-
ouflage purposes, i.e. in order to elude immune surveillance, CTCs can either shed
their NKG2DLs to (1) remain undetected and (2) misdirect the immune system
(Dhar and Wu 2018), or they even avoid surface expression of NKG2DLs (Liu et al.
2019a; Schmiedel and Mandelboim 2018) as shown for leukemic stem cells in
patients with acute myeloid leukemia (Paczulla et al. 2019).

At transcriptional level, aberrant methylation of the genes encoding NKG2DLs or
low acetylation of histones can lead to NKG2DL silencing in tumor cells of different
origin (Li et al. 2011a; Ritter et al. 2016). In glioma cells with mutations of the
isocitrate dehydrogenase (IDH), loss-of-function mutations induce 2-hydroyglutaric
acid-mediated epigenetic and metabolic reprogramming, eventually silencing
ULBPs 1 and 3 (Zhang et al. 2016a). In other malignant glioma cells, TGF-β
suppresses the transcription of MICA, ULBP2, and ULBP4 without affecting the
mRNA levels of MICB, ULBP1, and ULBP3 (Eisele et al. 2006). MICA mRNA
expression can be decreased also by IFN-γ as shown for both solid (cervical) and
hematological (erythroleukemia and lymphoma) cell lines (Zhang et al. 2008).

At translational level, miR-10b, miR-20a, mir-34a, miR-93, or miR-106 either
destabilize the NKG2DLs’ mRNAs or inhibit their translation in a number of tumor
cell lines such as melanoma, breast, prostate, or colorectal cancer (Codo et al. 2014;
Heinemann et al. 2012; Stern-Ginossar et al. 2008; Tsukerman et al. 2012; Yang
et al. 2018). In contrast, miR-889-overexpression protects hepatocellular carcinoma
cells from NK cell-mediated lysis, because it significantly inhibits MICB expression
(Xie et al. 2018).

At post-translational level, proteolytic enzymes, shedding and secretion help to
reduce NKG2DL surface expression in tumor cells (Duan et al. 2019). Thus, IFN-γ
not only regulates MICA expression at the transcriptional level but also promotes its
hydrolysis by matrix metalloproteinases (MMPs) (Zhang et al. 2008). “A disintegrin
and metalloproteases” (ADAMs) 10 and 17 mediate shedding of MICA and MICB
from human mammary, pancreatic, and prostate carcinoma cells (Chitadze et al.
2013). A significant amount of soluble NKG2DL is found in sera of leukemia
patients where it impairs antileukemia reactivity of NK cells by downregulating
their NKG2D (receptor) expression (Hilpert et al. 2012). Similarly, glioblastoma
cells secrete lactate dehydrogenase 5 (LDH5) to trigger NKG2DL expression in
myeloid cells including monocytes, which then results in the downregulation of
NKG2D in NK cells (Crane et al. 2014).

NK cells’ effective antitumor activity requires direct, physical contact. Conse-
quently, physical shielding does not only protect tumor cells from mechanical stress
(please see Sect. 2.1) but also helps them to escape from NK cell attacks as coating
with tumor cell-activated platelets impedes lysis of tumor cells by NK cells
(Nieswandt et al. 1999) and facilitates metastasis (Palumbo et al. 2005). The
formation of stable platelet/tumor cell aggregates needs fibrinogen or fibrin
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crosslinking factor FXIII. Loss of these coagulation factors causes a strong decrease
in metastasis in an NK-cell dependent manner (Palumbo et al. 2005, 2008). The
adhesion molecule P-selectin is expressed on platelets and mediates platelet/tumor
cell adhesion by binding to sialylated, fucosylated glycans on the tumor cell surface
(Borsig et al. 2002; Mannori et al. 1995), mostly in a Ca2+-dependent way
(Erpenbeck and Schön 2010). Furthermore, by releasing TGFβ, also the platelets
cause a reduction of NKG2D receptors on NK cells (Kopp et al. 2009). Finally,
platelets can furnish tumor cells with both platelet-derived GITRL (glucocorticoid-
induced TNF-related ligand; TNFSF18) which inhibits NK cells’ antitumor reactiv-
ity (Placke et al. 2012b) and with normal MHC class I molecules which help the
tumor cells to hide from immunosurveillance (Placke et al. 2012a).

While CTC clusters and CTCs surrounded by platelets or leukocytes can easily
travel through the macrovasculature as silent emboli, these virtually conglomerate
structures need to regroup before entering microvessels and capillaries with diame-
ters of�10 μm, so that the single cells can pass through sequentially (Au et al. 2016).
In capillary beds, even single CTCs can be halted within <30 min after entering the
blood stream (Aceto et al. 2014; Micalizzi et al. 2017). Hence, it seems plausible that
extracellular vesicles, exosomes or microparticles released from platelets/leukocytes
rather than the actual, intact cells would confer the above-mentioned ligands/recep-
tors to CTCs and thus enable them to camouflage and remain undetected by the
immune system.

3 Adhesion to the Vessel Wall

In addition to simply being physically stuck inside small capillaries at the secondary
site, CTCs need to adhere to and interact with the endothelium in order to eventually
extravasate (Azevedo et al. 2015; Foss et al. 2020; Osmani et al. 2019). While the
attachment of CTCs to endothelial cells can be mediated by a variety of ligands and
receptors such as selectins, cadherins, integrins, CD44 and immunoglobulin super-
family receptors (Bendas and Borsig 2012; Reymond et al. 2013), CD44 and β1
integrin have been identified as key mediators of CTC adhesion. They counteract the
shear forces that otherwise would cause the detachment of CTCs from the endothe-
lial cell layer (Follain et al. 2018, 2020; Osmani et al. 2019). In addition to mediating
CTC adhesion to the endothelial cell layer or being a biomarker for cancer cells with
stem-like properties (Mani et al. 2008) CD44 may enhance metastatic potential by
effectuating homophilic CTC interactions, possibly resulting in the formation of
CTC clusters even post-intravasation (Chaffer and Goetz 2018; Liu et al. 2019b;
Rodrigues and Vanharanta 2019).

Melanoma cell adhesion molecule (MCAM; also known as MUC18 or CD146) is
expressed on both melanoma and endothelial cells, and it is believed that homophilic
interactions promote tumor cell extravasation and metastasis because antibodies
against MCAM inhibit human melanoma growth and metastasis (Mills et al.
2002), and B16 wild-type cell metastasis to the lungs is drastically reduced in
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MCAM knockout mice (Jouve et al. 2015). In human melanoma cells of the MV3
cell line, MCAM expression correlates with the expression of the Na+/H+ exchanger
NHE1 (SLC9A1), and MV3 cell–cell adhesion is pH-sensitive and depends on
NHE1 expression (Hofschröer et al. 2017). This observation together with the
aforementioned homophilic interaction of MCAM expressed on melanoma and
endothelial cells (Mills et al. 2002) points to a potential contribution of NHE1 to
the adhesion of tumor cells to the vessel wall.

4 Extravasation

Specific ligand-mediated interactions between tumor and endothelial cells do not
necessarily result in adhesion but are nonetheless required for extravasation. Thus,
the homophilic interaction between junctional adhesion molecules C (JAM-C)
expressed on melanoma and endothelial cells does not impact adhesion but clearly
abets lung metastasis (Langer et al. 2011). Also soluble ligands secreted by endo-
thelial cells, e.g. CXCL12, mediate tumor extravasation by binding to chemokine
receptors such as CXCR4 expressed particularly on gastrointestinal tumor cells
which then stimulates the small GTPases Rho, Rac, and Cdc42 required for cell
migration (Gassmann et al. 2009). The latter is consistent with the observations that
(1) Cdc42 depletion in various tumor cells leads to a significant decrease in both β1
integrin-dependent interaction with endothelial cells and experimental lung metas-
tasis (Reymond et al. 2012), and (2) that transient RhoC depletion in prostate cancer
(PC3) cells reduces early PC3 cell retention in the lungs and in vivo metastasis
formation (Reymond et al. 2015).

Paracellular diapedesis, i.e. squeezing through the endothelial cell layer by
moving between endothelial cells, is the prevalent mode of extravasation and
requires loosening of inter-endothelial cell junctions (Leong et al. 2014; Schumacher
et al. 2013). Transcellular diapedesis, i.e. crossing the endothelium by penetrating
individual cell bodies, has been shown in vitro, but seems rather rare and most likely
requires both endothelial myosin II activity and E-selectin mediated activation of
ERK and p38 MAPKs in endothelial cells (Khuon et al. 2010; Tremblay et al. 2008;
Wettschureck et al. 2019). A recent study confirms that the microvascular endothe-
lium reorganizes its membranes and cytoskeletal structures in order to directly
contribute to the extravasation of tumor cells into the brain, and that melanoma
cells primarily migrate paracellularly while breast cancer cells are able to migrate
transcellularly (Herman et al. 2019). However, it needs to be stressed that up to now
transcellular extravasation in vivo has been found only in microvascular endothelia,
possibly because they are typically characterized by a lack of smooth muscle cells.

Endothelial reorganization is usually induced by the CTCs themselves. Breast
cancer cells secrete angiopoietin-like 4 (ANGPTL4) or its C-terminal fibrinogen-like
domain (cANGPTL4). cANGPTL4 weakens endothelial cell–cell contacts by acti-
vating an α5β1 integrin-mediated Rac1/PAK/β-catenin pathway. In a subsequent
step, cANGPTL4 directly interacts with VE-cadherin and claudin-5 which causes
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disruption of intercellular adhesion, thus allowing for transendothelial tumor cell
migration (Huang et al. 2011; Padua et al. 2008). Melanoma cells secrete osteonectin
(SPARC). SPARC binds to VCAM1 which triggers actin remodeling and loosening
of endothelial junctions, mediated by a ROS-MKK3/6-p38MAPK-MLC2 signaling
pathway and promoting extravasation and metastasis (Tichet et al. 2015). Other
soluble factors that are secreted by metastatic cells and increase vascular permeabil-
ity by modulating endothelial tight and adherens junctions include lipid 12(S)-
hydroxyeicosatetranoic acid (12(S)-HETE), angiopoietin 2 (Ang-2), the chemokine
CCL2 (C-C motif chemokine ligand 2, monocyte chemotactic protein 1), CXCL12
(stromal cell-derived factor 1α, SDF-1α), fibrinogen, HGF/SF, VEGF, PCB
104 (2,20,4,6,60-pentachlorobiphenyl), and a group of heat-stable, trypsin-sensitive,
O-glycosylated glycoproteins ranging from 10 to 50 kD (García-Román and
Zentella-Dehesa 2013).

Instead of gently loosening endothelial cell–cell junctions, a variety of human and
murine tumor cells act more ruthlessly by inducing necroptosis in endothelial cells in
order to locally perforate the endothelium and hence facilitate extravasation and
metastasis (Strilic et al. 2016). To this end, CTCs express amyloid precursor protein
(Pandey et al. 2016; Tsang et al. 2018) which binds to its receptor, death receptor
6 (DR6), on endothelial cells to induce necroptotic signaling pathways (Strilic et al.
2016). Additionally, necroptotic endothelial cells could possibly reinforce the open-
ing of the endothelial barrier by releasing damage-associated molecular patterns
(DAMPs) such as high-mobility group protein 1 (HMGB1) or ATP (Kaczmarek
et al. 2013; Pilzweger and Holdenrieder 2015; Strilic and Offermanns 2017).

4.1 With the Assistance of Blood Cells

4.1.1 Platelets

Also blood cells contribute to CTCs’ extravasation. For instance, platelets normally
assist immune cells with their extravasation (Gros et al. 2015). They – like the
metastatic CTCs (see above) – release HGF, fibrinogen, VEGF, and 12(S)-HETE,
and, in addition, platelet-derived activating factor (PAF), thrombin, ATP and sero-
tonin in order to increase vascular permeability. Indeed, there is evidence that
platelets recruited by CTCs occasionally promote CTC extravasation (Foss et al.
2020; Labelle et al. 2014; Schumacher et al. 2013). Dense granule-derived ATP
released from tumor cell-activated platelets acts on endothelial junctions and the
cytoskeleton, mediated by P2Y2 receptors and with the objective of opening the
endothelial barrier to facilitate transendothelial migration and metastasis
(Schumacher et al. 2013). Upon activation by ATP, the G-protein coupled P2Y2

receptor leads to (1) Ca2+ release from intracellular stores via stimulation of phos-
pholipase Cβ including the generation of IP3 (Raqeeb et al. 2011) and (2) activation
of the PKC/Src pathway (Bilbao et al. 2010). The activated P2Y2 transiently
associates with VEGFR-2 and VE-cadherin at endothelial cell–cell adhesions
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while Src phosphorylates VEGFR-2, VE-cadherin, VE-cadherin-bound p120-
catenin, and probably also β- and γ-catenins in order to ensure a coordinated release
of endothelial adherens junctions (Liao et al. 2014; Liu et al. 2004; Seye et al. 2004;
Zou et al. 2015). Subsequent binding of p120-catenin to the guanine nucleotide
exchange factor Vav2 activates Rac1 (Valls et al. 2012) which may induce cyto-
skeletal rearrangements to further facilitate the passage of CTCs through the newly
formed intercellular space (Liao et al. 2014; Spindler et al. 2010). At the same time,
the P2Y2 mediated Ca2+ release from intracellular stores results in the activation of
SKCa and IKCa channels. The concomitant membrane hyperpolarization causes
additional Ca2+ influx via store-operated channels (SOCs, consisting mainly of
TRPC1 & 4 and requiring TRPC4 subunits (Cioffi et al. 2005)) further promoting
KCa channel activity (Raqeeb et al. 2011; Sheng and Braun 2007). The elevated
cytosolic Ca2+ concentration also stimulates the activities of CaM (calmodulin) and
eNOS (endothelial nitric oxide synthase) which considerably contributes to the
increase in endothelial permeability (Sheng and Braun 2007; Thibeault et al.
2010). On the whole, CTCs usurp the physiological mechanism by which platelets
assist neutrophils in extravasating at inflamed sites. Although a number of ion
channels and transporters passing Ca2+ and K+ are involved, they just fulfill their
regular functions. In this context, their expression and activity cannot be considered
to be pathophysiological so that they are barely usable as therapeutic targets. The
actual pathological step is the platelet activation by CTCs via either direct physical
interaction between mucin-like glycoprotein podoplanin or galectin on the CTC cell
surface and CLEC-2 or glycoprotein VI on the platelet surface, respectively, or via
ADP, thromboxane A2 or high-mobility group box 1 (HMGB1) released by the CTC
to bind to the toll-like receptor 4 (TLR4) on the platelet (Schlesinger 2018).

In addition, the podoplanin, expressed on tumor cell surfaces, stimulates the
release of TGFβ from platelets (Takemoto et al. 2017). The TGFβ then activates
Smad and NF-κB signaling pathways in the tumor cells leading to a more mesen-
chymal and invasive phenotype which may contribute to extravasation (Labelle et al.
2011).

4.1.2 Neutrophils

Although neutrophils are known to play pro-metastatic roles, their short half-life
makes it difficult to precisely analyze the underlying mechanisms. Nevertheless, it
has been shown that granulocyte-colony stimulating factor (G-CSF) mediates con-
version of neutrophils into immunosuppressive cells that block the antitumor func-
tions of CD8+ T (Coffelt et al. 2015, 2016) and NK cells (Spiegel et al. 2016).
Furthermore, platelets promote tumor cell extravasation indirectly by recruiting
granulocytes specifically to the vicinity of platelet/tumor cell aggregates. To this
end, tumor cell-activated platelets release CXCL5 and CXCL7 both of which bind to
CXCR2 chemokine receptors on granulocytes co-expressing granulocyte marker
Ly6G, integrin α-M (¼CD11b), and matrix metalloproteinase 9 (MMP9) (Labelle
et al. 2014). Releasing MMPs 8 and 9, neutrophils facilitate extravasation by
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disintegrating the extracellular matrix such as the basement membrane (Cools-
Lartigue et al. 2014; Spiegel et al. 2016). The tumor-activated platelets can also
trigger neutrophil degranulation including the formation of neutrophil extracellular
traps (NETs) (Cedervall et al. 2018). NETs are netlike structures that (1) consist of
expelled neutrophil DNA with associated proteolytic enzymes, (2) function as a
pathogen trap, and (3) can also sequester circulating tumor cells and thus promote
local adhesion and metastasis (Cools-Lartigue et al. 2013; Demkow 2021; Park et al.
2016). The capture of CTCs in NETs can be mediated by NET-associated β1-
integrin or CEACAM1 (carcinoembryonic Ag cell adhesion molecule 1) as shown
for lung (A549; Najmeh et al. 2017) and colorectal cancer (HT-29, MC38; Rayes
et al. 2020) cells. Accordingly, preventing the formation of NETs or disintegrating
them by application of DNase I-coated nanoparticles reduces lung metastases in
mice (Park et al. 2016), and impeding NET formation with the peptidylarginine
deiminase 4 (PAD4) inhibitor BMS-P5 can slow down the progression of multiple
myeloma in mice and humans (Li et al. 2020).

4.1.3 Monocytes/Macrophages

In addition to neutrophils and platelets, monocytes/macrophages contribute to CTC
extravasation as well. Metastatic CTCs recruit monocytes/macrophages to the site of
extravasation by releasing the CC-chemokine ligand 2 (CCL2) which attracts circu-
lating monocytes expressing CC-receptor 2 (CCR2) and 6C2 (LY6C; in mice) or
CD14highCD16negative (in humans) (Cassetta and Pollard 2018; Qian et al. 2011), or
indirectly by inducing local endothelial activation which results in E-selectin expres-
sion (Häuselmann et al. 2016). The endothelial E-selectin mediates the adhesion of
the attracted monocytes to the endothelium, and the bond between E-selectin and its
ligand triggers signaling in both the monocytes and the endothelial cells, eventually
leading to (1) a stronger, integrin-mediated adhesion, (2) the retraction of endothelial
cells, and (3) a subsequent loosening of the endothelial tight junctions through
de-phosphorylation of VE-cadherin (Häuselmann et al. 2016). Beyond that, extrav-
asated monocytes in the underlying tissue can differentiate into metastasis-
associated macrophages, which then release VEGF to increase vascular permeability
and thus promote tumor cell extravasation (Cassetta and Pollard 2018; Qian et al.
2009, 2011).

5 Organotropism

Already in 1889, Stephen Paget postulated that metastasis formation requires both
cancer cell-intrinsic properties (“seed”) and a congenial microenvironment (“soil”)
(Paget 1989). Accordingly, different cancers show different preferences with regard
to the organs they metastasize to (Gao et al. 2019). Renal, thyroid, and liver cancer
cells metastasize preferentially to the lungs; ovarian, colon, and gastric cancer cells
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to liver and peritoneum; pancreatic cancer cells to lungs and liver; lung cancer cells
to bone and brain. Breast and prostate cancer share the same preferences with the
highest incidence of metastases in bone and lungs. In addition, breast cancer often
metastasizes to liver and brain. Melanoma can be considered an all-rounder because
it spreads nearly everywhere with the highest incidences of metastases in lungs,
liver, brain, bone, and peritoneum (Gao et al. 2019). CTCs can also colonize the
primary tumor, i.e. their tumor or origin. This process, called “tumor self-seeding,”
may select for cancer cells that are more aggressive than those originally in the
primary tumor, and may – at least partly – explain local recurrence after tumor
excision (Kim et al. 2009). However, it needs to be stated that so far there is not
sufficient clinical evidence to substantially support this concept.

Independently of different cancer types’ preferences including the unique char-
acteristics of each target organ, they share a number of general principles underlying
organotropism (Gao et al. 2019). At first, a premetastatic environment is formed.
Both soluble factors and exosomes containing (mi)RNA are released from the
primary tumor. They interact directly with cells residing at a prospective metastatic
site. At the same time, they trigger the release of progenitor cells from bone marrow
and conduct their target-oriented travel to a prospective metastatic site. Thus, the
soluble factors and exosomes released by the primary tumor in combination with
bone marrow-derived cells are significantly involved in arranging the premetastatic
niche for later colonization (Fig. 1a; Izraely and Witz 2021; Wang et al. 2021).

In a second step, CTCs are then decoyed into this premetastatic niche by
inflammatory chemokines released from local cells (Moore 2001; Zlotnik et al.
2011).

5.1 Locally Released Chemokines Lure CTCs

The involved chemokine receptor-ligand pairs include, among others, CXCR1/2-
CXCL8 (Ha et al. 2017; Li et al. 2014), CXCR4-CXCL12 (Guo et al. 2016; Iwasa
et al. 2009; Müller et al. 2001), CCR6-CCL20 (Ghadjar et al. 2006; Kadomoto et al.
2020), and CCR7-CCL21 (Mashino et al. 2002; Rizeq and Malki 2020). Thus, in
patients with axillary node positive primary breast cancer, the expression of chemo-
kine receptors determines the target organ of metastasis. CXCR4 expression
increases the risk of metastasis to the liver, CX3CR1 expression favors metastasis
to the brain, CCR6 expression causes metastasis to the pleura, and CCR7 expression
can be associated with the occurrence of skin metastases (André et al. 2006).

Lung tropism of osteosarcoma is mediated primarily by CXCL8 and IL-6 (Gross
et al. 2018). CXCL8 triggers the release of Ca2+ from intracellular stores (Joseph
et al. 2010) and causes phosphorylation of Akt and Erk1/2 (Hosono et al. 2017),
i.e. two signaling pathways known to drive cell migration and invasion. To date, ion
channels and transporters potentially involved in this CXCR1/2-CXCL8-dependent
organotropic process, such as K+ or Ca2+ channels, have not been identified.
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Fig. 1 Major steps and known factors in organotropism. (A) The primary tumor releases soluble
factors and miRNA-containing extracellular vesicles and exosomes that arrive at prospective target
organs/tissues and at the same trigger the release of progenitor cells from bone marrow. A
premetastatic niche is established by a concerted action of the bone marrow-derived cells,
exosomes, and soluble factors from the primary tumor, and, not shown for the sake of clarity,
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5.1.1 CXCL12/CXCR4

Another example is CXCL12 (¼ stromal cell-derived factor 1 (SDF-1)) which is
preferentially expressed in lung and liver and thus attracts CXCR4-carrying mela-
noma, breast cancer (Minn et al. 2005; Müller et al. 2001), and pancreatic cancer
cells (Saur et al. 2005). Interestingly, the water/glycerol channel aquaporin-3
(AQP3) is required for CXCL12/CXCR4-dependent, directional breast cancer cell
migration, including spontaneous metastasis of orthotopic xenografts to the lungs
(Satooka and Hara-Chikuma 2016). CXCL12 induces the membrane NADPH
oxidase 2 (Nox2) to generate H2O2. H2O2 then enters the breast cancer cell through
AQP3. It oxidizes the phosphatases PTEN (phosphatase and tensin homolog) and
PTP1B (protein tyrosine phosphatase 1B), resulting in the activation of the Akt
pathway which drives directional cell migration (Satooka and Hara-Chikuma 2016).
Similarly, CXCL12-activated Akt and Erk1/2 pathways propel endothelial colony-
forming cell (ECFC) migration, homing and incorporation into neovessels, thus
re-establishing perfusion in ischemic tissues and promoting tumor vascularization
and metastasis (Zuccolo et al. 2018). The activation of the Akt and Erk1/2 pathways
requires a CXCL12-induced increase in the intracellular Ca2+ concentration which is
initiated by an InsP3-mediated Ca2+ release from the ER and maintained by subse-
quent store-operated Ca2+ entry across the plasma membrane (SOCE) (Zuccolo et al.
2018).

In invasive glioblastoma, CXCL12 causes the activation of KCa3.1 (IKCa;
KCNN4) channels including their long-term functional upregulation. KCa3.1 chan-
nel activity mediates glioblastoma cell migration and chemotaxis depending on
CXCR4 expression (Sciaccaluga et al. 2010). Accordingly, a combined, simulta-
neous use of the anti-fungal KCa3.1 blocker clotrimazole, the CXCR4 inhibitor
plerixafor (AMD3100), and the histamine 1 (H1) receptor antagonist mirtazapine
has been suggested for cytotoxic glioblastoma treatment. The H1 receptor needs to
be inhibited because it also can mediate KCa3.1 activation and thus represents a
potential bypass of CXCR4 inhibition (Kast 2010).

Kv11.1 (hERG) channels mediate CXCL12/CXCR4-stimulated migration and
invasion in leukemia cells (Li et al. 2009). In their plasma membranes, Kv11.1,
CXCR4 and β1 integrin assemble to form a multiprotein complex (Pillozzi et al.

⁄�

Fig. 1 (continued) local fibroblasts, mesenchymal stem cells, neutrophils, and macrophages.
Chemokines released by local cells decoy the circulating tumor cells into the premetastatic niche,
supported by specific, local adhesion events at the endothelial surface often mediated by selectins or
integrins. Once in the target tissue, single tumor cells can fall dormant and eventually be woken up
by the presence of extracellular matrix components such as laminin emerging from locally induced
extracellular matrix digestion events. Metastasizing tumor cells can also repulse local attacks, for
instance by releasing serpins to prevent the plasminogen activator (PA) from generating plasmin
which otherwise would lead to the release of apoptosis-inducing soluble Fas Ligand. (B) Circulating
tumor cells (CTCs) such as metastasizing melanoma, breast or pancreatic cancer cells are directed
predominantly to the lungs when their NHE1 activity is reduced, their CAIX expression is high, or
when E-cadherin expression is low. Please see text for additional, more detailed information

Circulating Tumor Cells: Does Ion Transport Contribute to Intravascular. . . 153



2011). Targeting CXCL12 or the CXCL12/CXCR4 axis with peptides and small
molecules induces pro-apoptotic effects and may thus help to overcome
chemoresistance in leukemia that is induced by CXCL12-releasing bone marrow
mesenchymal stromal cells (Pillozzi et al. 2019).

5.1.2 CCL20/CCR6

In general, the CCL20 chemokine/CCR6 chemokine receptor pair contributes to
cancer cell motility and metastasis (Korbecki et al. 2020). This has been shown for
breast cancer (Muscella et al. 2017), prostate cancer (Ghadjar et al. 2008), ovarian
cancer (Liu et al. 2020), lung cancer (Wang et al. 2016), esophageal squamous cell
carcinoma (Liu et al. 2017), gastric cancer (Han et al. 2015), pancreatic cancer
(Campbell et al. 2005; Kimsey et al. 2004), hepatocellular carcinoma (Huang and
Geng 2010), colorectal cancer (Frick et al. 2016), and renal cell carcinoma
(Kadomoto et al. 2019).

In patients with primary lung cancer, the production of CCL20 in adrenal glands
is most likely to recruit CCR6-expressing lung cancer cells which then leads to the
development of adrenal metastases (Raynaud et al. 2010).

Multiple myeloma cells trigger the upregulation of both CCL20 and CCR6 in the
bone microenvironment and thus contribute to osteoclast formation and eventually
to osteolytic bone lesions (Giuliani et al. 2008).

The expression of CCL20 within the periportal area of the liver is likely to attract
CCR6 expressing colorectal cancer (CRC) cells (Dellacasagrande et al. 2003; Frick
et al. 2016). Accordingly, liver metastases can be found in approximately 50% of
CRC patients (Jemal et al. 2008). Here, too, as described above for the CXCR1/2-
CXCL8 and the CXCR4-CXCL12 pairs, Erk1/2 and Akt signaling pathways are
activated and promote proliferation and motility of CRC cells (Brand et al. 2006).
Furthermore, CCL20 stimulation of CCR6 expressing human colon carcinoma cells
causes phosphorylation of BCAR1/p130Cas (Yang et al. 2005), a scaffolding protein
overexpressed also in breast, ovarian, prostate, lung, and colorectal cancers as well
as in hepatocellular carcinoma, glioma, melanoma, anaplastic large cell lymphoma,
and chronic myelogenous leukemia (Barrett et al. 2013). BCAR1/p130Cas is a key
component of the pathway by which the focal adhesion kinase (FAK) can drive cell
migration (Tikhmyanova et al. 2010). In a monolayer of polarized human colon
adenocarcinoma cells, CCR6 stimulation has been associated with cAMP-stimulated
electrogenic chloride secretion as CCL20 inhibits forskolin-stimulated cAMP pro-
duction (Yang et al. 2005). The nature of ion transporters and channels possibly
involved has not yet been identified. A potential candidate would be the cAMP-
dependent CFTR (cystic fibrosis transmembrane conductance regulator). NKCC1
(Na+, K+, 2Cl� cotransporter 1) could also be involved. NKCC1 activity is sensitive
to cytoskeletal dynamics (Hecht and Koutsouris 1999; Matthews et al. 1994), and
the BCAR1/p130Cas, phosphorylated in response to CCL20 stimulation, associates
with cytoskeletal complexes (Sawada et al. 2006; Defilippi et al. 2006) and could
thus be an integrative module linking NKCC1 activity with cytoskeletal dynamics.
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5.1.3 CCL19 and 21/CCR7

The CCL21/CCR7 chemokine axis contributes to a metastatic phenotype in a wide
variety of cancer types (Rizeq and Malki 2020), including breast (Müller et al. 2001;
Weitzenfeld et al. 2016), prostate (Maolake et al. 2018), urinary bladder (Xiong et al.
2017), cervical (Kodama et al. 2007), esophageal (Shi et al. 2015; Goto and Liu
2020), gastric (Ma et al. 2015; Ryu et al. 2018), pancreatic (Hirth et al. 2020; Zhang
et al. 2016b), colorectal (Li et al. 2011b), and lung cancer (Zhong et al. 2017), as well
as melanoma (Cristiani et al. 2019; Takeuchi et al. 2004), lymphoma (Fleige et al.
2018; Li et al. 2018; Yang et al. 2011), and oral, head, and neck squamous cell
carcinoma (Chen et al. 2020; González-Arriagada et al. 2018).

Generally, the binding of CCL19 and CCL21 to the GPCR CCR7 induces the
activation of a Gα-subunit and a Giβγ heterodimer which then triggers downstream
signaling effectors and signaling cascades. As a result, the activation of ERK1/2,
PI3K/Akt, Rho GTPases, MAPK, and JAK/STAT can lead to the transcription and
expression of different genes including MMPs and thus promote chemotaxis, cyto-
skeletal remodeling, extracellular matrix degradation, cell adhesion, migration,
invasion, angiogenesis, and proliferation (Rizeq and Malki 2020). To date, it has
not been shown explicitly that CCL19, 21/CCR7 mediated changes in tumor cell
behavior involve ion channels and transporters. However, the signaling pathways
sparked by CCR7 stimulation most likely address ion transport mechanisms as well,
also in tumor cells. In CCR7 expressing mature dendritic cells, CCL19 and CCL21
trigger Ca2+ influx from the extracellular space. This Ca2+ influx is accompanied by
KCa3.1 mediated K+ efflux and, in presence of a yet undefined Cl� conductance,
propels cell migration (Shao et al. 2015).

5.2 Given Factors at the Premetastatic Niche

In addition to being attracted by chemokines CTCs can be retained at the
premetastatic niche by specific, local adhesion events. E-selectin, for instance,
supports hematogenous metastasis of estrogen-receptor negative (ER�) CD44+

breast cancer cells (Kang et al. 2015). Furthermore, characteristic vascular structures
in target organs are associated with special requirements for cancer cell extravasation
(Gao et al. 2019; Minami et al. 2019; Nguyen et al. 2009; Weidle et al. 2016), so that
the particular architecture of a blood barrier, typical of an organ or a tissue, may
select for cancer cells that are able to break down the local endothelial junctions and
the appendant basement membrane. This interplay between metastasizing cell and
local environment is continued by the cancer cells’ interaction with the unique
resident cells and their secretome including the extracellular matrix. However, the
initiation of proliferation and growth in the secondary organ appears to be another
obstacle for disseminating tumor cells (Chambers et al. 1995).
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5.2.1 Falling Asleep and Awakening

Some of the disseminating tumor cells enter a dormant phase, induced by a lack of a
sufficient, integrin-mediated adhesion to the extracellular matrix in the secondary
organ (Barkan et al. 2010). In order to survive without proper anchorage, detached
breast cancer cells autocrinally secrete laminin-5, a component of the basement
membrane, which induces their own survival through α6β4-mediated NFκB activa-
tion (Zahir et al. 2003). As soon as the biomolecular composition of the surrounding
microenvironment changes, for example by the release of membrane receptor-
ligands from a locally degrading extracellular matrix or by inflammatory events,
dormant cancer cells can be awakened by induction of various signaling pathways
leading to the revival of proliferative activity (Park and Nam 2020). Sustained lung
inflammation, for instance, can provoke the formation of neutrophil extracellular
traps (NETs). Two NET-associated proteases, neutrophil elastase and MMP9, then
successively fragment laminin, and the proteolytically remodeled laminin awakens
dormant breast cancer cells (Fig. 1a), i.e. induces their proliferation, by activating
α3β1 signaling (Albrengues et al. 2018).

5.2.2 Local Nutrient Supply

Furthermore, the nutrient composition in the target organ may differ considerably
from that around the primary tumor and thus force the disseminating tumor cells to
adapt their metabolic pathways to the new environment (Elia et al. 2018). Accord-
ingly, brain metastases originating from various tissues drive their oxidative TCA
cycle utilizing acetate rather than glucose or glutamine (Maher et al. 2012; Mashimo
et al. 2014), and breast cancer-derived lung metastases change over to a pyruvate
carboxylase-dependent replenishment of the TCA cycle (anaplerosis) due to an
elevated bioavailability of pyruvate in the lung environment (Christen et al. 2016).

5.2.3 Defeating the Local Defense System

On the other hand, tumor cells are capable of repulsing attacks by the tissues that
they are going to populate. Normally, plasmin from the reactive brain stroma
represents a defense against metastatic invasion. Plasmin is generated from plas-
minogen by plasminogen activator (PA) which in brain is released mainly by
astrocytes. Plasmin cleaves off soluble Fas Ligand (sFasL) from the membrane-
bound FasL, also expressed on astrocytes. The sFasL then induces apoptosis in
metastatic cells and inactivates the axon pathfinding molecule L1CAM, a cell
adhesion molecule expressed by metastatic cells for spreading along brain capillaries
and for metastatic outgrowth. However, metastasizing breast and lung adenocarci-
noma cells express high levels of PA inhibitory serpins (serin-protease inhibitors) to
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prevent plasmin generation and thus its metastasis-suppressive effects (Valiente
et al. 2014).

5.3 Lack of E-Cadherin, Reduced NHE1 Activity,
and the Presence of CAIX Each Contribute to Lung
Tropism

The epithelial-mesenchymal transition (EMT) does not only confer on epithelial
cells the abilities to detach from the cell layer/tissue, migrate, invade the surrounding
tissue and degrade components of the extracellular matrix (Lambert et al. 2017), but
it can also play a considerable role in metastatic organotropism as shown for
pancreatic cancer (Reichert et al. 2018). One characteristic of EMT is a decreased
expression of E-cadherin, the main component of adherens junctions. Adherens
junction protein p120 (P120CTN) stabilizes E-cadherin at the adherens junctions
(Ishiyama et al. 2010; Thoreson et al. 2000). A complete loss of p120ctn in
metastatic pancreatic ductal adenocarcinoma (PDAC) cells shifts their organotropic
preference from the liver to the lungs. Rescue with a p120ctn isoform restores liver
organotropism (Reichert et al. 2018). According to this, and independently of the
presence of P120CTN, E-cadherin-expressing PDAC cells prefer to metastasize to
the liver while E-cadherin-negative metastases are found predominantly in the lungs
(Fig. 1b; Reichert et al. 2018). Analogously, the inhibition of NHE1 by cariporide
seems to direct the metastatic spread of murine melanoma (B16V) cells to the lungs
(Vahle et al. 2014). NHE1 activity is affected by the NHE regulatory factor
(NHERF1), and NHERF1 expression is upregulated in a variety of cancers where
its expression level correlates with malignancy (Georgescu et al. 2008; Greco et al.
2019; Ma et al. 2016; Saponaro et al. 2014; Vaquero et al. 2017). The phosphory-
lation state of NHERF1 on serines S279 and S301 differentially controls NHE1
activity and metastatic organotropism of breast cancer (MDA-MB-231) cells (Greco
et al. 2019). Replacing both S279 and S301 by alanine results in a significantly
increased NHE1 activity and, in a xenograft mouse model, drives a shift from the
predominantly lung colonization to a predominantly bone colonization. This led the
authors (Greco et al. 2019) to conclude that NHERF1 phosphorylation can act as a
signaling switch in metastatic organotropism.

Also the carbonic anhydrase IX (CAIX) contributes indirectly to organotropism
(Fig. 1b). Bone marrow-derived cells (BMDCs), including myeloid-derived sup-
pressor cells (MDSC), macrophages, dendritic cells, and hematopoietic progenitor
cells are recruited to potential metastatic sites where they act in concert to establish
the premetastatic niche prior to the arrival of metastasizing tumor cells (Gabrilovich
et al. 2012; Kaplan et al. 2005; Psaila and Lyden 2009; Quail and Joyce 2013). The
production of chemokines and cytokines that mobilize granulocytic MDSCs to a
potential (pre)metastatic niche requires the hypoxia-induced expression of CAIX by
cancer cells in the (primary) tumor (Chafe et al. 2015). Hypoxic breast cancer cells
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express significant amounts of CXCL10, CCL5, and the granulocyte colony stimu-
lating factor G-CSF when, and only when, CAIX is expressed. Hypoxia-induced
CAIX is needed for the activation of the NF-κB pathway which then results in the
generation of G-CSF and eventually promotes breast cancer metastasis to the lungs
(Chafe et al. 2015).

6 Conclusion and Outlook

Even though there is hardly any direct evidence proving it, the literature suggests
that ion channels and transporters do contribute to both extravasation and
organotropism of metastasizing tumor cells. Table 1 summarizes the channels and
transporters potentially involved in (1) surviving the intravascular milieu, (2) adhe-
sion to the vessel wall, (3) extravasation, and (4) metastatic organotropism.

NHE1 may be considered as a kind of “all-rounder” due to its dual function. (1) In
its role as a structural element contributing to the organization of the cortical actin
cytoskeleton and tying it to the plasma membrane, NHE1 possibly protects CTCs
from mechanical stress. (2) In its role as H+ extruder, NHE1 may promote both CTC
adhesion to the vessel wall and subsequent, organ-specific extravasation by gener-
ating pH-nanodomains that modulate not only pH-dependent cell–substrate and
MCAM-mediated cell–cell (melanoma-endothelium) adhesions but also the activity
of matrix metalloproteases. Finally, there is evidence to suggest that NHE1 activity,
regulated by NHERF1, has a hand in organotropism.

Regulation of the intracellular Ca2+ concentration [Ca2+]i is interwoven with the
modulation of K+ conductances. K+ channels including mechanosensitive K2P
channels stabilize the membrane potential required for Ca2+ influx, e.g. through
mechanosensitive channels (TRPs, Piezo), while increases in [Ca2+]i activate Ca2+

sensitive K+ channels (KCas). This interplay, especially the controlled Ca2+ influx,
may strengthen the actin cortex of CTCs, accompanied by an increase in cortical
stiffness, and thus protect them from shear forces in the blood vessels. In endothelial
cells, an elevation of [Ca2+]i (1) can be induced by binding of ATP released from
tumor cell-activated platelets to endothelial P2Y2, (2) is mediated by SOC channels,
and (3) results in an increased endothelial permeability which facilitates extravasa-
tion (Table 1).

In addition to pH and Ca2+ including the affected signaling pathways (e.g., Ca2+/
CaM signaling), the FAK signaling and the Akt pathway are major variables being
modulated by ion channels/transporters and involved in organotropism and surviv-
ing the intravascular milieu. Permanent activation of FAK can prevent anoikis. Some
CTCs secrete fibronectin or collagen and thus “autostimulate” their β1 integrin
leading to activation of Kv11.1 concomitant with FAK phosphorylation. Another
mechanism by which CTCs avoid anoikis is the adoption and perpetuation of
mesenchymal features with the help of the Zn2+ transporter ZIP6.

AQP3 in cooperation with the Akt pathway is likely to play a role in
organotropism by directing CXCR4 expressing breast cancer cells to the lungs
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Table 1 Involvement of ion channels/transporters in CTC survival, extravasation, and
organotropism

Ion channel/transporter Function/mechanism

Surviving
intravascular
milieu

Mechanical
stress

TRPs & PIEZO
(mechanosensitive)

Ca2+ influx => cell stiffness" =>
strengthens cell cortex => protects
plasma membrane from shear stress
damage

Mechanosensitive two-
pore K+ channels (K2P)

Stabilize the electro-chemical gradient
required for Ca2+ influx

NHE1 Expression" => cortical stiffness"
Anoikis Kv11.1 (hERG, KCN2) β1 integrin, stimulated by self-secreted

fibronectin or collagen, activates
Kv11.1 which is essential for FAK-
phosphorylation

ZIP6 (Zn2+ transporter,
SLC 39A6)

[Zn2+ ]i "=> GSK-3β# =>
E-cadherin# => EMT" => anoikis#

CLCA2 (Cl- channel
accessory)

#Expression => proliferation",
motility", metastasis"

Adhesion to vessel wall NHE1 Regulation of cell surface pH => pH
affects cell-cell adhesion =>
homophilic interaction between
MCAM expressed on melanoma and
endothelial cells"

Extravasation SOC (TRPC1 & 4)
channels and KCas of
endothelial cells

ATP released from tumor cell-activated
platelets binds to endothelial P2Y2 =>
[Ca2+]i" => KCa activity", CaM
activity", eNOS activity" =>
endothelial permeability"

Organotropism AQP3 CXCL12 activates Nox2, Nox2-gener-
ated H2O2 enters via AQP3 & oxidizes
PTEN & PTP1B => Akt pathway "
=> cell migration => CXCR4 carrying
breast cancer cells directed to the lungs

? CFTR and/or
NKCC1 ?

CCL20 in periportal area attracts CCR6
expressing CRC cells to the liver
1. CCL20/CCR6 affects
cAMP-stimulated electrogenic Cl-

secretion => CFTR?
2. CCL20/CCR6 => phosphorylation
of BCAR1/p130Cas => affects FAK
pathway & cytoskeleton => NKCC1
activity sensitive to cytoskeletal
dynamics

NHERF1/NHE1 axis • NHE1 inhibition with cariporide
directs metastasizing melanoma to the
lungs
• NHE1 activation by modified
NHERF1-phosphorylation state shifts
metastatic breast cancer spread from
lungs to bone

Please bear in mind that several of these interrelations have not been shown directly and, therefore,
are partially hypothetical. Please see text for more details
" = stimulation; # = inhibition; => = causal connection
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where local CXCL12 stimulates H2O2 production via membrane-bound Nox2. H2O2

crosses the plasma membrane through AQP3 in order to activate the Akt pathway by
oxidizing PTEN and PTP1B which eventually stimulates directional cell migration.

Altogether the literature strongly suggests that several ion channels and trans-
porters have a hand in CTC survival, extravasation, and organotropism, which points
to their potential usefulness as therapeutic target(s) during and after resection of the
primary tumor. Given the great potential to be exploited as therapeutic targets on the
one hand, yet the insufficient hitherto existing knowledge and unsatisfying data
availability on the other, it becomes apparent that far more efforts need to be made in
order to identify and characterize the mechanistic roles of ion channels and trans-
porters in the behavior of CTCs including extravasation and organotropism. Pro-
vided that an experimental setting includes chemokines, extracellular matrix
(proteins and structure), and preferably also immune cells typically found in the
organ of interest, advanced microfluidic models of cancer cell extravasation
(Mondadori et al. 2020; Offeddu et al. 2021) may be a suitable tool to validate the
involvement of ion channels/transporters in extravasation and organotropism, e.g. by
using genetically modified tumor cell lines, and to test their responsiveness to
antimetastatic drugs.
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