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Cardiac Response to Oxidative Stress
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Abstract The heart works without resting, requiring enormous amounts of energy

to continuously pump blood throughout the body. Because of its considerable

energy requirements, the heart is vulnerable to oxidative stress caused by the

generation of endogenous reactive oxygen species (ROS). Therefore, the heart

has effective regulatory and adaptive mechanisms to protect against oxidative

stress. Inherited or acquired mitochondrial respiratory chain dysfunction disrupts

energy metabolism and causes excessive ROS production and oxidative stress. The

physiological cardiac response to oxidative stress can strengthen the heart, but

pathological cardiac responses or altered regulatory mechanisms can cause heart

disease. Therefore, mitochondria-targeted antioxidants have been tested and some

are used clinically. In this review, we briefly discuss the role of mitochondrial DNA

mutations, mitochondrial dysfunction, and ROS generation in the development of

heart disease and recent developments in mitochondria-targeted antioxidants for the

treatment of heart disease.
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1 Introduction

Approximately 30 kg adenosine triphosphate (ATP) is generated and used by the

human heart each day (Dorn 2013). Because the heart muscle has ATP reserves for

only 20–40 strokes, it requires a highly efficient energy production system to enable

continuous pumping of the blood throughout the body. Mitochondrial oxidative

phosphorylation is capable of producing>30 ATP molecules per glucose molecule,

providing the heart with >95% of the required ATP. To meet the energy demands

of the heart, mitochondria comprise more than 30% of its mass (Page and

McCallister 1973). Oxidative phosphorylation also produces various reactive oxy-

gen species (ROS) and reactive nitrogen species (RNS), including superoxide

radical anions (O2
∙�), hydrogen peroxide (H2O2), hydroxyl radicals (OH

∙+OH�),
and peroxynitrite (ONOO�) (Sovari et al. 2012). At physiological concentrations,
ROS and RNS function as molecular messengers to modulate biological activities

such as cell growth, anti-inflammatory responses, cell differentiation, and hormone

synthesis. However, when produced in excess, ROS rapidly oxidize biomolecules

(e.g., DNA, proteins, lipids), resulting in cellular dysfunction and cell death

(Fig. 1). Therefore, effective systems for producing and clearing ROS are necessary

for cell survival. For this purpose, various endogenous antioxidants including

manganese or copper and zinc superoxide dismutase (MnSOD or Cu/ZnSOD),

catalase, glutathione peroxidase, and peroxiredoxin existed in mitochondria or

cell. An imbalance between ROS production and clearance leads to oxidative stress,

which can cause a wide range of cardiovascular diseases including hypertension

(de Champlain et al. 2004), coronary artery disease (Vichova and Motovska 2013),

hypertrophy (Takimoto and Kass 2007), cardiomyopathy, and heart failure (Seddon

et al. 2007). In this context, it is important to understand the role of ROS in both

102 H.K. Kim et al.



normal physiological processes and disease states and the cardiac response to ROS

in ischemia/reperfusion injury, diabetes, hypertrophy, and endothelial shear stress.

2 Oxidative Stress and Mitochondrial Dysfunction

The cause-and-effect relationship between mitochondrial dysfunction and oxidative

stress has not been completely elucidated. Oxidative stress induces mitochondrial

dysfunction and apoptosis. As a result, the damaged mitochondrial electron transfer

chain (ETC) complexes produce even more ROS, further increasing oxidative stress

in the mitochondrion itself, as well as other subcellular organelles such as the

endoplasmic reticulum (ER), sarcoplasmic reticulum, nucleus, and plasma mem-

brane. The primary sources of mitochondrial ROS production are complex I and

complex III; however, recent studies have implicated complexes II and IV in O2
•�

production in disease conditions (Chen and Zweier 2014). Specific cellular mech-

anisms underlying mitochondrial ROS generation are well explained in the excel-

lent review by Chen and Zweier (2014).

A unique feature of mitochondria is that these organelles contain their own

DNA. Human mitochondrial DNA (mtDNA) is a circular, covalently closed,

double-stranded DNA molecule that contains 37 genes encoding 13 ETC compo-

nent proteins, 2 ribosomal RNAs, and 22 transfer RNAs (Anderson et al. 1982).

Recently, a fourteenth mitochondrial-derived peptide (humanin) was identified in

Fig. 1 Generation, clearance, and role of reactive oxygen species (ROS) and reactive nitrogen

species (RNS). Sources of intracellular ROS generation are depicted in gray boxes; ROS/RNS are

shown in red and antioxidants in blue. ROS/RNS function as signaling molecules that regulate

physiological functions (lower box). Oxidative damage occurs when ROS/RNS production

exceeds the cell’s antioxidant capacity (upper box). ETC electron transport chain, SOD superoxide

dismutase, GSSG oxidized glutathione, GSH, reduced glutathione
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three different groups (Guo et al. 2003; Hashimoto et al. 2001; Ikonen et al. 2003).

Humanin is encoded in the mitochondrial genome by the 16S ribosomal RNA gene.

It has neuroprotective and cytoprotective roles and IGFBP-3 binding ability, which

is involved in Alzheimer’s disease, apoptosis regulation, and IGF-1 signaling (Guo

et al. 2003; Hashimoto et al. 2001; Ikonen et al. 2003). Further detailed information

of humanin is well described in the review of Cohen group (Yen et al. 2013).

Since mtDNA is located near the ETC, which is the major site of ROS gener-

ation, it is easily damaged, resulting in mutations or degradation (Shokolenko

et al. 2009). Previously, it was thought that mtDNA lacks a DNA repair system,

increasing its susceptibility to oxidative stress (Ames et al. 1995; Cadenas and

Davies 2000). However, recent studies have described a mitochondrial DNA repair

system similar to that of nuclear DNA, including base excision repair, single- and

double-strand break repair, and mismatch repair (for review see (Alexeyev

et al. 2013; Berneburg et al. 2006)). Mutations in mtDNA have been associated

with a number of conditions including seizures, ataxia, cortical blindness, dystonia,

diabetes, cardiomyopathy, hearing loss, kidney failure, and various cancers

(DiMauro and Schon 2001; Lu et al. 2009; Wallace 1997). These findings suggest

that mtDNA mutations impair mitochondrial function, thereby causing tissue-

specific dysfunction or disease. This hypothesis has been supported by studies of

mitochondrial dysfunction in mtDNA mutant cell lines (Ishikawa et al. 2008) and

animal models (Ahlqvist et al. 2012; Dai et al. 2010; Hashizume et al. 2012; Hiona

et al. 2010; Kolesar et al. 2014; Kujoth et al. 2005; Logan et al. 2014; Lu et al. 2009;

Mito et al. 2013; Safdar et al. 2011; Trifunovic et al. 2004; Vermulst et al. 2008;

Yamada et al. 2012).

Several research groups have generated mitochondrial DNA polymerase gamma

mutant (PolgD257A) mice (Kujoth et al. 2005; Trifunovic et al. 2004). These mice

show a high frequency of mtDNA mutations in multiple tissues and a premature

aging phenotype, with decreased oxidative phosphorylation and increased oxidative

stress (Kujoth et al. 2005; Logan et al. 2014; Trifunovic et al. 2004; Trifunovic

et al. 2005; Vermulst et al. 2008). The PolgD257A mice also exhibit sarcopenia,

muscle weakness, cardiac hypertrophy, and dilatation, which are associated with

significant defects in ETC complex I, III, and IV assembly (Dai et al. 2010; Hiona

et al. 2010; Kolesar et al. 2014; Yamada et al. 2012). Similarly, a recently generated

specific mtDNA mutation in the gene encoding NADH dehydrogenase subunit

6 (ND6) resulted in deficient complex I activity and ROS overproduction in a

mouse tumor cell line, enhancing its metastatic potential (Ishikawa et al. 2008).

Mice with the ND6 G13997A mutation also showed deficient complex I activity

and excessive ROS production in addition to lactic acidosis, diabetes, multiple

tissue defects, and an elevated risk of lymphoma (Hashizume et al. 2012). Muta-

tions in genes encoding proteins involved in mtDNA replication (e.g., mitochon-

drial transcription factor A (Wang et al. 1999), mitochondrial helicase TWINKLE

(Milenkovic et al. 2013)) or the regulation of oxidative phosphorylation (e.g.,

adenine nucleotide transporter 1 (Narula et al. 2011)) result in the depletion of

mtDNA, subsequent mitochondrial dysfunction, and cardiac diseases including

hypertrophy, dilated cardiomyopathy, and conduction blocks (Kujoth et al. 2007).
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Conversely, overexpression of TWINKLE attenuates cardiac fibrosis and heart

failure in mice with pressure overload hypertrophy (Tanaka et al. 2013). These

results support the idea that oxidative stress increases mtDNA mutations and

damages ETC proteins, thereby impairing oxidative phosphorylation and ultimately

leading to cell death and tissue failure (Fig. 2).

3 Mitochondrial Quality Control System: Mitophagy

and ROS

In addition to endogenous antioxidants, mitophagy acts as a mitochondrial quality

control system to protect the cell. Mitophagy involves the autophagosomal degra-

dation of abnormal mitochondria containing damaged components or producing

excessive ROS. Pathological heart conditions including I/R injury, diabetic cardio-

myopathy, and cardiac hypertrophy cause oxidative damage to cardiac mitochon-

dria, leading to ROS overproduction, activation of inflammatory signals, and local

tissue injury via NF-kappa B and NOD-like receptor family 3 (NLRP3) signaling

(Gottlieb et al. 2011). In addition, mtDNA released from damaged mitochondria

activates the NLRP3 inflammasome. By decreasing the number of damaged mito-

chondria, mitophagy decreases ROS production and inflammation to prevent fur-

ther cardiac damage. Conversely, impairment of autophagy increases the number of

Fig. 2 Oxidative stress-induced mtDNA mutations result in mitochondrial dysfunction and tissue

damage. Production of ROS/RNS that exceeds the cell’s antioxidant capacity increases intracel-

lular oxidative stress. The resulting damage to ETC proteins and mtDNA results in impaired

oxidative phosphorylation and ROS overproduction, inducing apoptosis and causing tissue dam-

age. ETC electron transport chain, RNS reactive nitrogen species, ROS reactive oxygen species
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damaged mitochondria in cardiomyocytes, exacerbating inflammation, oxidative

stress, and heart damage (Gottlieb et al. 2011). Autophagy is induced by starvation

through AMPK signaling, and ROS play an important role in autophagy and

mitophagy (Chen et al. 2009; Gottlieb and Carreira 2010; Korolchuk et al. 2010;

Scherz-Shouval et al. 2007). A recent study by Scherz-Shouval demonstrated that

starvation stimulates the formation of hydroperoxide, which is essential for

autophagy, whereas antioxidant treatment prevents autophagosome formation and

protein degradation (Scherz-Shouval et al. 2007). Excessive mitophagy can impair

cardiac function; therefore, mitophagy must be carefully regulated to maintain

normal heart function (Tang et al. 2015).

4 Non-mitochondrial Cytosolic ROS Sources

In addition to mitochondria, sources of ROS generation include NADPH oxidase

(Nox) family (Griendling et al. 2000), ER (Dickinson and Chang 2011; Gross

et al. 2006), nitric oxide synthase (NOS) (Landmesser et al. 2003; Umar and van

der Laarse 2010; Zhang et al. 2012), xanthine oxidase (Kelley et al. 2010), and

peroxisomes (Antonenkov et al. 2010), depending on the tissue and cell type. These

intracellular ROS sources are closely linked, and the cumulative ROS levels

modulate heart function under physiological and pathological conditions.

4.1 Cardiac NADPH Oxidase

As one of the major cellular sources of ROS, cardiac Nox plays an important role in

a wide range of physiological and pathological processes including hypoxic adap-

tation, hypertrophy, apoptosis, and heart failure (Brandes et al. 2010). In particular,

the isoforms Nox2 and Nox4 appear to have major roles within the myocardium,

with Nox2 producing superoxide and Nox4 generating only hydrogen peroxide

(Zhang et al. 2012). Nox2- and Nox4-derived O2 ·
� and H2O2 are involved in the

growth response of vascular smooth muscle cells, cardiac cells, and fibroblasts;

JNK/p38 MAPK and Akt signaling; and the expression of cardiovascular-related

genes involved in hypertrophy and development of atherosclerosis and hyperten-

sion (Griendling et al. 2000).

4.2 Endoplasmic Reticulum: Ero1p and Nox4

The ER also produces ROS through Ero1p, an enzyme that transfers electrons from

thiol substrates to molecular oxygen (Gross et al. 2006). In addition, Nox4 gener-

ates H2O2 from O2 ·
� in the ER by two-electron reduction (Chen et al. 2008). ROS
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production and oxidative stress are closely related to ER stress and the unfolded

protein response, which regulates intracellular signaling transduction and cell death

(Santos et al. 2009). A recent study suggested that under ER stress, ROS production

is increased by the Nox family of enzymes, which may contribute to the develop-

ment of hypertension and other cardiovascular diseases (Santos et al. 2014). In

cardiomyocytes, Nox4 mediates autophagy in response to energy stress by stimu-

lating the protein kinase RNA-activated-like ER kinase signaling pathway

(Sciarretta et al. 2013).

4.3 Nitric Oxide Synthases

Nitric oxide synthases produce NO, a highly reactive signaling molecule, through

oxidative conversion of L-arginine to L-citrulline. In the heart, neuronal NOS and

endothelial NOS constitutively produce NO in distinct subcellular locations,

whereas inducible NOS is upregulated under certain pathological conditions such

as I/R injury (Umar and van der Laarse 2010). Tetrahydrobiopterin is an essential

cofactor for NO production by all three NOS isoforms. In the absence of tetrahydro-

biopterin, NOS functions in an uncoupled state, producing ROS instead of NO. The

lower NO bioavailability and increased oxidative stress in the heart lead to patho-

logical cardiac remodeling (hypertrophy, fibrosis) and heart failure (Landmesser

et al. 2003; Umar and van der Laarse 2010; Zhang et al. 2012).

4.4 Xanthine Oxidase

Another major source of ROS production in the heart is xanthine oxidase, which is

converted from xanthine dehydrogenase by the oxidation of sulfhydryl residues or

by limited proteolysis. Xanthine oxidase produces both O2•
� and H2O2 through the

oxidative hydroxylation of purine substrates. Under inflammatory conditions, xan-

thine oxidase levels are increased, resulting in excess ROS formation and oxidative

damage in the cardiovasculature. Accordingly, xanthine oxidase inhibition attenu-

ates oxidative damage in heart disease (Kelley et al. 2010; Kumar et al. 2011;

Zhang et al. 2012).

4.5 Peroxisomes

Peroxisomes are multifunctional organelles that play an important role in

maintaining oxidative balance. Peroxisomes degrade various biomolecules through

alpha- and beta-oxidation, alone or in cooperation with mitochondria, producing

H2O2 as a metabolic by-product (Antonenkov et al. 2010). The H2O2 is normally
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broken down into water and oxygen by catalase or peroxidases; however, impair-

ment of the antioxidant system allows ROS accumulation and subsequent damage

to proteins, lipids, DNA, and organelles, resulting in neurodegenerative disease,

type 2 diabetes, and cardiovascular disease (Fransen et al. 2012; Terlecky

et al. 2012).

5 Cardiac Response to Oxidative Stress

Diseases caused by mtDNA mutations can be categorized as inherited or acquired

mitochondrial disorders, depending on when the mtDNA mutation occurred.

Approximately 40 different congenital mitochondrial diseases have been identified;

they result in symptoms by 10 years of age and are associated with multiple tissue

defects. The prevalence of mitochondrial mutations or disease is 4.7 in 100,000 in

children and 11.5 in 100,000 for all ages (Schaefer et al. 2004). Inheriting a large

mtDNA deletion or mutation results in one of the mitochondrial myopathies, which

are functional defects of the mitochondrial respiratory chain, primarily affecting

complexes I, III, and IV (Holt et al. 1988). Specific congenital conditions caused by

mtDNA mutations include Kearns–Sayre syndrome, chronic progressive external

ophthalmoplegia, mitochondrial encephalomyopathy with lactic acidosis and

stroke-like episodes, myoclonic epilepsy with ragged-red fibers, neurogenic weak-

ness with ataxia and retinitis pigmentosa, and Leigh syndrome (DiMauro and

Davidzon 2005). These inherited diseases are associated with a wide range of

heart dysfunctions including left ventricular hypertrophy, cardiac fibrosis, systo-

diastolic dysfunction, and impaired conduction (Anan et al. 1995; Fayssoil 2009;

Galetta et al. 2014; Thorburn and Rahman 1993), demonstrating the significant

relationship between mtDNA mutations and heart disease in humans.

The prevalence of acquired mitochondrial dysfunction and related diseases (e.g.,

type 2 diabetes, Parkinson’s disease, Alzheimer disease, cardiovascular disease) is

considerably higher than that of inherited mitochondrial diseases. In acquired

mitochondrial diseases, aging and oxidative stress lead to the accumulation of

mtDNA mutations that impair oxidative phosphorylation. In turn, the damaged

ETC further increases oxidative stress and mtDNA mutations, resulting in a vicious

circle. Because the heart is the organ most dependent on mitochondrial oxidative

phosphorylation, mitochondrial dysfunction often manifests as cardiomyopathy. In

animal models, mtDNAmutations/deletions in the heart commonly cause defects in

mitochondrial oxidative phosphorylation and severe cardiomyopathies, including

dilated cardiac dysfunction (Zhang et al. 2000), cardiac hypertrophy (Esposito

et al. 1999; Graham et al. 1997), and atrioventricular heart conduction blocks

(Li et al. 2000b; Wang et al. 1999). These findings suggest that the integrity of

mtDNA and mitochondrial oxidative phosphorylation are essential for normal

cardiac function.

Age-dependent mitochondrial dysfunction and cardiomyopathy are closely asso-

ciated with an imbalance between mitochondrial ROS production and
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detoxification (Ames et al. 1995; Bratic and Trifunovic 2010; Cui et al. 2012; Dai

et al. 2012). In the aging heart, increased ROS production is accompanied by

decreased complex I and IV activity and state 3 respiration. This ETC impairment

directly increases mitochondrial ROS generation (Dai and Rabinovitch 2009).

However, the effect of age on antioxidant capacity or enzyme activity remains

unclear (Rikans and Hornbrook 1997). It is generally accepted that antioxidant

capacity increases through an adaptive response to aging-associated oxidative

stress, but this increased capacity is not sufficient to prevent overwhelming oxida-

tive stress and mitochondrial damage (Wei and Lee 2002). Thus, increased ROS

generation in the aging heart induces cardiac abnormalities such as ventricular

hypertrophy (Lakatta 2003), fibrosis, and diastolic dysfunction (Khouri et al. 2004).

These age-related cardiac abnormalities are significantly attenuated in mice

overexpressing mitochondrial catalase, providing further evidence for the role of

elevated oxidative stress in mitochondrial dysfunction-induced heart disease (Dai

and Rabinovitch 2009).

5.1 Ischemia/Reperfusion Injury

Loss of blood or coronary artery blockage can reduce the supply of blood to the

cardiac myocardium. The resulting lack of oxygen and glucose (i.e., ischemia)

eventually causes irreversible cardiac cell death, myocardial infarction, and cardiac

dysfunction. Cardiomyocyte cell death is the result of depolarization of mitochon-

drial membrane potential, decreased oxidative phosphorylation and ATP genera-

tion, and increased ROS generation (Kim et al. 2011). Restoration of the blood

supply (i.e., reperfusion) by thrombolytic therapy or percutaneous coronary inter-

vention can reduce cardiac damage. However, the process of reperfusion can also

induce or exacerbate cardiomyocyte death in a process known as ischemia/reper-

fusion (I/R) injury (Hausenloy and Yellon 2013). During the first few minutes of

reperfusion, ROS overproduction and Ca2+ overload open the mitochondrial per-

meability transition pore, leading to cardiomyocyte apoptosis (Hausenloy

et al. 2003). Ischemia/reperfusion strongly increases ROS generation in various

mitochondrial sites including the Krebs cycle (e.g., aconitase) and electron transfer

chain complexes I, II, III, and IV via site-specific mechanisms (Chen and Zweier

2014). Detailed information on the targets, roles, and mechanisms of mitochondrial

ROS generation during I/R injury were well documented in the recent review by

Chen and Zweier (2014).

In 1986, Murry et al. demonstrated that brief (<5 min) and repeated (four times)

ischemic episodes before prolonged ischemia significantly attenuate myocardial

infarction in dogs (Murry et al. 1986). This ischemic preconditioning is an endog-

enous cardioprotective response against I/R injury mediated through the activation

of G-protein-coupled receptors, ATP-dependent potassium channel (KATP), and

various protein kinases including protein kinase C, tyrosine kinase, and the

mitogen-activated protein kinase (MAPK) family (Das and Das 2008) or
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inactivation of proapoptotic p53 signaling (Mocanu and Yellon 2003). Ischemic

preconditioning also inhibits opening of the mitochondrial permeability transition

pore by preserving mitochondrial membrane potential and activity of NADH

dehydrogenase and cytochrome c oxidase and by reducing ROS production

(Halestrap et al. 2007). Despite its powerful cardioprotective effect, ischemic

preconditioning is difficult to apply in patients with acute coronary disease. In

2003, Zhao et al. reported that brief ischemic episodes during early reperfusion (i.e.,

ischemic postconditioning) attenuated myocardial infarction in dogs, similar to the

effects of ischemic preconditioning (Zhao et al. 2003). Furthermore,

preconditioning and postconditioning can also protect remote regions and distant

organs (i.e., remote ischemic pre- or postconditioning) (Kerendi et al. 2005;

Przyklenk et al. 1993). These findings opened the possibility of clinical applications

(Bousselmi et al. 2014; Hausenloy and Yellon 2009). For example, ischemic

preconditioning has been used in open heart and coronary bypass surgery to

preserve cardiac function and reduce tissue damage (Lu et al. 1997; Szmagala

et al. 1998). Regarding ischemic postconditioning, three clinical trials in children

and adults with cardiovascular disease have reported positive results (Luo

et al. 2007; Luo et al. 2008a; Luo et al. 2008b). The discovery of signaling pathways

underlying ischemic conditioning has provided novel pharmacological targets for

the development of pharmacological agents including adenosine, GLP-1, atrial

natriuretic peptide, and cyclosporine A (Hausenloy and Yellon 2009).

Bursts of ROS during reperfusion impair cellular defense mechanisms against

oxidative stress. In the first stage, hydrophilic antioxidants (e.g., ascorbate and

glutathione disulfide) are readily oxidized by increased ROS; further oxidative

stress diminishes lipophilic antioxidants (e.g., vitamin E and ubiquinol-9)

(Haramaki et al. 1998). Bursts of ROS also oxidize thiol groups and lipids, leading

to membrane damage and necrosis. Severe oxidative stress inhibits the activity of

mitochondrial superoxide dismutase (SOD). Results of a clinical study showed that

increased oxidative stress during I/R injury is associated with transient left ventric-

ular dysfunction or stunning (Ferrari et al. 2004). Because increased oxidative stress

during I/R is a major cause of myocardial infarction, the ability of antioxidants to

protect against I/R-induced cardiac damage has been tested (Marczin et al. 2003).

Several studies have shown that supplementation with vitamin C, vitamin E, or the

glutathione (GSH) precursor N-acetylcysteine limits oxidative stress and enhances

cardiac function after I/R in animals and patients (Dingchao et al. 1994; Ferrari

et al. 1991; Mickle et al. 1991).

Cytosolic Cu/ZnSOD and mitochondrial MnSOD are both antioxidant enzymes

that convert superoxide to H2O2. However, the cardioprotective effect of MnSOD

after I/R is significantly higher than that of Cu/ZnSOD because of its location

(Asimakis et al. 2002; Jones et al. 2003). These findings suggest a site-specific role

for ROS and indicate that antioxidant intervention in I/R injury should target

mitochondrial ROS (Marczin et al. 2003).

110 H.K. Kim et al.



5.2 Cardiac Hypertrophy and Fibrosis

Cardiac hypertrophy (CH) is a morphologic adaptation to work overload and is

associated with an abnormal response to beta-adrenergic stimulation. Oxidative

stress is considered a major cause of CH, which strongly increases the risk of heart

failure, cardiac arrhythmia, and sudden cardiac death (Maulik and Kumar 2012). In

a well-designed study by Dai et al. (2011), overexpression of mitochondria-targeted

catalase, but not cytosolic catalase, was shown to protect against CH, fibrosis, and

mitochondrial damage in mouse models of cardiomyopathy. Overexpression of

mitochondria-targeted catalase prevented the accumulation of mitochondrial pro-

tein carbonyls, DNA deletions, increased autophagy, and activation of MAP kinase

extracellular signal-regulated kinase1/2 in the heart. These findings demonstrated

that mitochondrial ROS are not just involved in cellular damage but have important

roles in cell signaling.

Fibrosis is caused by pathological remodeling of the extracellular matrix (ECM)

mediated by matrix metalloproteinases (MMPs) and tissue inhibitor of metallopro-

teinases (TIMPs) (Spinale 2007). Cardiac ECM provides physical connections and

enables signal transduction among cardiomyocytes, cardiac fibroblasts, and blood

vessels within the myocardium. Cardiac ECM undergoes remodeling in response to

diverse stimuli in pathological cardiac conditions, such as myocardial infarction

and overload and dilated cardiomyopathy (Spinale 2007). The major components of

ECM include collagen types I and III, IV, V, and VI and fibronectin, laminin,

elastin, fibrillin, proteoglycans, and glycoproteins. These ECM proteins are pro-

duced primarily by cardiac fibroblasts (Fan et al. 2012). Cardiac fibroblasts also

regulate ECM homeostasis through the production of MMPs and TIMPs, which

degrade ECM and inhibit ECM degradation, respectively (Spinale 2007). Because

MMP activation and overexpression are common in heart disease, the inhibition of

MMP expression/activity has been investigated to attenuate maladaptive cardiac

remodeling. Selective MMP inhibitors such as PG11680 have been shown to

prevent myocardial remodeling after myocardial infarction (Hudson et al. 2006),

and inhibition of the renin–angiotensin–aldosterone pathway decreases MMP

levels and cardiac remodeling (Li et al. 2000a; Sakata et al. 2004). Together with

various cytokines, ROS-mediated oxidative stress is a potential activator of MMPs

in the heart (Grieve and Shah 2003). ROS activates MMPs by upregulating MMP

expression (Nian et al. 2004; Siwik et al. 2001; Wainwright 2004) and through

posttranslational modification and activation of pro-MMPs (Fu et al. 2001; Fu

et al. 2004; Yoon et al. 2002). Antioxidants have been shown to significantly reduce

MMP activity, diabetes-induced cardiac dysfunction, and hypertension-induced

cardiac hypertrophy (Bilginoglu et al. 2009; Rizzi et al. 2013). These findings

demonstrate the important role of ROS in ECM remodeling in patients with heart

disease.
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5.3 Diabetic Cardiomyopathy

Diabetes is a metabolic disease caused by abnormal energy metabolism in multiple

organs including the pancreas, heart, liver, and skeletal muscle. Although the

primary cause of diabetes is unknown, mitochondrial dysfunction may be a major

contributor to insulin resistance in major organs (including skeletal muscle and

liver) and defects in insulin secretion by pancreatic beta cells (Lowell and Shulman

2005). In particular, abnormal mitochondrial fatty acid oxidation is thought to

increase the accumulation of intracellular fatty acyl coenzyme As and

diacylglycerol, which activate signaling pathways inhibiting insulin-stimulated

glucose transport activity. This hypothesis was supported by a clinical study

demonstrating that elderly individuals with severe insulin resistance in skeletal

muscle had higher triglyceride levels in muscle and liver and decreased mitochon-

drial oxidative phosphorylation activity (Petersen et al. 2003). In addition, the

insulin-resistant subjects had fewer mitochondria in muscle cells and decreased

expression of nuclear-encoded genes that regulate mitochondrial biogenesis, such

as peroxisome proliferator-activated receptor gamma coactivator 1alpha and 1beta

(PGC-1alpha and PGC-1beta) (St-Pierre et al. 2003; Wu et al. 1999).

The pancreas produces and releases insulin in response to blood glucose levels.

In obesity, insulin deficiency is caused by beta cell mass that is insufficient to meet

metabolic demands due to the inadequate proliferation or apoptosis of beta cells.

Because apoptosis is regulated primarily by mitochondria, mitochondrial dysfunc-

tion is a major cause of beta cell loss. Mitochondrial dysfunction also reduces ATP

levels in beta cells, which inhibits the opening of KATP channels and prevents

membrane depolarization, a critical signal for the opening of voltage-gated calcium

channels required for insulin secretion (Maechler and Wollheim 2001). Thus,

mitochondrial dysfunction contributes to both insulin deficiency and insulin resis-

tance in the development of diabetes.

Cardiovascular disease is the most common complication and primary cause of

death in patients with diabetes mellitus. Diabetes significantly increases the risk of

heart disease and vulnerability to pressure overload or ischemia. Diabetic cardio-

myopathy (DCM) is ventricular dysfunction occurring in diabetic patients who do

not have severe coronary artery disease or hypertension (Bell 2003; Bugger and

Abel 2010). Left ventricular hypertrophy and systolic/diastolic dysfunctions are

often observed in diabetes patients, along with hyperglycemia, hyperlipidemia,

increased activation of protein kinase C and the renin–angiotensin system, and

aldosterone-induced fibrosis (Boudina and Abel 2010; Hayat et al. 2004). Potential

mechanisms underlying the development of DCM include disruptions in intracel-

lular ion homeostasis and energy metabolism, the polyol pathway, and enhanced

oxidative stress (Wold et al. 2005). In addition, mitochondrial dysfunction has been

suggested as a major contributor to the development of DCM in various animal and

human studies (Bugger and Abel 2010). Studies in animal models have revealed

impaired state 3 mitochondrial oxygen consumption, decreased activity of respira-

tory chain complexes, and defects in mitochondrial ultrastructure and proliferation
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in the heart (Boudina et al. 2005; Duncan et al. 2007; Kuo et al. 1983). Similarly,

patients with type 2 diabetes show abnormal ATP generation, fatty acid utilization,

and oxidative phosphorylation in cardiac mitochondria (Anderson et al. 2009;

Peterson et al. 2004; Scheuermann-Freestone et al. 2003).

Besides mitochondrial dysfunction, factors that increase oxidative stress in

diabetes include increased fatty acid oxidation, polyol pathway flux, advanced

glycation end products, and activation of protein kinase C-dependent NADPH

oxidase (Watanabe et al. 2010; Wold et al. 2005). As in other cardiomyopathies,

increased ROS leads to mitochondrial dysfunction, cardiac cell death, increased

fibrosis, and contractile dysfunction in DCM; however, these effects can be atten-

uated by the overexpression of MnSOD, catalase, or metallothionein (Cai

et al. 2006; Ye et al. 2003; Ye et al. 2004). Interestingly, increased mitochondrial

ROS generation reduces cardiac efficiency by upregulating the expression and

activity of mitochondrial uncoupling proteins in DCM (Boudina et al. 2005; Echtay

et al. 2002; Murray et al. 2005). Proper coupling of oxygen consumption to ATP

generation is essential for cardiac contraction/relaxation. Overexpression or acti-

vation of uncoupling protein 3 promotes proton leak across the mitochondrial

membrane, decreasing ATP generation and increasing oxygen consumption. This

is known as cardiac inefficiency and is a major cause of cardiac contractile

dysfunction in DCM (Bugger and Abel 2010). Taken together, these findings

demonstrate the multiple roles of oxidative stress in the development of DCM.

5.4 Benefits of Reactive Oxygen Species During Exercise

Regular exercise has beneficial effects on the cardiovascular system, significantly

decreasing the risk of cardiovascular disease. However, skeletal muscles generate

ROS during exercise, which increases oxidative stress. The health consequences of

exercise-induced oxidative stress remain unclear (Powers and Jackson 2008). The

first direct evidence for exercise-induced ROS production and subsequent tissue

damage was provided by Davies et al. (1982). This was followed by studies

demonstrating that vitamin E supplementation reduces exercise-induced damage

in skeletal and cardiac muscles (Jackson et al. 1985; Kumar et al. 1992). However,

recent studies have shown that exercise-induced ROS exert beneficial effects

(Gomez-Cabrera et al. 2005; Gomez-Cabrera et al. 2008; Kang et al. 2009; Meilhac

et al. 2001; Ristow et al. 2009). Skeletal and cardiac muscles show increased

antioxidant capacity after moderate oxidative stress due to acute or chronic exer-

cise, which strengthens cellular defense mechanisms against severe oxidative stress

due to I/R injury and age-related cardiac dysfunction (Bowles et al. 1992; Gomez-

Cabrera et al. 2008; Kwak et al. 2006; Starnes et al. 2007). In addition, ROS

signaling appears to be essential for exercise-induced enhancement of PGC1-

alpha-mediated mitochondria biogenesis (Kang et al. 2009), MAPK–nuclear factor

kappa B signaling (Gomez-Cabrera et al. 2005), insulin sensitivity (Ristow

et al. 2009), and prevention of atherosclerosis (Meilhac et al. 2001). Thus, although
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high levels of oxidative stress can damage cellular components, low-to-moderate

levels of oxidative stress regulate gene expression, cell signaling pathways, and

skeletal muscle force production (Powers and Jackson 2008).

5.5 Pathophysiological Role of Mitochondrial ROS
in Endothelial Cells

Coronary blood flow is a key modulator of cardiac function. In the coronary artery,

mitochondrial H2O2 acts as a vasodilator to increase the activity of the large-

conductance (119 pS) Ca2+- and voltage-activated K+ (BKCa) channel (Barlow

and White 1998). The H2O2 is produced in the endothelium by shear stress and is

therefore considered an endothelium-derived hyperpolarizing factor (Chen and

Zweier 2014). Mitochondrial-derived ROS (mtROS) also activates endothelial

NOS through AMPK signaling, which modulates vascular relaxation (Quintero

et al. 2006). Another mitochondria-mediated vasoregulation component, mitochon-

drial membrane potential depolarization, regulates vascular tone by activating nitric

oxide synthase (Katakam et al. 2013). In isolated rat cerebral arteries, membrane

potential depolarization was induced by activating the mitochondrial ATP-sensitive

potassium channel, demonstrating its key role in vascular tone modulation through

ROS-dependent or ROS-independent mechanisms. These findings indicate the

importance of mtROS in vascular endothelium.

However, overproduction of mtROS in endothelial cells, smooth muscle cells,

and macrophages is a major cause of atherosclerosis. ROS induces oxidative

modification of phospholipids, resulting in increased transport of oxidized

low-density lipoprotein into the artery wall, damaging endothelial cells, and even-

tually causing atherosclerosis (Madamanchi et al. 2005). Oxidative stress-mediated

vascular dysfunction is frequently observed in patients with diabetes mellitus

(Mackenzie et al. 2013). Although antioxidant treatment of atherosclerosis in

humans has not been successful to date (Lonn et al. 2005), in vitro studies and

experiments in animal models support the therapeutic potential of antioxidant

therapy in atherosclerosis and metabolic disease (Mackenzie et al. 2013; Mercer

et al. 2012).

6 Cardioprotective Effects of Mitochondria-Targeted

Antioxidants

Various therapies for cardiomyopathy and ischemic heart disease target mitochon-

drial dysfunction (Walters et al. 2012). These include inhibitors of mitochondrial

permeability transition pore opening, activators of mitochondrial KATP channel and

respiratory chain complexes, AMPK signaling modulators, and mitochondrial
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antioxidants (Armstrong 2007; Szewczyk and Wojtczak 2002; Toogood 2008;

Walters et al. 2012). The primary goal of antioxidant treatments, whether

mitochondria-targeting or non-mitochondria-targeting, is to decrease excessive

ROS and oxidative stress in order to prevent functional loss of intracellular organ-

elles and the cell itself. The primary reason for developing mitochondria-targeting

antioxidants is the biological importance of the mitochondrion, which is the control

center for energy metabolism, apoptosis, Ca2+ homeostasis, and cell signaling

(Sheu et al. 2006). Large-scale clinical studies including the Heart Outcomes

Prevention Evaluation (HOPE) study (Yusuf et al. 2000) and the Heart Protection

Study (HPS) (MRC/BHF 1999) have demonstrated the ineffectiveness of conven-

tional antioxidant therapies in patients, perhaps because these antioxidants are not

efficiently taken up by mitochondria (Murphy and Smith 2007). To solve problem,

a number of mitochondria-targeted antioxidants have been developed. Accumu-

lated evidence shows that mitochondria-specific antioxidants are more effective

than nonspecific antioxidants in their mitochondria protective role (Sheu

et al. 2006; Smith and Murphy 2011). Here, we briefly describe a number of

mitochondria-targeted antioxidants with their current clinical status (Table 1).

Table 1 Mitochondria-specific antioxidant agents

Agent Remark Clinical status Reference

MitoQ Coenzyme Q10 derivative Phase II (NASH) Jauslin

et al. (2003)

MitoE Vitamin E derivative Not yet tested Jauslin

et al. (2003)

MitoPBN Nitrone radical trap alpha-phenyl-

tert-butylnitrone

Not yet tested Maples

et al. (2004)

MitoPeroxidase

(ebselen analog)

Increases mitochondrial glutathi-

one activity

Not yet tested Filipovska

et al. (2005)

MitoGSH Increases mitochondrial glutathi-

one activity

Not yet tested Sheu

et al. (2006)

MitoNAC Increases mitochondrial glutathi-

one activity

Not yet tested Sheu

et al. (2006)

SS31 (Bendavia) Peptide antioxidants targeted to the

inner mitochondrial membrane

Phase II (AMI) Szeto (2006)

SS02 Preclinical Szeto (2006)

Edaravone Used for brain and cardiac I/R

injury

In use (stroke,

Japan) phase IV

(AMI)

Higashi

et al. (2006)

NecroX ROS/RNS scavenger, mitochondria

Ca2+ uniporter blocker

Phase II (STEMI) Kim

et al. (2010),

Thu et al. (2012)

Phenolic antioxi-

dant prodrugs

Mitochondria beta-oxidation-medi-

ated drug delivery

Not yet tested Roser

et al. (2010)

I/R ischemia/reperfusion, RNS reactive nitrogen species, ROS reactive oxygen species, STEMI
ST-segment elevation in myocardial infarction, AMI acute myocardial infarction, NASH
nonalcoholic steatohepatitis
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MitoQ and MitoE are derived from coenzyme Q10 and vitamin E, respectively.

The antioxidant effects of these compounds are 100- to 350-fold more potent than

their untargeted analogs (idebenone and Trolox), preventing cell death from endog-

enous oxidative stress in cultured fibroblasts of patients with Friedreich ataxia

(Jauslin et al. 2003). The safety and effectiveness of MitoQ were demonstrated in

a phase II clinical trial (Smith and Murphy 2010). MitoPBN, a mitochondria-

targeted nitrone radical trap alpha-phenyl-tert-butylnitrone, provides

neuroprotection against ischemic stroke by blocking oxidative stress-induced

lipid peroxidation (Maples et al. 2004). MitoGSH is a choline ester of GSH, a

nonprotein thiol that serves as an endogenous antioxidant. Although mitochondrial

GSH comprises only 15% of total cellular GSH, MitoGSH provides cytoprotective

effects (Sheu et al. 2006). Similarly, a mitochondria-targeted analog of ebselen

(MitoPeroxidase) (Filipovska et al. 2005) and a choline ester of N-acetylcysteine
(MitoNAC) were developed to increase GSH activity in mitochondria and decrease

oxidative stress-induced mitochondrial depolarization and apoptosis (Sheu

et al. 2006). The Szeto–Schiller peptides (SS02 and SS31) represent a novel class

of cell-permeable antioxidants that target the inner mitochondrial membrane (Szeto

2006). These peptide antioxidants scavenge mitochondrial ROS and inhibit mito-

chondrial permeability transition, thereby suppressing oxidative stress-induced

apoptosis and necrosis in isolated mitochondria, cell cultures, and ischemic tissue

(Cho et al. 2007; Szeto 2006). Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is

a strong free radical scavenger developed by Mitsubishi-Tokyo Pharmaceuticals

Inc. Because of its strong mitochondrial antioxidant effect, edaravone is widely

used in patients with brain and cardiac I/R injury and may be useful for improving

endothelial function in patients with cardiovascular disease (Higashi et al. 2006).

NecroX compounds, developed by LG Life Science Ltd., have been shown to

protect cultured cardiac cells and heart mitochondria from cardiotoxic agents

(tertiary butyl hydroperoxide, sodium nitroprusside, and doxorubicin), hypoxic

injury, and I/R injury (Kim et al. 2010; Lee et al. 2014; Thu et al. 2012). Our

recent study demonstrated that NecroX-5 inhibits the mitochondria Ca2+ uniporter

during hypoxia/reoxygenation to prevent mitochondrial Ca2+ overload-induced

apoptosis (Thu et al. 2012). Finally, biotransformation of phenolic antioxidant

prodrugs by the mitochondrial beta-oxidation pathway protects against I/R injury

in isolated cardiomyocytes (Roser et al. 2010).

7 Conclusions and Perspectives

Accumulated evidence clearly demonstrates that ROS-induced oxidative stress in

mitochondria plays an important role in the development of heart disease (Fig. 3).

For that reason, mitochondria-targeted therapies represent a promising clinical

strategy for the treatment of heart disease. However, despite promising results in

animals (Mercer et al. 2012), the effects of antioxidant treatment in patients with

cardiovascular disease have been inconsistent (Lonn et al. 2005). This discrepancy
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may be due to the timing of treatment (before disease onset vs. after onset),

antioxidant bioavailability, effects of other treatments (e.g., aspirin, angiotensin

receptor blockers, statins), and, in particular, the ability to target the mitochondria

(Firuzi et al. 2011; Mitra et al. 2011). An efficient antioxidant delivery system may

therefore be needed to restore the function of damaged mitochondria. The ideal

therapeutic agent would be selectively taken up by mitochondria within the target

organs, where it can prevent oxidative damage and be recycled back to the active

antioxidant form. In addition, it should be a pharmaceutically tractable and stable

small molecule with acceptable oral bioavailability (Murphy and Smith 2007;

Smith and Murphy 2011).

•
•
•

•
•
•
•

•
•
•
•

•
•
•

Fig. 3 Pathophysiological response of heart to reactive oxygen species (ROS). ROS mediates

cardiac responses to exercise and various pathophysiological stimuli such as I/R injury, cardiac

hypertrophy, and diabetic cardiomyopathy. A number of antioxidant treatments attenuate these

cardiac responses, providing evidence for the mediatory role of ROS. Non-antioxidant treatments

are also effective in specific conditions. For example, in I/R injury, a mitochondrial KATP channel

opener also decreases oxidative stress and apoptosis in the heart. ERK extracellular signal-

regulated kinase, I/R ischemia/reperfusion, mKATPmitochondrial ATP-dependent potassium chan-

nel, MAPK mitogen-activated protein kinase, MPTP mitochondrial permeability transition pore,

NF-kappa B nuclear factor kappa B, OXPHOS oxidative phosphorylation, UCP uncoupling

protein
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