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Exosomes: From Functions in Host-Pathogen

Interactions and Immunity to Diagnostic

and Therapeutic Opportunities

Jessica Carrière, Nicolas Barnich, and Hang Thi Thu Nguyen

Abstract Since their first description in the 1980s, exosomes, small endosomal-

derived extracellular vesicles, have been involved in innate and adaptive immunity

through modulating immune responses and mediating antigen presentation.

Increasing evidence has reported the role of exosomes in host-pathogen interactions

and particularly in the activation of antimicrobial immune responses. The growing

interest concerning exosomes in infectious diseases, their accessibility in various

body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and

nucleic acids) to distant recipient cells led the scientific community to consider the

use of exosomes as potential new diagnostic and therapeutic tools. In this review,

we summarize current understandings of exosome biogenesis and their composition

and highlight the function of exosomes as immunomodulators in pathological states

such as in infectious disorders. The potential of using exosomes as diagnostic and

therapeutic tools is also discussed.
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APOBEC3G Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like 3G

BAT3 HLA-B-associated transcript 3
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CD Crohn’s disease
CMV Cytomegalovirus

CXCL11 C-X-C motif chemokine 11

DC Dendritic cell
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FasL Fas ligand

GM-CSF Granulocyte-macrophage colony-stimulating factor
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HIV Human immunodeficiency virus
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HSC Heat-shock cognate
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IFN Interferon

Ig Immunoglobulin

IL Interleukin

ILV Intraluminal vesicles

LAM Lipoarabinomannan

LF Lethal factor

LMP1 Latent membrane protein 1

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemoattractant protein 1

MFGE8 Milk fat globule-EGF factor 8 protein

MHC Major histocompatibility complex molecules

miRNA MicroRNA

MVE Multivesicular endosome

MyD88 Myeloid differentiation primary response protein 88

NEF Negative regulatory factor

NF-κB Nuclear factor-kappa B

NK Natural killer

NKG2D Natural killer group 2 member D receptor

OVA Ovalbumin

PA Protective antigen

PAMP Pathogen-associated molecular pattern

PBMC Peripheral blood mononuclear cells

PfPTP2 Plasmodium falciparum tyrosine phosphatase 2

RANTES Regulated on activation, normal T cell expressed and secreted

SNARE Soluble N-ethylmaleimide-sensitive fusion attachment protein

(SNAP) receptors

TAR Transactivating response

TGF-β Tumor growth factor beta

TLR Toll-like receptor

TNF Tumor necrosis factor

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

tRNA Transfer RNA

TSG101 Tumor susceptibility gene 101

vtRNA Vault RNA

1 Introduction

Cell-to-cell communication is crucial for maintaining homeostasis within a

multicellular organism. In particular, this communication is fundamental in innate

and acquired immunities to trigger well-orchestrated immune responses. Among

identified mediators, extracellular vesicles (EVs) have achieved a growing interest

and are the subject of an increasing number of studies. Several types of EVs have

been described to date that have been given different names throughout literature
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such as microvesicles (also called microparticles or ectosomes) to designate EVs

directly released from the plasma membrane, membrane particles, microvesicles,

nanoparticles, “exosome-like” microvesicles, tolerosomes, prostasomes, or

exosomes to refer to EVs released upon fusion of multivesicular endosomes

(MVEs) with the plasma membrane. EVs are traditionally classified according to

their intracellular origin, their physical properties, or their protein content. Specific

isolation tools and techniques to distinguish EVs from different origins in order to

establish a reliable classification are lacking. Therefore, Kowal and coauthors have

recently compared the protein content of heterogeneous populations of EVs in order

to establish a reliable classification (Kowal et al. 2016). According to the authors,

EVs can be firstly classified according to their sedimentation speed, and then EV

subpopulations can be distinguished according to their floatation density on

iodixanol gradient and their protein content (Kowal et al. 2016).

Exosomes are defined as small EVs (30–100 nm in diameter) pelleting at high

speed (ultracentrifugation at 100,000 g) and released upon fusion of MVEs with the

plasma membrane (Colombo et al. 2014). In the 1980s, P. Sthal’s and

R. Johnstone’s groups originally identified exosomes by their role in elimination

of the transferrin receptor via secretion during reticulocyte maturation (Harding

et al. 1983; Pan et al. 1985). Since their first description, exosomes have been well-

characterized and were shown to be nanovesicles of endocytic origin. Exosomes

have been successfully purified from most of body fluids (i.e., serum, saliva, urine,

breast milk, etc.) and from cell culture medium (Théry et al. 2006). Analysis of

molecular composition of exosomes allowed identification of a rich content with

numerous proteins as well as lipids and nucleic acids (Théry et al. 2009). In addition

to the molecular composition, numerous groups have been interested in studying

the functions of exosomes either in physiological or in pathological states. To date,

the most widely documented function of exosomes is their role in immunoregula-

tion. Indeed, exosomes act as crucial regulators in innate immunity since exosomes

released from immune cells were shown to be able to stimulate activation, prolif-

eration, and inflammatory responses in various immune recipient cells (Théry

et al. 2009). In addition, increasing evidence supports the involvement of exosomes

in acquired immunity and particularly in antigen presentation (Théry et al. 2009).

The wide range of functions of exosomes in immunoregulation attracts the attention

of scientists in fields of research of pathologies such as infectious disorders. As

such, exosomes have been shown to be involved in immunoregulation during

fungal, parasitic, viral, and bacterial infections, and they can be beneficial either

for host defense or for virulence and spread of pathogens. Due to their accessibility

in various body fluids and their capacity to convey a complex molecular content

even to distant cells, exosomes have been proposed as potential diagnostic, vaccine,

and therapeutic tools. However, only a few experiments have been performed to

date, in which exosomes were used to diagnose disease, vaccinate, and convey

therapeutic molecules.

In this review, we introduce current understandings of biogenesis, secretion, and

composition of exosomes. We will then highlight the function of exosomes as

immunomodulators in pathological states such as in infectious disorders. The
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potential of using exosomes as diagnostic, vaccine, and therapeutic tools will also

be discussed. It is worthy to note that in several publications cited in this review,

other terms rather than “exosomes” were used, which correspond to a mixture of

vesicles from different origins.

2 Exosome Biogenesis and Secretion

Exosomes have been isolated from various body fluids such as urine, saliva, bile,

breast milk, or blood (Yá~nez-Mó et al. 2015). Exosomes are actively secreted by

most cell types, in particular, immune cells such as B cells (Clayton et al. 2005), T

cells (Nolte-’t Hoen et al. 2009), dendritic cells (DCs) (Théry et al. 1999; Zitvogel

et al. 1998), macrophages (Bhatnagar et al. 2007), platelets (Heijnen et al. 1999),

and mast cells (Raposo et al. 1997) and from other cell types such as neurons (Fauré

et al. 2006), epithelial (Marzesco et al. 2005), endothelial (Song et al. 2014), and

mesenchymal stem cells (Lai et al. 2015).

The unique property of exosomes is attributed to their endocytic origin. During

exosome biogenesis, extracellular components and membrane receptors are

endocytosed in an early endosome (Fig. 1). Then, early endosomes mature into

late endosomes (Stoorvogel et al. 1991) and, during this process, small intraluminal

vesicles (ILVs) accumulate into MVEs upon budding of the inner membrane of late

endosomes, leading to sequestration of proteins, lipids, and cytosolic components.

Although MVEs can subsequently fuse with the lysosome to induce cargo degra-

dation (Woodman and Futter 2008), some MVEs can fuse with the plasma mem-

brane, resulting in the release of ILVs as exosomes (Denzer et al. 2000).

Although exosome biogenesis is still being defined, a well-described mechanism

for ILV formation is driven by the endosomal sorting complexes required for

transport (ESCRT), which is composed of four ESCRT complexes (ESCRT-0,

ESCRT-I, ESCRT-II, and ESCRT-III) with associated proteins (e.g., ALIX,

VPS34) (Hanson and Cashikar 2012). Firstly identified in endosomal sorting and

degradation of ubiquitinated proteins (Davies et al. 2009; Metcalf and Isaacs 2010),

ESCRT proteins have been shown to mediate membrane invagination process and

ILV formation (Davies et al. 2009; Hurley 2010; Metcalf and Isaacs 2010). Thus,

ESCRT-0 binds ubiquitinated proteins, allowing their delivery to MVEs (Raiborg

and Stenmark 2002). Then, ESCRT-0 recruits ESCRT-I, which consequently

recruits ESCRT-II and ESCRT-III (Babst et al. 2002; Katzmann et al. 2001). By

triggering membrane invagination and scission, ESCRT-III enables ILV formation

(Wollert et al. 2009). Several studies support the involvement of ESCRT proteins in

exosome biogenesis since knockdown of ESCRT proteins has been shown to

abolish ILV formation and exosome secretion (Stuffers et al. 2009; Tamai

et al. 2010).

Another ESCRT-independent mechanism in exosome biogenesis has been

raised, in which siRNA-mediated silencing of ESCRT genes did not abrogate totally

exosome release (Stuffers et al. 2009). First, analysis of exosome secretion from
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oligodendrocytes, central nervous system cells, showed that exosome secretion

requires the sphingolipid ceramide (Trajkovic et al. 2008). Another study reported

that tetraspanins might be also involved in exosome biogenesis since depletion of

the CD63-coding gene in vitro in melanocytes or in vivo in cd63�/� mice led to a

reduction of ILV formation (van Niel et al. 2011).

Once MVEs are formed, they can either fuse with the lysosome to mediate cargo

degradation (Woodman and Futter 2008) or with plasma membrane, a process

mediated by the cytoskeleton, small GTPases, and fusion machinery (Colombo

et al. 2014). Among the GTPases involved in ILV exocytosis, several RAB

GTPases, which are members of the Ras GTPase superfamily, have been identified

in exosomes such as RAB5, RAB11, RAB27, and RAB35. Indeed, RAB11 inhibi-

tion by overexpressing a dominant negative mutant in K562 erythroleukemia cells

decreased exosome release (Savina et al. 2002). Moreover, inhibition of RAB35

function resulted in an impaired exosome secretion and accumulation of ILVs (Hsu

et al. 2010). Furthermore, shRNA-mediated silencing of RAB27A and RAB27B in

HeLa cells decreased exosome secretion (Ostrowski et al. 2010). Recently, it was

reported that inhibition of RAL-1 GTPase resulted in a hampered fusion of MVEs

with the plasma membrane and consequently in a decreased exosome secretion

(Hyenne et al. 2015). The fusion machinery, involving soluble N-ethylmaleimide-

Nucleus
Cytosol

Transmembrane
receptors

Extracellular
proteins

Early endosome

Cytosolic proteins

Genetic material

Lysosome

Degradation

Exocytosis/Fusion

Exosomes

MVE

ILV

Endocytosis

Fig. 1 Exosome biogenesis. Extracellular proteins and transmembrane receptors are endocyted in

an early endosome. Early endosomes mature into late endosomes, and small intraluminal vesicles

(ILVs) accumulated into their lumen upon budding of the inner membrane of late endosomes,

leading to sequestration of cytosolic components and genetic material. Multivesicular endosomes

(MVEs) will then fuse with either lysosomes, leading to the degradation of their content, or the

plasma membrane, a process involving SNARE proteins and RAB GTPases, leading to the release

of ILVs called “exosomes” into extracellular environment
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sensitive fusion attachment protein (SNAP) receptors (SNARE), has been shown to

mediate exosome secretion. SNARE proteins form complexes between vesicular

v-SNARE (vesicular-associated membrane proteins or VAMP) proteins and cell

membrane t-SNARE proteins (Zylbersztejn and Galli 2011). It was reported that

overexpression of the SNARE protein VAMP7 in K562 cells led to an impaired

exosome secretion (Fader et al. 2009).

3 Exosome Molecular Composition

Exosomes have been shown to contain proteins, lipids, and nucleic acids (Fig. 2).

Protein content of exosomes has been extensively analyzed by several techniques

including Western blotting, immune-electron microscopy (immuno-EM), fluores-

cence-activated cell sorting (FACS), and mass spectrometry (Colombo et al. 2014).

Exosomal protein content varies depending on the cell type of origin: for example,

B-cell-derived exosomes contain the B-cell receptor (BCR), and DC-derived

exosomes contain MCH-II, CD86, and ICAM-1 proteins (Théry et al. 2009). Fur-

thermore, exosomes contain some common proteins such as adhesion molecules

[milk fat globule-EGF factor 8 (MFGE8), integrins, and tetraspanins (CD63, CD81,

and CD9)], chaperones [heat-shock cognate protein 70 (HSC70), heat-shock pro-

tein 90 (HSP90)], proteins involved in membrane trafficking (e.g., RAB GTPases,

annexins) and in MVE biogenesis (e.g., clathrin, ALIX, TSG101), etc. (Fig. 2)

(Colombo et al. 2014). Recently, proteomic analysis of heterogenous populations of

small EVs, separated by a combinatorial approach using differential ultracentrifu-

gation, floatation in a density gradient, and immuno-isolation, confirmed that

exosomes can be distinguished from other subpopulations as they are co-enriched

in CD63, CD9, and CD81 tetraspanins and endosomal markers (Kowal et al. 2016).

Interestingly, proteomic analyses revealed that exosomes contain proteins from

different cell compartments such as the plasma membrane, cytosol, or endosomes,

while proteins from the nucleus, the mitochondria, the endoplasmic reticulum or the

Golgi apparatus are almost missing in exosomes (Lundholm et al. 2014; Théry

et al. 2009). These data confirm that exosomes arise from specific subcellular

compartments and not from cell fragmentation. The identified exosomal proteins

are listed in the online databases ExoCarta (http://www.exocarta.org) (Mathivanan

et al. 2012) and Vesiclepedia (http://microvesicles.org/).

Exosomal lipid composition has been characterized, mainly using mass spec-

trometry or high-performance liquid chromatography (Laulagnier et al. 2004a, b;

Llorente et al. 2013; Trajkovic et al. 2008; Wubbolts et al. 2003). As such,

exosomes have been shown to be enriched in sphingomyelin, phosphatidylserine,

cholesterol, and fatty acids, as compared to plasma membrane (Record et al. 2014).

Moreover, exosomes are enriched in GM3 ganglioside (Llorente et al. 2013;

Wubbolts et al. 2003), ceramide, and derivatives (Laulagnier et al. 2005; Llorente

et al. 2013; Trajkovic et al. 2008). However, lysobisphosphatidic acid (LBPA), a

lipid enriched in endosomal compartments and thought to be found in ILVs
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(Matsuo et al. 2004), is not enriched in exosomes (Laulagnier et al. 2004b;

Wubbolts et al. 2003). According to these studies, exosomes seem to display a

specific lipid composition (enriched in cholesterol, sphingomyelin, and GM3 gan-

glioside) similar to that of lipid raft microdomains on plasma membranes. Thus,

Tan and colleagues suggested and confirmed that lipid rafts are endocytosed into

MVEs and released on exosomes (Tan et al. 2013). Interestingly, it has been shown

that exosome biogenesis mechanisms evolve during cell maturation since the lipid

content of exosomes derived from reticulocytes is similar to that of donor reticu-

locytes (enriched in ceramide) but is modified in erythrocytes (Carayon et al. 2011).

Adhesion molecules
Integrins aM, a3, a4, b1, b2

MFGE8
ICAM-1

CD11a, b, c
CD146
CD166
CD326

Antigen
presentation

MHC-I
MHC-II
CD86

Tetraspanins
CD9

CD37
CD53
CD63
CD81
CD82

Tspan8

Lipid rafts
Flottilin-1
Stomatin

Lipids
Phosphatidyl serin

Sphingomyelin
Cholesterol
Ceramide

Cytoskeleton
Actin

Advillin
Cofilin
Ezrin

Fibronectin
Moesin
Radixin
Tubulin

Vimentin

Membrane trafficking/fusion
Annexins (I, II, IV, V, VI)

Rab GTPases (Rab5, 7,1B)
Dynamin
Syntaxin

MVE formation
Alix

Clathrin
Ubiquitin
TSG101

Gag

Genetic material
DNA

miRNA
vtRNA
tRNA

Enzymes
Aldehyde reductase

ATPase
GAPDH
Enolase
Ef1α1

Pyruvate kinase

Heat shock
HSC70
HSP90
HSP84

Signal transduction
Syntenin
Catenin

Fig. 2 Molecular composition of a typical exosome. Common composition including genetic

material (in blue box), proteins (in green boxes), and lipids (in yellow box) found in a typical

exosome is depicted. Proteins shown in red have been considered as exosomal markers. EF1α1
elongation factor 1-alpha 1, HSC heat-shock cognate, HSP heat-shock protein, ICAM-1
intercellular adhesion molecule 1, MFGE8 milk fat globule EGF factor 8 protein, MHC major

histocompatibility complex molecules, MVE multivesicular endosome, TSG101 tumor suscepti-

bility gene 101
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Exosomal lipids have been included in ExoCarta and Vesiclepedia databases

as well.

Numerous groups have analyzed the genetic material in exosomes after the first

description of nucleic acids in exosomes by Valadi and colleagues (Valadi

et al. 2007). In this pioneer study, exosomes derived from human HMC-1 mast

cells and murine MC/9 mast cells were shown to contain multiple and heterogenous

RNA species including mRNAs and microRNAs (miRNAs), which were efficiently

transferred to recipient cells and biologically active (Valadi et al. 2007). Then,

exosomes derived from immune cells have been shown to hold a specific set of

miRNAs that can be transferred to recipient cells (Mittelbrunn et al. 2011;

Montecalvo et al. 2012). For example, exosomes derived from human THP-1

macrophages convey the miRNA 150, which is handled by recipient endothelial

HMEC-1 cells and inhibits the expression of its target gene c-Myb (Zhang

et al. 2010). Moreover, high-throughput next-generation sequencing techniques

have allowed the identification of other small RNAs in exosomes such as small

noncoding RNAs [vault RNA (vtRNA), Y-RNA, transfer RNA (tRNA)] but limited

amounts of DNA and ribosomal RNA (Nolte-’t Hoen et al. 2012; van den Boorn

et al. 2013).

4 Exosome as Immunomodulators

4.1 Exosomes and Innate Immunity

Exosomes have been involved in modulating innate immune responses (Fig. 3).

Raposo and colleagues have reported the release of exosomes from B lymphocytes,

suggesting the involvement of exosomes in immune responses (Raposo et al. 1996).

Natural killer (NK) cells can be activated through the binding to its surface receptor

of HLA-B-associated transcript 3 (BAT3), which is expressed on DC-derived

exosomes (Simhadri et al. 2008). Exovesicles derived from mature DCs induce a

pro-inflammatory response in intestinal epithelial cells which in turn secrete

pro-inflammatory cytokines and chemokines [tumor necrosis factor alpha

(TNF-α), regulated on activation, normal T cell expressed and secreted (RANTES),

interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1)] in a

TNF-α-dependent pathway (Obregon et al. 2009). Although the

ultracentrifugation-based purification method used in this study is consistent with

exosome purification, an involvement of other types of EVs cannot be excluded.

Moreover, exosomes released from mouse DCs express on their surface TNF

superfamily members [TNF, tumor necrosis factor-related apoptosis-inducing

ligand (TRAIL), and Fas ligand (FasL)], which directly bind to their receptors on

NK cells to enhance their cytotoxic activity (Munich et al. 2012). Intradermal

injection of wild-type mice with mouse DC-derived exosomes increased the

amount of NK cells in the draining lymph node, and this required activation of
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the natural killer group 2 member D (NKG2D) receptor on NK cells (Viaud

et al. 2009). A recent study reported that exosomes released from mouse DCs

carry on their surface IL-15Rα, a NKG2D receptor ligand (Viaud et al. 2009).

Upon activation, NKG2D induces activation and proliferation of NK cells (Zhang

et al. 2015).

Exosomes released from macrophages infected with intracellular pathogens,

when exposed to uninfected macrophages, induce secretion of pro-inflammatory

mediators such as TNF-α and RANTES (Bhatnagar et al. 2007; Bhatnagar and

. Activation of the TNF-α pathway

. Pro-inflammatory response
(TNF-α, RANTES, IL-8, MCP-1)

Activation

Enhanced cytotoxic activity

Activation and proliferation

BAT3

NKG2D receptor

TNF/TRAIL/FasL
(TNF superfamily)

TNF superfamily
receptorsIL-15Rα

IL-15Rα receptor

DC

NK cell

Mycoplasma-infected DC

?

Proliferation

B cell

Infected macrophage 
(Mycobacterium tuberculosis, 

Mycobacterium bovis, Salmonella 
Typhimurium,Toxoplasma gondii)

Macrophage Neutrophil

?

Infected macrophage 
(Mycobacterium tuberculosis, 

Mycobacterium bovis)

Intranasal injection

Pro-inflammatory response
(TNF-α, RANTES)

. Pro-inflammatory response
(TNF-α, IL-12)

. Macrophage and neutrophil
recruitment to the lung

?
Pro-inflammatory response (TNF-α)

(Simhadri et al. 2008)

Bronchoalveolar lavage fluid of 
Mycobacterium bovis-infected mice

?

(Obregon et al. 2009) 

(Munich et al. 2012)

(Zhang et al. 2015)

(Quah and O’Neill 2007)

(Bhatnagar et al. 2007; 
Bhatnagar and Schorey 2007)

(Bhatnagar et al. 2007) 

NK cell

?

Macrophage

(Bhatnagar et al. 2007) 

NK cell

Epithelial cell

Fig. 3 Exosomes in innate immunity. Here are summarized main functions of exosomes in innate

immunity. BAT3 HLA-B-associated transcript-3, DC dendritic cell, FasL Fas ligand, IEC intesti-

nal epithelial cell, TNF tumor necrosis factor, TRAIL tumor necrosis factor-related apoptosis-

inducing ligand, NK natural killer, NKG2D natural killer group 2 member D RANTES regulated on
activation, normal T cell expressed and secreted, IL interleukin MCP-1, monocyte chemoattractant

protein-1, ? exosomal content undetermined
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Schorey 2007). Moreover, intranasal injection of mice with exosomes released

from mycobacteria-infected macrophages increases secretion of pro-inflammatory

mediators (TNF-α and IL-12) and neutrophil and macrophage recruitment in the

lung (Bhatnagar et al. 2007). In vitro stimulation of macrophages with exosomes

purified from bronchoalveolar lavage fluid of mycobacteria-infected mice provokes

an increase of TNF-α secretion (Bhatnagar et al. 2007). It has also been shown that

Mycoplasma-infected DCs release exosomes that trigger B-cell proliferation, and

this is independent of any antigen presentation (Quah and O’Neill 2007).

4.2 Exosomes and Acquired Immunity

Increasing evidence supports the involvement of exosomes in adaptive immune

responses and particularly in antigen presentation (Fig. 4). During antigen presen-

tation, antigen-presenting cells (APCs) such as DCs or B lymphocytes present

antigen-MHC complexes to T lymphocytes that are consequently activated. Iden-

tification of MHC classes I and II and T-cell co-stimulatory molecules on exosomes

released from immune cells (Colombo et al. 2014) led scientists to consider

exosomes as new mediators of antigen presentation. Moreover, exosomes have

been shown to contain antigens. Exosomes derived from tumor cell lines

(Napoletano et al. 2009; Wolfers et al. 2001) or ascites from cancer patients

(Andre et al. 2002) carry tumor antigens. Furthermore, macrophages infected

with Mycobacterium tuberculosis or Mycobacterium bovis can release exosomes

containing bacterial antigens (Giri et al. 2010; Giri and Schorey 2008).

Several works highlighted the capacity of exosomes to perform indirect antigen

presentation or cross-presentation (Fig. 4). Antigens conveyed by exosomes are

handled by APCs, which complex antigens with their own MHC molecules to

present these antigen peptides to T lymphocytes. Stimulation of T lymphocytes

with antigen-containing exosomes in the presence of naı̈ve recipient DCs resulted

in activation of T cells (Andre et al. 2002; Napoletano et al. 2009; Wolfers

et al. 2001). Another study reported that injection of antigen- or peptide-bearing

exosomes induced antigen-specific naı̈ve CD4+ T-cell activation in vivo, but

in vitro, these exosomes failed to induce antigen-dependent T-cell stimulation

unless intermediate DCs were present (Théry et al. 2002). Similarly, exosomes

released from mouse mast cells carry antigens and can activate naı̈ve DCs, which in

turn activate T cells in vitro (Skokos et al. 2001). Skokos and colleagues injected

ovalbumin (OVA)-bearing exosomes released from mast cells, recovered DCs, and

showed their ability to activate OVA-specific T-cell hybridomas (Skokos

et al. 2003). Moreover, exosomes released from macrophages infected with Myco-
bacterium tuberculosis orMycobacterium bovis carry bacterial antigens that, in the
presence of intermediate APCs, can activate CD4+ and CD8+ lymphocytes isolated

from mycobacteria-immunosensitized mice (Giri and Schorey 2008).
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Increasing evidence has shown that exosomes can be involved in direct antigen

presentation (Fig. 4). APC-derived exosome-like microvesicles can directly acti-

vate naı̈ve CD8+ T cells in vitro (Hwang et al. 2003). Monocyte-derived DCs

secrete exosomes containing viral antigens which can activate T lymphocytes

in vitro without the presence of DCs (Admyre et al. 2006). Similarly,

OVA-containing exosomes derived from mouse OVA-pulsed DCs can directly

activate OVA-specific CD8+ T-cell hybridomas (Utsugi-Kobukai et al. 2003).

Another study reported that exosomes derived from lipopolysaccharide (LPS)-

treated DCs induced a strong antigen-specific T-cell activation both in vitro and

in vivo (Segura et al. 2005).

Some evidence showed that pre-formed antigen-MHC complexes carried in

exosomes can be directly handled by APCs and presented to T lymphocytes, in a

process named “cross-dressing” (Fig. 4) (Yewdell and Dolan 2011). Montecalvo

et al. showed that DCs can secrete exosomes containing antigen-MHC complexes

(Montecalvo et al. 2008). These exosomes can be internalized, and the antigen-

MHC complexes can be directly presented by DCs to activate CD8+ T lymphocytes

(André et al. 2004). However, these results are debatable since some studies have

shown the disability of exosomes bearing antigen-MHC complexes to perform

“cross-dressing” (Coppieters et al. 2009; Wakim and Bevan 2011).

5 Exosomes in Host-Pathogen Interactions

Exosomes secreted during host responses to infection with several pathogen classes

including fungi, parasites, viruses, and bacteria have been isolated and character-

ized. The content and activity of these exosomes, which can be derived from

infected host cells or from pathogens, have been analyzed.

5.1 Exosomes in Fungal Infection

Only few studies concerning the involvement of exosomes in fungal infection are

available, and these are limited to the analysis of exosomes derived directly from

the fungi but not from fungus-infected cells (Fig. 5). EVs released from the yeast

Cryptococcus neoformans strain induce cytokine secretion by recipient macro-

phages as shown by increased TNF-α and tumor growth factor beta (TGF-β)
secretion, leading to a restricted fungal infection (Oliveira et al. 2010). It should

be noted that the ultracentrifugation-based purification method was used in this

study, thus, an involvement of other EVs rather than exosomes cannot be excluded.

On another hand, exosomes have been proposed to promote fungal virulence.

Indeed, blocking export of exosomes from C. neoformans by knocking down

SEC6 (involved in fusion of exocytic vesicles with the plasma membrane) dimin-

ished virulence of the yeast in vivo (Panepinto et al. 2009). This decreased
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virulence was shown to be due to the inability of the yeast to export crucial

virulence factors such as laccase (Panepinto et al. 2009).

5.2 Exosomes in Parasitic Infection

The involvement of exosomes in parasitic infection, including those released from

infected host cells and from the parasite, has been analyzed (Fig. 6). The first study

of exosomes in parasitic infection is performed by Bhatnagar and colleagues, which

showed that exosomes released from macrophages infected with the intracellular

protozoan Toxoplasma gondii triggered a pro-inflammatory response in naı̈ve

macrophages with an increased secretion of TNF-α (Bhatnagar et al. 2007).

Exosomes have also been studied in the context of Plasmodium infection. Red

cells infected with the malaria-causative parasite Plasmodium falciparum release

exosome-like vesicles and microvesicles that contain parasite components (Mantel

et al. 2013) and particularly the parasitic protein Plasmodium falciparum tyrosine

phosphatase 2 (PfPTP2), which promotes sexual differentiation of the parasite

(Regev-Rudzki et al. 2013). An in vivo study reported that microvesicles isolated

from the plasma of malaria-infected mice induce a pro-inflammatory response in

macrophages in vitro with increased TNF-α secretion (Couper et al. 2010).

Moreover, infection of blood cells with Trypanosoma cruzi provokes the release
of microvesicles which, by forming a complex with the complement C3 convertase

on the parasite surface, protect the parasite against complement-mediated lysis,

resulting in increased parasite survival (Cestari et al. 2012). It was also reported that

T. cruzi release EVs carrying parasitic small RNAs which confer susceptibility to

infection upon uptake by mammalian epithelial cells (Garcia-Silva et al. 2014). In

this study, EVs were isolated using ultracentrifugation method, thus, an involve-

ment of exosomes cannot be excluded. Using the same techniques, it has also been

shown that small EVs (e.g., exosomes) released from T. cruzi display a phosphatase
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Fig. 5 Exosomes in fungal infection. This figure summarizes the known functions of exosomes in

fungal infection. Exosome source and their functional impacts on recipient cells/organisms with

underlying mechanism are presented. TNF tumor necrosis factor, TGF-β tumor growth factor beta,
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activity resulting in increased adhesion and invasion abilities of the parasite in host

cells (Neves et al. 2014).

The involvement of exosomes in the context of Leishmania infection has also

been studied. Exosomes were proposed to mediate the delivery of Leishmania into

macrophages. Indeed, it has been shown that Leishmania spp. release exosomes to
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Fig. 6 Exosomes/extracellular vesicles in parasitic infection. Here are summarized known functions

of exosomes in parasitic infection. Exosome source and their functional impacts on recipient cells/

organisms with underlying mechanism are presented. DC dendritic cell, HLA human leukocyte

antigen, IFN interferon, Ig immunoglobulin, i.v. intravenous, PBMC peripheral blood mononuclear

cells, PfPTP2 Plasmodium falciparum tyrosine phosphatase 2, ? exosomal content undetermined
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deliver proteins to recipient macrophages, inducing a pro-inflammatory response

(Silverman et al. 2010b). Similarly, Leishmania-derived exosomes induce secretion

of pro-inflammatory cytokines by recipient monocytes (Silverman et al. 2010a).

The HSP100 protein has a crucial role in the packaging of Leishmania’s proteins
into exosomes since its absence resulted in a modification of exosome content and

an impaired pro-inflammatory activity in recipient cells (Silverman et al. 2010b).

L. major- and L. donovani-derived exosomes have also been shown to suppress the

immune response in vivo since mice pretreated with these exosomes prior to

infection showed higher parasite burden compared with untreated mice (Silverman

et al. 2010b). Proteomic analyses revealed that exosomes released from Leishmania
mexicana-infected macrophages contain GP63 protein, an essential virulence factor

(Hassani and Olivier 2013).

5.3 Exosomes in Viral Infection

Exosomes in the context of viral infection have been extensively studied (Fig. 7).

The hypothesis of an involvement of exosomes in viral infection resulted from

several observations. Numerous viruses such as hepatitis B, hepatitis C, and

herpesviruses use the ESCRT machinery (Hurley 2010), to leave the infected host

cell (Chen and Lamb 2008; Mori et al. 2008). Moreover, Fang and colleagues

reported that human immunodeficiency virus (HIV) budding seems to result from a

similar pathway to the exosome biogenesis pathway (Fang et al. 2007). This was

later supported by another study showing the involvement of TSG101 and ALIX

proteins in virus budding, two major proteins acting in exosome biogenesis (Usami

et al. 2009).

A role for exosomes released from infected host cells in viral spread and in

immunoregulation, which result in an increased infectivity of viruses, has been

raised. For instance, exosomes in the context of HIV infection and diffusion has

been extensively studied. Several groups reported that CD63 and CD81

tetraspanins, enriched in exosomes, participate in viral budding, viral spread, and

in HIV infectivity (Grigorov et al. 2009; Izquierdo-Useros et al. 2009; Jolly and

Sattentau 2007; Sato et al. 2008). Particularly, Grigorov and colleagues showed that

HIV-1 structural Gag and Env proteins interact with the CD81 tetraspanin in

tetraspanin-enriched microdomains on T-cell surface (Grigorov et al. 2009). Fur-

thermore, CD81 expression is crucial for viral replication since shRNA-mediated

inhibition of CD81 resulted in an impaired HIV-1 release (Grigorov et al. 2009). It

has also been shown that the CD63 tetraspanin is eliminated from the plasma

membrane of HIV-1-infected and virion-producing T cells and is embedded on

the membrane of released virions (Sato et al. 2008). Interestingly, virion-

incorporated CD63 was shown to inhibit HIV-1 infection (Sato et al. 2008).

Exosomes have also been shown to convey HIV-1 proteins involved in viral

replication cycle such as GAG (Fang et al. 2007) and negative regulatory factor

(NEF; (de Carvalho et al. 2014; Lenassi et al. 2010). NEF-containing exosomes
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Fig. 7 Exosomes in viral infection. This figure summarizes the known functions of exosomes in

viral infection. Exosome source and their functional impacts on recipient cells/organisms with

underlying mechanism are presented. Ag antigen, CMV cytomegalovirus, DC dendritic cell, EBV
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induce T-cell apoptosis in vitro, a key feature of HIV infection (Lenassi et al. 2010).

Narayanan and colleagues showed that the HIV-1 RNA named transactivating

response (TAR) is released into exosomes from infected host cells in vitro and

from sera of HIV-infected patients (Narayanan et al. 2013). Moreover, pretreatment

of host cells with exosomes derived from HIV-infected cells increased susceptibil-

ity of treated cells to HIV infection (Narayanan et al. 2013).

Exosomes have also been studied in the context of infection with other viruses.

The latent membrane protein 1 (LMP1), an immunosuppressive protein important

in Epstein-Barr virus (EBV) infection (Dukers et al. 2000), was found in exosomes

released from EBV-infected B cells, suggesting that exosomes can mediate the

immunosuppressive effect of LMP1 during EBV infection (Verweij et al. 2011).

Exosomes released from EBV-infected cells also contain the dUTPase enzyme

which triggers pro-inflammatory and antiviral responses in recipient DCs and

peripheral blood mononuclear cells (PBMCs) (Ariza et al. 2013). Exosomes have

also been shown to mediate a functional delivery of viral miRNAs. Indeed,

exosomes released from EBV-infected B cells secrete exosomes containing EBV

miRNAs which can induce inhibition of known EBV target genes in recipient cells

such as C-X-C motif chemokine 11 (CXCL11), a cytokine involved in antiviral

responses (Pegtel et al. 2010). Moreover, Jaworski et al. reported the incorporation

of the human T-cell leukemia virus type 1 (HTLV-1) TAX protein which is crucial

for viral replication (Jaworski et al. 2014). Hepatitis C virus (HCV)-infected cells

secrete exosomes containing viral RNAs which can be transferred to recipient DCs,

inducing DC activation and secretion of interferon-α (IFN-α) (Dreux et al. 2012). It
was also reported that the HCV envelop glycoprotein interacts with the CD81 cell

membrane protein and that this complex is released within exosomes (Masciopinto

et al. 2004). HCV structural proteins have also been identified in exosomes purified

from HCV-infected patients’ plasma (Masciopinto et al. 2004).

5.4 Exosomes in Bacterial Infection

The involvement of exosomes during bacterial infection has been largely studied

(Fig. 8). Particularly, the role of exosomes has been extensively analyzed in the

context of mycobacterial infection. Exosomes derived fromMycobacterium avium-
infected macrophages trigger a pro-inflammatory response in naı̈ve recipient mac-

rophages (Bhatnagar and Schorey 2007). Using antibody-based techniques, these

exosomes were shown to contain glycopeptidolipids, a major mycobacterial cell

wall constituent (Bhatnagar and Schorey 2007). Wang and colleagues reported that

exosomes released from Mycobacterium avium subspecies tuberculosis-infected
macrophages induce an increased release of the pro-inflammatory cytokines IFN-γ
and TNF-α in naı̈ve recipient macrophages (Wang et al. 2014). Similarly, Myco-
bacterium tuberculosis- and Mycobacterium bovis-infected macrophages release

exosomes inducing a pro-inflammatory response in naı̈ve recipient macrophages

(Bhatnagar et al. 2007). The authors highlighted the presence of a mycobacterial
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Fig. 8 Exosomes in bacterial infection. This figure summarizes the known functions of exosomes

in bacterial infection. Exosome source and their functional impacts on recipient cells/organisms

with underlying mechanism are presented. DC dendritic cell, IEC intestinal epithelial cell, LAM
lipoarabinomannan, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, MyD88
myeloid differentiation primary response protein 88, NF-κB nuclear factor-kappa B, PAMP
pathogen-associated molecular pattern, TLR Toll-like receptor, ? exosomal content undetermined
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lipoprotein mediating this pro-inflammatory message through a Toll-like receptor

(TLR)/myeloid differentiation primary response protein 88 (MyD88)-dependent

pathway (Bhatnagar and Schorey 2007). These results were confirmed in vivo

since exosomes purified from bronchoalveolar lavage fluid of Mycobacterium
bovis-infected mice contain the mycobacterial components lipoarabinomannan

and the 19-kDa lipoprotein and can trigger a pro-inflammatory response in vitro

(Bhatnagar et al. 2007). Similarly, exosomes released from Mycobacterium bovis-
or Mycobacterium tuberculosis-infected macrophages in vitro can, when intrana-

sally injected into mice, induce an increased TNF-α and IL-12 secretion as well as

neutrophil and macrophage recruitment in the lung (Bhatnagar et al. 2007). More-

over, exosomes released from Mycobacterium tuberculosis-infected macrophages

can partially inhibit the ability of naı̈ve macrophages to be activated by IFN-γ
(Singh et al. 2011), which is crucial in host response to mycobacterial infection

since activated macrophages control intracellular bacterial replication (Flynn

et al. 1993).

The involvement of exosomes in infection with other bacteria has been also

analyzed. It was shown that exosomes released from Salmonella Typhimurium-

infected macrophages induced a pro-inflammatory response in naı̈ve recipient

macrophages (Bhatnagar et al. 2007). The authors showed that the released

exosomes contain bacterial LPS (Bhatnagar et al. 2007), which was responsible

for this pro-inflammatory response since no inflammatory response was observed in

tlr4�/� macrophages depleted for the LPS receptor TLR4 (Bhatnagar et al. 2007).

Furthermore, Mycoplasma-infected cells release exosomes that induced increased

IFN-γ secretion in recipient B cells (Yang et al. 2012). Exosomes have also been

shown to convey bacterial toxins. In fact, Abrami et al. reported that upon treatment

of epithelial cells with the two components of the lethal anthrax toxin, protective

antigen (PA) and lethal factor (LF), PA induced the formation of a channel allowing

the translocation of LF in the cytosol and in ILVs (Abrami et al. 2013). LF persists

in ILVs and is then released in exosomes that can be internalized and consequently

delivered in recipient epithelial cells (Abrami et al. 2013).

Our group recently deciphered a previously unknown function of exosomes in

the interaction between host cells and Crohn’s disease (CD)-associated adherent-

invasive Escherichia coli (AIEC). Increased abundance of invasive E. coli strains in
intestinal mucosa of CD patients comparatively to control subjects have been

reported (Baumgart et al. 2007; Conte et al. 2006; Darfeuille-Michaud

et al. 1998; Martin et al. 2004; Martinez-Medina et al. 2009; Neut et al. 2002;

Sasaki et al. 2007; Swidsinski et al. 2002), and these strains were later named AIEC

(Darfeuille-Michaud et al. 2004). We showed that AIEC infection induced the

release of exosomes by human intestinal epithelial cells and macrophages (Carrière

et al. 2016). Characterization of the exosomes released from AIEC-infected cells

showed that they are able to trigger a pro-inflammatory response in naı̈ve intestinal

epithelial and macrophagic cells with activation of nuclear factor-kappa B (NF-κB)
and mitogen-activated protein kinase (MAPK) pathways and increased

pro-inflammatory cytokine secretion (Carrière et al. 2016). In addition, stimulation

of human intestinal epithelial cells and macrophages with exosomes released from
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AIEC-infected cells increased bacterial intracellular replication compared with

stimulation with exosomes secreted by uninfected cells (Carrière et al. 2016). Our

findings suggest that exosomes are involved in the activation of host innate immune

responses upon AIEC infection and in bacterial intracellular replication, two key

features of host-AIEC interaction.

6 Exosomes in Disease States: Applications in Diagnostic,

Vaccine, and Therapeutic Approaches

6.1 Exosomes: Promising Diagnostic Tools

Exosomes have been successfully purified from numerous body fluids such as

blood, urine, bronchoalveolar lavage fluid, and saliva (Admyre et al. 2003; Caby

et al. 2005; Pisitkun et al. 2004). Due to their easy recovery and their rich content,

exosomes have been proposed as a new diagnostic tool in numerous diseases. Thus,

the exosomal Fetuin-A, a protein which is synthesized in the liver and secreted into

the blood, has been reported as a novel urinary biomarker for detecting acute kidney

injury (Zhou et al. 2006). Especially, the content of tumor-derived exosomes has

been extensively analyzed and proposed to diagnose cancers. Szajnik et al. reported

that the plasma collected from ovarian cancer patients contains higher levels of

exosomal proteins compared to control individuals, and that ovarian cancer patients

can be distinguished from healthy individuals by the presence of TGF-β1 and

MAGE3/6 in plasma-derived exosomes (Szajnik et al. 2013). Some new proteins

previously undescribed have been identified in exosomes isolated from malignant

pleural effusions of patients suffering from mesothelium, ovarian, breast and

non-small cell lung cancers (Bard et al. 2004). Recently, Melo et al. showed
using mass spectrometry analysis that exosomes purified from serum of pancreas

cancer patients are enriched in glypican-1 (GPC1), a cell surface proteoglycan

(Melo et al. 2015). Using flow cytometry, the authors observed that GPC1+

exosomes enabled distinction between cancer patients from healthy individuals,

even in early stages of the disease (Melo et al. 2015). Furthermore, another group

developed a powerful multiplex detection chip for blood-based diagnosis of ovarian

cancer by multiplexed measurement of three exosomal tumor markers CA-125,

EpCAM, and CD24 (Zhao et al. 2015).

Exosomal miRNAs have also been proposed as diagnostic biomarkers since

altered miRNA expressions have been reported in numerous diseases

(Hu et al. 2012). Indeed, modified miRNA and long noncoding RNA profiles

have been identified in exosomes isolated from peritoneum lavage fluid and plasma

of patients suffering from gastric cancer (Li et al. 2015; Tokuhisa et al. 2015; Zhou

et al. 2015; Z€oller 2016). Modified miRNA profiles have also been identified in

circulating exosomes derived from patients suffering from glioblastoma

(Rabinowits et al. 2009), lung cancer (Rabinowits et al. 2009), and ovarian cancer
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(Taylor and Gercel-Taylor 2008). The RNA content of exosomes isolated from the

blood of patients with dental and neurologic disorders has been analyzed

(De Smaele et al. 2010; Miranda et al. 2010; Palanisamy et al. 2010; Rabinowits

et al. 2009), and the potential use of exosomal miRNAs as powerful diagnostic

biomarkers for Alzheimer’s disease has been raised (Van Giau and An 2016).

Finally, exosomes could be used as diagnostic tools in infectious diseases. The

amount of exosomes in the serum of Mycobacterium bovis-infected mice

increased proportionally to the bacterial burden (Singh et al. 2012). Moreover,

Mycobacterium tuberculosis-infected cells secrete exosomes carrying mycobac-

terial proteins, suggesting the use of exosomes to diagnose tuberculosis (Kruh-

Garcia et al. 2014).

6.2 Exosome-Based Vaccination: An Encouraging Approach

With their immunoregulatory property, exosomes have been proposed and tested as

vaccines in cancer and in infectious diseases in order to mobilize the immune

system against tumor cells or pathogens.

Dai and colleagues genetically modified human colon adenocarcinoma cells

with a recombinant adenovirus encoding human IL-18 and showed that

exosomes derived from these cells exhibited more potent capability to induce

antitumor immunity compared with exosomes derived from nongenetically mod-

ified cells, suggesting that modification of exosomes could be an approach to

develop exosome-based tumor vaccines (Dai et al. 2006). A phase I clinical trial

reported that ascite-derived exosomes in combination with the granulocyte-

macrophage colony-stimulating factor (GM-CSF) used as an adjuvant are safe,

well tolerated, and induce a specific antitumor immunity in patients with colo-

rectal cancer (Dai et al. 2008). Several studies reported that murine DC-derived

exosomes are able to induce antigen-specific CD4+ and CD8+ T-cell responses

both in vitro and in vivo and to enhance antitumor immunity in vivo (Damo

et al. 2015; Luketic et al. 2007; Näslund et al. 2013a, b; Segura et al. 2005; Théry

et al. 2002; Zitvogel et al. 1998). However, several phase I clinical trials using

exosomes released from antigen-loaded DCs from cancer patients for treatment

of non-small cell lung cancer and melanoma showed that the use of exosomes in

vaccination is safe but does not exhibit a significant impact on tumor growth or in

cancer regression (Escudier et al. 2005; Morse et al. 2005; Viaud et al. 2010).

Nevertheless, a recent clinical trial revealed a modification of the protein and

mRNA composition of exosomes released in glioma patients’ plasma after

receiving antitumor vaccines (Muller et al. 2015). This modification has been

shown to be correlated with immunological and clinical responses as well as

survival, providing a promising approach to evaluate glioma patients’ response
to antitumor vaccination (Muller et al. 2015).
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Regarding the use of exosomes as vaccines in infectious conditions, it was

shown that intravenous injection of exosomes released from DCs infected with

the parasite Leishmania major conferred vaccinated mice an effective protection

against infection, as shown by a decrease in the number of infected cells in draining

nymph lodes (Schnitzer et al. 2010). Moreover, exosomes released from macro-

phages infected with Mycobacterium bovis or Mycobacterium tuberculosis can

activate antigen-specific CD4+ and CD8+ T cells isolated from mycobacteria-

immunosensitized mice and promote activation and maturation of DCs (Giri and

Schorey 2008). Macrophages treated with Mycobacterium tuberculosis proteins

released exosomes that, upon intranasal injection into mice, activated DCs and CD4
+ and CD8+ T cells isolated from Mycobacterium tuberculosis-infected mice (Giri

et al. 2010). Furthermore, DCs treated with the highly immunogenic diphtheria

toxoid (DT) protein secrete exosomes that, once injected intraperitoneally in mice,

stimulate a specific DT IgG response (Colino and Snapper 2006). Exosomes have

also been suggested to be used as vaccines in parasitosis. Indeed, upon intravenous

injection of exosomes released from DCs pulsed with Toxoplasma gondii antigens,
anti-Toxoplasma gondii IgM antibodies were detected in the serum of mice (Aline

et al. 2004). Moreover, mice were subcutaneously vaccinated before pregnancy

with exosomes released from DCs pulsed with Toxoplasma gondii-derived antigens
and infected with the parasite during pregnancy (Beauvillain et al. 2009). The

results showed that vaccination resulted in effective protection of pups against

congenital infection (Beauvillain et al. 2009). Another study showed that infection

of epithelial cells with the protozoan parasite Cryptosporidium parvum results in an

increased luminal secretion of exosomes (Hu et al. 2013). These exosomes were

shown to contain antimicrobial peptides such as cathelicidin-37 and beta-defensin-

2 that affect survival of the parasite (Hu et al. 2013). Recently, using proteomic

analysis, the parasite Schistosoma mansoni has been shown to secrete exosomes

carrying potential virulence factors as well as known vaccine candidates (Sotillo

et al. 2015). The use of exosomes as vaccine in Cryptococcus infection has been

proposed since extracellular vesicles of the Cryptococcus neoformans yeast strain
induce activation of recipient macrophages, improving their abilities to perform

phagocytosis and to secrete microbicidal components (Oliveira et al. 2010). Finally,

exosomes can constitute a defense mechanism in viral infection. Indeed, Khatua

and colleagues identified the secretion in exosomes of the viral cytidine deaminase

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G

(APOBEC3G) (Khatua et al. 2009), a protein known to control the replication of

several enteroviruses (Chiu and Greene 2008). The authors reported that

APOBEC3G-containing exosomes confer recipient epithelial cells protection

against HIV-1 infection (Khatua et al. 2009).
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6.3 Exosomes: Promising New Conveyors of Therapeutic
Molecules

Cells use exosomes as cargos to deliver proteins and genetic material to neighbor-

ing or distant recipient cells. In addition to the use of antigen-pulsed DC-derived

exosomes to induce antitumor immune responses (Damo et al. 2015; Escudier

et al. 2005; Luketic et al. 2007; Morse et al. 2005; Näslund et al. 2013a, b; Segura

et al. 2005; Théry et al. 2002; Viaud et al. 2010; Zitvogel et al. 1998), different

strategies for delivering therapeutic molecules using exosomes have been proposed

and developed. When being directly incubated with exosomes, curcumin, an anti-

inflammatory agent, and antitumor agents such as doxorubicin and paclitaxel have

been successfully incorporated into exosomes and have been shown to be effective

in vitro and in vivo (Sun et al. 2010; Tian et al. 2014; Yang et al. 2015; Zhuang

et al. 2011). Indeed, in a mouse model of sepsis, intraperitoneal injection of

curcumin-containing exosomes resulted in the protection of mice against a

LPS-induced septic shock (Sun et al. 2010). Similarly, in mouse models of brain

inflammation, intranasal administration of curcumin-carrying exosomes led to the

uptake of exosomes by microglia cells and consequently to an effective curcumin-

mediated anti-inflammatory effect (Zhuang et al. 2011). Moreover, administration

of doxorubicin or paclitaxel-containing exosomes to tumor-bearing mice or zebra

fishes induced antitumor effects (Tian et al. 2014; Yang et al. 2015). As exosomes

can convey genetic material, they have been proposed for the delivery of exogenous

RNA in disease states. Using electroporation, a siRNA against gluceraldehyde-3

phosphate dehydrogenase was incorporated into DC-derived exosomes and effec-

tively delivered in vivo, leading to the loss of expression of its target gene (Alvarez-

Erviti et al. 2011). Some years later, Ohno and colleagues used this technique to

deliver miRNAs in breast cancer (Ohno et al. 2013). Breast cancer is associated

with an increased expression of the epidermal growth factor receptor (EGFR) in

cancer cells (Woodburn 1999). The authors first transfected an EGF-encoding

plasmid into human embryonic kidney HEK293 cells and purified secreted

exosomes expressing EGF on their surface. By transfecting the antitumor miRNA

let-7a in the EGF-expressing exosomes, they were then successful to deliver let-7a

miRNA specifically to EGFR-expressing xenograft breast cancer tissue in immu-

nodeficient rag2�/� mice (Ohno et al. 2013).

Another strategy based on treating donor cells with drugs has been developed in

order to incorporate drugs inside exosomes. This approach enabled the incorpora-

tion of antitumor agents such as paclitaxel, etoposide, or carboplatin in HepG2

hepatoma cell line-derived exosomes (Lv et al. 2012). Furthermore, in vitro treat-

ment of NK cells with these exosomes led to an increase of their cytotoxic activity

toward cancer cells (Lv et al. 2012).

Finally, two groups have transfected macrophages with plasmids encoding

therapeutic proteins such as catalase or glial cell line-derived neurotropic factor

(Haney et al. 2013; Zhao et al. 2014). By injecting these macrophages to a mouse

model of Parkinson’s disease, the authors observed the release of exosomes

62 J. Carrière et al.



carrying modified genetic material and an improvement of motor functions with

disease-associated neurodegeneration and neuroinflammation (Haney et al. 2013;

Zhao et al. 2014).

7 Conclusion

Although exosomes have become the focus of exponentially growing interest since

their first description about 30 years ago, our knowledge of these nanovesicles has

only just begun. Working with exosomes remains challenging because of their

small size and the fact that other extracellular vesicles (i.e., microvesicles, micro-

particles, etc.) or biofluid components can be co-extracted with exosomes.

Although numerous studies have reported an important role of exosomes in immu-

noregulation, most of the time, the exosomal component responsible for the func-

tional impact on recipient cells has not been identified. This might be due to the

difficulty to identify a relevant candidate among the numerous exosomal proteins,

nucleic acids, and lipids. Consequently, the mechanisms underlying the exosome-

mediated immune responses observed in recipient cells (i.e., activated or inhibited

signaling pathways, etc.) are not always elucidated. Moreover, the role of exosomes

as an immunoregulator has been shown only in pathological states, and their

functions in homeostasis remain to be elucidated. Finally, although only few

experiments and clinical trials have been performed to date, the accessibility of

exosomes in various body fluids, the proved safety and feasibility of the use of

exosomes in clinical experiments, and the first promising results suggest that

exosomes might become a future powerful diagnostic, vaccine, and drug delivery

tool for numerous diseases.
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Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immuno-

logically active exosomes. J Immunol Baltim Md 1950(166):868–876

Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mécheri S
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