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Intrauterine Growth Retardation (IUGR)

as a Novel Condition of Insulin-Like Growth

Factor-1 (IGF-1) Deficiency

I. Martı́n-Estal, R.G. de la Garza, and I. Castilla-Cortázar

Abstract Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several

biological activities, such as proliferation, mitochondrial protection, cell survival,

tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and

antiaging. This hormone plays an important role in embryological and postnatal

states, being essential for normal foetal and placental growth and differentiation.

During gestation, the placenta is one of the major sources of IGF-1, among other

hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding

proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction

(IUGR) is the second most frequent cause of perinatal morbidity and mortality,

defined as the inability to achieve the expected weight for gestational age. Different

studies have revealed that IUGR infants have placental dysfunction and low

circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that

IGF-1 deficiency in gestational state may be one of the major causes of foetal

growth retardation. The aim of this review is to study the epidemiology, physio-

pathology and possible causes of IUGR. Also, it intends to study the possible role of

the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be
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considered as a novel condition of IGF-1 deficiency and if its treatment with

low doses of IGF-1 could be a suitable therapeutic strategy.
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Abbreviations

ALS Acid-labile subunit

CG Chorionic gonadotropin

CRH Corticotropin-releasing hormone

CSF Cerebrospinal fluid

CTGF Connective tissue growth factor

Cyr61 Cysteine-rich protein 61

ESM-1 Endothelial cell-specific molecule

FSH Follicle-stimulating hormone

GH Growth hormone

GHBP Growth hormone binding protein

GHRH Growth hormone-releasing hormone

GnRH Gonadotropin-releasing hormone

HPA Hypothalamus–pituitary–adrenal gland axis

IGF-1 Insulin-like growth factor 1

IGF-1R IGF-1 receptor

IGF-2 Insulin-like growth factor 2

IGFBP-rPs IGFBP-related proteins

IGFBPs IGF binding proteins

IGFs Insulin-like growth factors

IUGR Intrauterine growth restriction
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LDL Low-density lipoprotein

LH Luteinising hormone

MAP Mitogen-activated protein

NGAS Neonatal growth assessment score

NovH Human nephroblastoma overexpression gene

PAPP-A Pregnancy-associated plasma protein A

PGAS Prenatal growth assessment score

PI3K Phosphatidylinositol-3-kinase

PL Placental lactogen

PLGF Placental growth factor

PSF Prostacyclin-stimulating factor

PSG Pregnancy-specific β-glycoprotein
TAF Tumour adhesion factor

TSC 1 Tuberous sclerosis protein 1

TSC 2 Tuberous sclerosis protein 2

1 Insulin-Like Growth Factor 1 (IGF-1)

1.1 Introduction

Insulin-like growth factor 1 (IGF-1) is an anabolic hormone produced in several

tissues, specially in the liver (Laron 2001; Le Roith 1997). IGF-1 is synthesised by

the endocrine growth hormone (GH) stimulation (Sara and Hall 1990). Although

IGFs were first described by Salmon and Daughaday in 1957 (Salmon and

Daughaday 1957), the discovery culminated two decades later, thanks to studies

performed by Rinderknecht and Humbel (Rinderknecht and Humbel 1978a,b).

Finally, all these findings allowed to identify a new family of proteins composed

by proinsulin, IGF-1 and IGF-2 (Le Roith 1997).

IGF-1 shares >60% homology with IGF-2 and 50% homology with proinsulin

structures (Le Roith 1997). Similar to proinsulin, both hormones, IGF-1 and IGF-2,

are divided into A, B, C and D domains. A and B domains are similarly bridged by

two inter-domain disulphide bonds and with one internal disulphide bond in the A

domain. Both domains are connected by a C domain, which, unlike proinsulin, is

not proteolytically cleaved during structural maturation. In IGF-1, positions 1 to

29 are homologous to insulin B chain and positions 42 to 62 are homologous to

insulin A chain. The “connecting” peptide region (C domain) has 12 amino acids

and shows no homology to proinsulin C peptide (Fig. 1). Such structural similarity

to insulin explains the ability of IGF-1 to bind the insulin receptor (Laron 2001;

Rinderknecht and Humbel 1978a). The primary difference between IGF-1 and

IGF-2 resides in their biological activity. IGF-2 is expressed predominantly in

early embryonic and foetal life and IGF-1 is expressed in the adult (Laron 2001;

Rinderknecht and Humbel 1978a).

Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like. . .



IGF-1, as a somatomedin, possesses insulin-like activity in the presence of

insulin antibodies (Froesch et al. 1963; Zapf et al. 1978), and it is also a sulphation

factor (Daughaday et al. 1972), is growth hormone dependent (Sara and Hall 1990;

Daughaday et al. 1972) and acts as a mitogen (Zapf et al. 1978; Rinderknecht and

Humbel 1976).

In the last decades, many evidences have provided us a wide list of IGF-1

activities, such as the following: proliferative, mitochondrial protection (Pérez

et al. 2008), cell survival (Vincent and Feldman 2002), tissue growth and develop-

ment (Powell-Braxton et al. 1993; Fowden and Forhead 2013), anti-inflammatory

and antioxidant (Garcı́a-Fernández et al. 2003, 2005), antifibrogenic (Muguerza

et al. 2001) and antiaging (Puche et al. 2008; Garcı́a-Fernández et al. 2008).

Because of its several physiological roles, IGF-1 activities must be strictly

controlled by its association with six well-characterised binding proteins (IGFBPs

1 to 6) (Tables 1 and 2). These proteins have high affinity for IGF-1 and were

identified, cloned and sequenced in the early 1990s (Jones and Clemmons 1995;

Lamson et al. 1991), thanks to the development of the Western ligand blot tech-

niques (Hossenlopp et al. 1986). IGFBPs share �35% sequence identity with each

other, with apparent molecular mass of 24–45 kDa. They have a primary structure

consisting of three different domains: the conserved N-terminal domain, the highly

variable mid-region and the conserved C-terminal domain (Lamson et al. 1991;

Hwa et al. 1999). The IGFBPs are produced by a variety of biological tissues and

found in several biological fluids, such as follicular liquid, amniotic liquid, vitreous

humour, lymph, plasma, seminal fluid, cerebrospinal fluid and gastrointestinal

secretions (Rajaram et al. 1997; Binoux et al. 1991) (Tables 1 and 2). All these

binding proteins are expressed by virtually all tissues, but the major source of serum

IGFBPs is the liver. The IGFBPs function as carrier proteins for circulating IGFs,

with higher affinity for them (Kd� 10�10 M) than type I IGF receptors (Kd� 10�8

Fig. 1 Amino acid sequences of human IGF-1, IGF-2 and insulin. Homologous amino acids in

IGF-1 (70 amino acids) and proinsulin and insulin (51 amino acids) are represented in red.
Homologous amino acids in IGF-1 and IGF-2 (67 amino acids) are represented in blue
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to 10�9 M), and by regulating IGF turnover, transport and tissue distribution, thus

determining physiological concentrations of IGFs (Jones and Clemmons 1995;

Hwa et al. 1999). For example, during normal pregnancies serum levels of IGF-1

and IGFBPs (mainly IGFBP-1) rise progressively through gestation, especially

since the second trimester of pregnancy. An elevated level of IGFBP-1 in the foetal

circulation is an indicator of IUGR, caused by placental insufficiency and utero

hypoxia. Such binding protein is believed to restrict foetal growth by sequestering

IGFs (Hills et al. 1996). Additionally they modulate IGF activities in target tissues,

such as cell proliferation, differentiation, survival and migration (Jones and

Clemmons 1995; Firth and Baxter 2002), being able to activate or inhibit IGF

actions. Also they facilitate transport of IGFs from the vascular space to target

tissues. Most IGFs in circulation are found forming complexes with IGFBPs,

Table 2 Characteristics of the IGFBP human superfamily. IGFBP-rPs: low-affinity IGF binders

Molecular

mass

(kDa)a

No. of

amino

acidsb
Organ and/or tissue

expression References

IGFBP-

7

IGFBP-

rP1/Mac25

26.4 256 Leptomeninges Bradham

et al. (1991)

IGFBP-

8

IGFBP-

rP2/CTGF/

CCN-2

35.5 323 Connective tissue, placenta Myers

et al. (2012);

Hu

et al. (1998)

IGFBP-

9

IGFBP-

rP3/NovH/

CCN-3

36.0 329 Kidney Holbourn

et al. (2008)

IGFBP-

10

IGFBP-

rP4/Cyr61/

CCN-1

39.5 358 Foetal and adult brain and

liver; adult lung, kidney

and thymus

Wang

et al. (2012)

IGFBP-

11

IGFBP-

rP5/L56/

HtrA

49.0 458 Osteoarthritic cartilage Castilla-

Cortázar

et al. (2001)

IGFBP-

12

IGFBP-

rP6/ESM-1

18.1 165 Endothelial and epithelial

cells, lung

Clemmons and

Underwood

(1991)

IGFBP-

13

IGFBP-

rP7/WISP-

2/CCN-5

24.4 228 Smooth muscle, bone, uteri Chitnis

et al. (2008)

IGFBP-

14

IGFBP-

rP8/WISP-

1/CCN-4

38.0 345 Heart, lung, smooth mus-

cle, bone

Puche and

Castilla-

Cortázar

(2012)

IGFBP-

15

IGFBP-

rP9/WISP-

3/CCN-6

37.1 334 Cartilage, breast epithelium Duan

et al. (2000)

Low-affinity binder: involves less intermodular force between the ligand and its binder
aPredicted molecular mass (kDa) of nonglycosylated, mature protein
bNumber of amino acids of mature protein

I. Martı́n-Estal et al.



especially in a ternary complex with IGFBP-3 and ALS (acid-labile subunit). The

aforementioned complex serves as a reservoir for IGF and also increases the half-

life of IGF-1 (Rajaram et al. 1997). In addition, IGFBPs can be associated with cell

membranes or extracellular matrix, allowing them to maintain a local pool of IGF-1

(Firth and Baxter 2002).

Interestingly, another nine binding proteins arose as the so-called IGFBP-related

proteins (IGFBP-rPs), which are cysteine-rich proteins with structural and func-

tional similarities to the IGFBPs (Hwa et al. 1999). At present, there are four

proteins/families that are related to the IGFBPs (Tables 1 and 2). Mac25 was

originally identified as a cDNA derived from leptomeninges (Murphy et al. 1993)

and was subsequently expressed in a baculovirus system. The synthesised protein

was shown to bind IGFs and was renamed IGFBP-7 (Oh et al. 1996). Its expression

is regulated by specific growth factors and IGFs, and it is involved in diverse

biological functions, such as regulation of epithelial cell growth, stimulation of

fibroblast cell growth and stimulation of prostacyclin production in endothelial cells

(Hwa et al. 1999). The CCN family consists of several proteins, and it acquired its

name from the first three proteins discovered: Cyr61 (cysteine-rich protein 61)

(Saglam et al. 2014), connective tissue growth factor (CTGF) (Bradham et al. 1991)

and the human nephroblastoma overexpression gene (NovH) (Burren et al. 1999).

CTGF major function is to regulate the formation of connective tissue. This protein

is also important in both physiological (tissue homeostasis) and pathological

(fibrosis) conditions (Nguyen et al. 2008). Three new members of this family

have been identified in Wnt-1 transformed cells: WISP-1 (Wang et al. 2012);

WISP-2, which was designated CTGF-like because it was identified in primary

human osteoblast cells (Myers et al. 2012); and WISP-3 (Baker et al. 2012). The

CCN proteins are key signalling and regulatory molecules involved in several vital

biological functions, including cell proliferation, angiogenesis, tumourigenesis and

wound healing (Holbourn et al. 2008). Two other IGFBP-related proteins are L56, a

potential serine protease of IGFBPs, also named HtrA (Hu et al. 1998), and

endothelial cell-specific molecule (ESM-1) (Lassalle et al. 1996). The physiolog-

ical role of the IGFBP-rPs in the IGF system remains undefined, but their structural

relationship with IGFBP-1 to IGFBP-6 reveals the ability of some of these proteins

to bind IGF-1, modulating its activity (Oh et al. 1996; Burren et al. 1999).

On the other hand, the majority of IGF-1 actions are mediated through the union

of IGF-1 to its putative receptor, IGF-1R, a tyrosine kinase with an α2β2 heterote-
trameric structure that is one of the most potent natural activators of Akt pathway,

closely related with cell survival, growth and proliferation (Puche and Castilla-

Cortázar 2012; Annenkov 2009; Chitnis et al. 2008). Ligand binding induces

phosphorylation of tyrosine residues in the intracellular domains of the β-subunits
and activate the receptor. The activated IGF-1R in turn activates multiple signal

transduction cascades, including the mitogen-activated protein (MAP) kinase path-

way and phosphatidylinositol-3-kinase (PI3K)–Akt pathway (Duan et al. 2000).

The IGF-activated pathways promote cell survival through regulation of multiple

effectors (BCL-2, BAD, caspase-9, p53, etc.), cell proliferation, migration and/or

differentiation (Jones and Clemmons 1995) (Fig. 2).
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In addition, the similarity in structure of IGF-1R and insulin receptor (�60%)

(Nissley and Lopaczynski 1991) explains that IGF-1 can also bind to the insulin

receptor but with lower affinity. Ligand binding can be a secondary pathway by

which IGF-1 mediates some of its metabolic functions (Rinderknecht and Humbel

1978a). Similarly, insulin can bind to the IGF-1R with a lower affinity than it does

to the insulin receptor.

1.2 Physiological Activities of IGF-1

IGF-1 is an important hormone in embryological and postnatal states. Although it is

mainly produced by the liver (approximately 75% of circulating IGF-1 is produced

by this organ) (Ohlsson et al. 2009), virtually every tissue is able to secrete IGF-1

for autocrine and/or paracrine purposes.

Fig. 2 The IGF-1 signalling pathway. IGF binding proteins (IGFBPs) modulate IGF-1 bioavail-

ability. IGF-1 functions as a ligand to interact with IGF-1 receptor (IGF-1R) in the cellular

membrane, which leads to autophosphorylation and recruitment of the adaptor proteins IRS-1,

IRS-2 and Shc. The interaction of IRS-1 and IRS-2 with IGF-1R induces the activation of PI3-

kinase (phosphatidylinositol-3-kinase), which transforms PIP2 in PIP3. Akt family of kinases is

activated by PDK1 and by mTOR-containing complex mTORC2 and regulates downstream

signalling molecules such as TSC1 and 2 (tuberous sclerosis protein 1 and 2) and FOXO

transcription factors, GSK-3β, p27, BAD and BCL-2. All these molecules are involved in several

cellular processes including protein synthesis, cell proliferation, glucose metabolism, cell cycle

and cell survival. In parallel, Shc activation induces the activation of the RAS/MAP kinase

pathway, which increases cell proliferation. Low glucose levels activate AMPK, which activates

TSC2 and inhibits mTORC1 action (discontinue lines)

I. Martı́n-Estal et al.



The secretion of IGF-1 is stimulated by growth hormone (GH), forming the GH/

IGF-1 axis, where GH secretion is stimulated by growth hormone-releasing hor-

mone (GHRH) and inhibited by somatostatin (Puche and Castilla-Cortázar 2012)

(Fig. 3). Both hormones are generated in the hypothalamus as a result of neuro-

genic, metabolic and hormonal factors. This GH/IGF-1 axis is regulated by nega-

tive feedback mechanisms induced by IGF-1 itself: IGF-1 can inhibit GH gene

expression by stimulating the secretion of somatostatin (Bertherat et al. 1995),

which inhibits GH secretion. In various diseases, such as liver cirrhosis, this axis

is altered: low IGF-1 serum levels and high GH levels, with the concomitant

reduced somatostatinergic tone. Such disruption is reverted by the exogenous

administration of IGF-1 at low doses (Castilla-Cortázar et al. 2001).

Circulating GH exist in both free and bound states by the GHBP (growth

hormone binding protein – the secondary domain of the GH receptor). Hepatic

GH receptor activation induces IGF-1 production, which is released in the circula-

tion, where it is found in its free form (<1% bioactive component) and bound to

IGFBPs. IGF-1 is specially bound to IGFBP-3, which binds �90% of the circulat-

ing hormone, increasing its half-life (Ohlsson et al. 2009).

Fig. 3 Model of GH/IGF-1 axis and its target organs. Negative feedback mechanism induced by

IGF-1 regulates GH/IGF-1 axis: IGF-1 inhibits GH gene expression by stimulating somatostatin

secretion. GHRH (growth hormone-releasing hormone) stimulates GH secretion, which stimulates

IGF-1 secretion
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In physiological conditions, IGF-1 activities are still being investigated, and it is

being recognised as a GH-independent peptide. For example, it is known that GH

and nutrition are the major factors that regulate hepatic IGF-1 expression, as well

as in other organs (Clemmons and Underwood 1991). However, in some other

tissues, IGF-1 expression appears to be regulated by tissue-specific trophic factors.

For example, in uterus, oestrogens stimulate IGF-1 expression instead of the GH

(Murphy and Friesen 1988).

IGF-1 has a wide variety of effects, but essentially, these can be divided into

acute metabolic effects and long-term growth-promoting effects (Juul 2003). The

acute actions of IGF-1 overlap with those of insulin on carbohydrate and protein

metabolism to promote energy storage, including the stimulation of amino acid

uptake into skeletal muscle, as well as the peripheral glucose uptake and regulation

of insulin secretion and sensitivity (Juul 2003). On the other hand, its long-term

effects are on cell proliferation, differentiation and anti-apoptosis (Jones and

Clemmons 1995; Yu and Rohan 2000). Hence, IGF-1 plays a major and important

role in several target organs (Fig. 3), as further described.

In the brain, IGF-1 is a potent neurotrophic and neuroprotective factor, promot-

ing neuronal proliferation, survival and development (G�omez 2008), and it could be

involved in the modulation of blood–brain barrier permeability (Carson et al. 1993).

It is also one of the main factors regulating the clearance of brain amyloid-β levels
with implications in Alzheimer’s disease (Carro et al. 2002).

The liver is the main source of circulating IGF-1 (Ohlsson et al. 2009) and there

is few data regarding local effects of this hormone in this organ (Skrtic et al. 1997).

Nevertheless, it has been demonstrated that IGF-1 support hepatocyte proliferation

and accelerate DNA synthesis, promoting liver regeneration (Desbois-Mouthon

et al. 2006).

IGF-1 is also needed for an optimal fecundity during the reproductive period

(Livingstone 2013). It increases granulose cell proliferation, steroidogenesis

(Villalpando and L�opez-Olmos 2003) and oocyte growth in most mammalian

species (Silva et al. 2009; Giudice 1992; Giudice and Saleh 1995). And it also

has a role on sperm number, as seen in IGF-1-deficient mice (Baker et al. 1996).

Moreover, IGF-1 has physiological roles in maintaining the normal function of

the immune system, such as T lymphocytes development and function (Walsh

et al. 2002), thymus development (Hadden et al. 1992) and B-cell differentiation

(Landreth et al. 1992). IGF-1 regulates renal function (Bach 2012) and maintains

glomerular integrity (Martin et al. 1991; Hirschberg 1996) and plays an important

role in cardiovascular development and protection (Delafontaine et al. 2004), acting

as a potent vasodilator (Delafontaine et al. 2004). It also controls muscle growth

and development (Schiaffino and Mammucari 2011), stimulates protein synthesis in

skeletal muscle (Velloso 2008), is essential for the attainment of peak bone mass

during puberty, is necessary for normal bone growth (Yakar et al. 2010; Tahimic

et al. 2013; Guntur and Rosen 2013) and plays a central role during muscle

regeneration (Florini et al. 1996).
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1.3 Role of IGF-1 During Pregnancy

Gestation can be divided into three well-defined periods. During the first period

(pre-differentiation period), fertilisation, segmentation and gastrulation occur

(Valsamakis et al. 2006). Once the gastrula is formed, the embryonic period begins,

where proliferation and embryonic organogenesis occur. In this period, the embryo

is more susceptible to damage, caused by external agents, such as alcohol, drugs,

medicine, X-rays, radiation, etc. (Valsamakis et al. 2006). In the last period (foetal

period), foetal organs develop both functionally and anatomically, leading to

continuous foetal growth (Valsamakis et al. 2006).

All this process involves endocrine and metabolic changes in maternal pituitary

gland and placental secretion (Kumar and Magon 2012). After involution of ovarian

sex steroid production by the 6th week, placental oestrogen and progesterone

production by the corpus luteum increases exponentially to term. Progesterone is

important in suppressing the maternal immunologic response to foetal antigens,

preparing and maintaining the endometrium to allow implantation of the embryo.

Between the 8th and 10th weeks of gestation, placental production of chorionic

gonadotropin (CG) rescues the corpus luteum from involution and maintains

progesterone secretion (Kumar and Magon 2012; Freemark 2010).

During mid-gestation (13th to 28th weeks), there is a progressive increase in

prolactin, secreted by the maternal pituitary gland, and placental growth hormone

(pGH) levels. Several studies had found low maternal serum levels of both hor-

mones in pregnancies associated to intrauterine growth retardation (Kumar and

Magon 2012; Freemark 2010). During this period, placental lactogen (PL) is

necessary for a normal production of progesterone, as seen in diverse mice strain

models. Additionally, PL is responsible for the marked rise in maternal plasma

IGF-1 concentration as the pregnancy approaches term (Kumar and Magon 2012).

Insulin is also an important factor for foetal metabolism, because it stimulates

glucose and amino acid cellular capitation, necessary for tissue growth. Insulin

deficiency in the uterus may lead to IUGR (Fowden and Forhead 2013). Inside the

insulin family, IGF-1 and IGF-2 regulate cell cycle, proliferation and differentia-

tion. Both hormones control transport capacity of the placenta and mediate stimu-

latory actions of insulin and thyroid hormones (Fowden and Forhead 2013). In the

prenatal period, differences between GH and IGF-1 are clearly shown. During

gestation, IGF-1 production is stimulated by placental GH. GH insensitivity, both

in humans and in transgenic mice, has only mild retardation of growth at birth

(Jameson 1999), whereas IGF-1 deficiency in gestational state reveals serious

postnatal growth retardation, as has been reported both in humans and in transgenic

animal models with IGF-1 gene deletion (Lupu et al. 2001; Baker et al. 1993; Liu

et al. 1993; Woods et al. 1996). Interestingly, in contrast to growth hormone

insensitivity, IGF-1-deficient animals are neurologically impaired, as was also

reported in a single patient with a defect in the IGF-1 gene (Woods et al. 1996).

Accordingly, all these data suggest that IGF-1 is necessary for normal brain

development in the uterus (Randhawa and Cohen 2005).
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Therefore, IGF-1 has a major role in foetal and placental growth and differen-

tiation (Cohick and Clemmons 1993; Hiden et al. 2009; Forbes and Westwood

2010), being a major regulator of intrauterine and normal body growth (Lupu

et al. 2001; Baker et al. 1993; Woods et al. 1996). IGF-1 enhances protein synthesis

and inhibits proteolysis, having a key role in growth regulation both embryonically

and postnatally (Fryburg et al. 1995; Clemmons 2009). It is essential for the

attainment of normal body size during foetal development. Additionally, IGF-2

plays a key role in placental growth (Rajaram et al. 1997; Sferruzzi-Perri

et al. 2006).

1.3.1 The Placenta as an IGF-1 Target Organ

The placenta is an intrauterine organ with central functions in pregnancy: it supplies

nutrients and oxygen to the foetus and produces a range of hormones and growth

factors that may affect mother, foetus or both (Hiden et al. 2009; Murphy

et al. 2006). Moreover, hormones and growth factors present in maternal and foetal

circulation may regulate foetal growth and placental development (Murphy

et al. 2006).

Besides insulin, IGF-1 and IGF-2, several hormones (summarised in Table 3) are

produced by the placenta during pregnancy, which are involved in the regulation of

both foetal and placental development and growth (Hiden et al. 2009; Murphy

et al. 2006). In addition to the aforementioned hormones, IGFBPs also participate in

the regulation of both placental and foetal development and growth. The placenta

has the ability to differentially express these proteins (Table 4). IGFBP-1 is the

predominant binding protein synthesised by the placenta. It is expressed predom-

inantly in trophoblast and decidua, where it regulates the biological activity of IGFs

by modulating their interaction with IGF-1 receptor (Jones and Clemmons 1995;

Rajaram et al. 1997; Gibson et al. 2001; Chard 1994; Crossey et al. 2002;

Clemmons 1997; Lee et al. 1993). The other binding proteins (IGFBP-2, 3, 4,

5 and 6) are only expressed in some cells where they regulate placental develop-

ment (Jones and Clemmons 1995; Rajaram et al. 1997; Clemmons 1997; Carter

et al. 2006). In growth-restricted foetuses, serum and umbilical cord levels of

IGFBP-1 and IGFBP-2 are increased compared to normal foetuses (Crossey

et al. 2002; Street et al. 2006; Tzschoppe et al. 2015).

IGFs and insulin actions are mediated through binding to their receptors, which

are expressed on distinct placental surfaces. Their expression varies with gesta-

tional age (Table 5). For example, cytotrophoblast and syncytiotrophoblast express

receptors for progesterone. Such hormone is implicated in embryogenesis (Ziyan

et al. 2010; Shanker and Rao 1999; Zachariades et al. 2012). These two areas of the

placenta also express receptors for GnRH, which has a key role in implantation of

the zygote and in endometrial, placental and foetal development (Fowden and

Forhead 2013; Wolfahrt et al. 1998). They also express receptors for LH, CG and

oestrogens such as oestradiol, important hormones in the development and main-

tenance of reproductive tissues (McCormack and Glasser 1978). Other regions of
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the placenta, such as villous and extravillous trophoblast, also express receptors for

GH, an important hormone in the physiological adjustment of gestation and control

of maternal IGF-1 levels (Lacroix et al. 2002). These regions also express receptors

for thyroid hormones, PL and CRH. Such hormones, respectively, regulate oxida-

tive metabolism and energy available for gestation (Fowden and Forhead 2013;

Leonard et al. 2001) and are necessary for normal production of progesterone

during pregnancy (Hill et al. 1988; Freemark and Comer 1989).

Insulin receptors are expressed on the microvillous membrane of the syncytio-

trophoblast in the first trimester of pregnancy, directed to the maternal circulation

and, hence, maternal insulin. These receptors, at term, are mainly expressed on the

placental endothelium directed to the foetal blood (Hiden et al. 2009). Insulin

receptor expression suggests that, in the first trimester of pregnancy, maternal

insulin regulates insulin-dependent processes, whereas, at term, it must be foetal

insulin, the one that mainly controls these processes (Desoye et al. 1997). However,

the IGF-1Rs are expressed in almost all placental tissues in the first trimester of

pregnancy and at term (Fang et al. 1997). Nevertheless, IGF-1R expression is

higher in the trophoblast than in endothelial cells at the end of gestation (Hiden

et al. 2009; Abu-Amero et al. 1998). Such expression suggests that both maternal

and foetal IGF-1 will affect the trophoblast compartment. Both hormones act as an

Table 5 Hormone receptor

expression in placenta
Placental tissue Hormone receptor expression

Syncytiotrophoblast Insulin (1st trimester)

IGF-1 (1st trimester and term)

IGF-2 (term)

Progesterone

GnRH

LH

CG

Oestrogens

Cytotrophoblast Progesterone

GnRH

LH

CG

Oestrogens

Trophoblast IGF-1 (end of gestation)

GH

Thyroid hormones

PL

CRH

Myometrium GH

Thyroid hormones

PL

CRH

Placental endothelium Insulin (term)

I. Martı́n-Estal et al.



autocrine/paracrine factor in regulating early placental growth and function

(Abu-Amero et al. 1998; Maruo et al. 1995). IGF-2 receptors are expressed in

trophoblast and syncytiotrophoblast in first trimester of pregnancy and at term,

respectively (Fang et al. 1997; Abu-Amero et al. 1998; Harris et al. 2011;

McKinnon et al. 2001). Additionally, insulin and IGF-1 receptors are also

expressed in resident macrophages and endothelial cells (Hiden et al. 2009). There-

fore, dysregulation of insulin and IGFs may have important effects on placenta and

foetus (Hiden et al. 2009), resulting in placental insufficiency and inadequate

substrate supply to the developing foetus. These effects could lead to the appear-

ance of intrauterine growth restriction (IUGR) (De Vrijer et al. 2006).

1.4 IGF-1-Deficient Conditions in Humans

As mentioned before, IGF-1 possesses a wide number of own properties (anabolic,

antioxidant, anti-inflammatory and cytoprotective actions). Actually, the best-

characterised conditions of IGF-1 are Laron’s syndrome in children; liver cirrhosis

in adults; aging, including age-related cardiovascular and neurological diseases;

and, as discussed in this review, intrauterine growth restriction (IUGR).

Laron’s syndrome or primary growth hormone insensitivity (GHI) was first

described in 1966 by Zvi Laron et al., as a new type of dwarfism indistinguishable

from genetic isolated GH deficiency. Such syndrome is characterised with unex-

pected high serum GH levels and the inability to synthesise IGF-1 and its binding

proteins (Jameson 1999; Laron et al. 1966). Laron’s syndrome was the first condi-

tion of IGF-1 described. Epidemiologically, this syndrome is closely related to an

ethnic origin (>90% of cases). Clinically, patients with Laron’s syndrome have

growth abnormalities in uterus and in childhood; osteopenia; retardation in the

maturation of dentition, organs and tissues; and a puberty delay, among other

clinical manifestations (Rosenbloom 1999; Laron 1984). Animal models of GHI

are available since 1997 and help us to better understand the pathophysiological

changes and possible therapeutic strategies for these patients (Zhou et al. 1997).

Cirrhosis, a chronic liver disease, is characterised by low serum levels of IGF-1

and the presence of liver fibrosis, necrosis and regenerative nodules, leading to a

loss of functional liver mass. The main causes are alcoholism, hepatitis B and C and

fatty liver disease (Conchillo et al. 2007). Liver cirrhosis has been considered a

condition of IGF-1 deficiency during adulthood, and IGF-1 has been proposed as a

good indicator for functional hepatocellular capability (Caufriez et al. 1991). Now-

adays, several animal models of experimental liver cirrhosis have been developed

in order to better elucidate the role of IGF-1 in this pathology (Garcı́a-Fernández

et al. 2003; Muguerza et al. 2001; Castilla-Cortazar et al. 1997; Cemborain

et al. 1998; Castilla-Cortázar et al. 2011).

Aging is a progressive, irreversible, universal and heterogeneous process of

involution, characterised by a gradual loss of physiological functions that increases

the probability of death. The circulating GH and IGF-1 levels progressively decline
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with age (Perry 1999). Reduced GH/IGF-1 secretion in the elderly is responsible for

several symptoms of aging, such as loss of muscle mass, increased adiposity,

reduced bone mineral density and lower energy levels (Puche and Castilla-Cortázar

2012). Several pathologies, such as cardiovascular diseases, metabolic syndrome

and neurodegenerative diseases, are correlated with aging and low circulating

levels of IGF-1. Our group has demonstrated that low doses of IGF-1 restored

circulating IGF-1 levels. IGF-1 replacement therapy improves insulin resistance,

lipid metabolism and mitochondrial protection in aging rats (Puche et al. 2008;

Garcı́a-Fernández et al. 2008). Thus, IGF-1 could become a potential beneficial

therapeutic strategy by improving mitochondrial function, decreasing oxidative

stress and preventing insulin resistance-related pathologies. Data from transgenic

mice with liver-derived IGF-1 deficiency explains the possible role of IGF-1 in

vasoprotection, cardioprotection, insulin resistance, angiogenesis and neurogenesis

(Puche and Castilla-Cortázar 2012).

2 Intrauterine Growth Restriction (IUGR)

2.1 Introduction

Foetal growth is a complex process involving maternal, placental and foetal factors

from genetic, environmental and nutritional nature. Intrauterine growth restriction

(IUGR) is an important obstetric issue defined as the inability to achieve the

expected weight for gestational age (Collins et al. 2013). To define this pathology,

it is really important to establish standardised curves of birth weight during foetal

period and at term (Fig. 4) (G�omez-G�omez 2012). Growth-restricted foetuses/

newborns are those born below the 10th percentile (weighing less than 2,500 g)

according to each population (Goldenberg and Cliver 1997) and those who have an

abdominal circumference less than 2.5th percentile (Valsamakis et al. 2006;

Sferruzzi-Perri et al. 2006; Maulik 2006). IUGR is associated to perinatal mortality

and morbidity (Kramer et al. 1990). Thereby, growth-restricted foetuses/newborns

are characterised by an increased risk of clinical disorders in adult life, such as

cardiovascular disease, diabetes and obesity (Hattersley and Tooke 1999; Bamfo

and Odibo 2011).

There are two types of IUGR: symmetric intrauterine growth restriction, where

all body parts of the baby are similarly small, and asymmetric intrauterine growth

restriction, where baby’s head and brain are normal, but the remaining parts of the

body are smaller (Valsamakis et al. 2006).
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2.2 Epidemiology

IUGR incidence varies according to the discrimination criteria adopted (Romo

et al. 2009), but approximately 5–10% of newborns worldwide have intrauterine

growth restriction (Resnik 2002). Moreover, it has been estimated that �20 million

infants are born with low birth weight (<2,500 g) every year (WHO 2004; De Onis

et al. 1998). There is a high variability depending on the geographic zone: in

underdeveloped countries, IUGR affects �30% of pregnancies (Saleem

et al. 2011), while in developed countries, it only affects �5% of pregnancies

(Zepeda-Monreal et al. 2012; Baschat 2004; Hay et al. 2001). This variability could

Fig. 4 Percentile curve to sort out newborns according to their weight for gestational age. Preterm

babies born between 28th and 37th weeks of gestation. Term babies born between 37th and 42nd

weeks of gestation. Post-term newborns born after 42nd week of gestation
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be due to the higher prevalence of malnutrition and underweight at the beginning of

gestation in the underdeveloped countries. In some studies, it was observed that the

vast majority of small for gestational age (�87%) and low-birth-weight babies

(�26%) were born in south Asia, southeast Asia and sub-Saharan Africa (Lee

et al. 2013; Adair 1989; Isaranurug et al. 2007; Victora and Barros 2006; Victora

et al. 2008; Santos et al. 2011; Gonzalez et al. 2006; Shah et al. 2008; Schmiegelow

et al. 2012) (Table 6).

2.3 Physiopathology

IUGR has a multifactorial aetiology and is hard to define a specific cause. It is

known that the pathology onset is due to factors of maternal, foetal and placental

origin and an increase in oxidative stress (Bamfo and Odibo 2011). Moreover,

different risk factors before and/or during pregnancy, as well as environmental and

behavioural features, play a role in the development of the disease (Bamfo and

Odibo 2011).

2.3.1 Maternal Factors

Maternal factors such as severe maternal malnutrition and underweight at the

beginning of gestation and low weight gain during the gestation could be causes

that promote IUGR (Mitchell et al. 2004). In addition, maternal characteristics such

as age, height, nulliparity and multiparity and toxic habits (smoking, alcohol and

Table 6 Worldwide distribution and prevalence of small for gestational age infants (shaded

regions show the highest rate of small for gestational age infants)

Region Prevalence (%)

Asia Caucasus and Central Asia 12.9

East Asia 5.3

Southeast Asia 21.2

South Asia 41.5

West Asia 19.6

Oceania Oceania 19.4

Africa North Africa 8.5

Sub-Saharan Africa 23.5

America Latin America and the Caribbean 10.7

Northern America 7.7

Europe Eastern Europe 6.4

Northern Europe 6.5

Southern Europe 5.9

Western Europe 6.7

I. Martı́n-Estal et al.



drug consumption, use of certain medicines, maternal stress) can increase the risk of

IUGR. Alcohol crosses the placenta and could affect directly to foetal cell and

tissue development and also can induce changes in mother–foetus hormonal inter-

action. Such changes can reschedule hypothalamus–pituitary–adrenal gland axis

(HPA), leading to immunological, behavioural and cognitive deficits in the foetus

(Zhang et al. 2005). The HPA axis has a key role in the implantation of the zygote

and in endometrial, placental and foetal development, because it secretes several

hormones such as GnRH (gonadotropin-releasing hormone), FSH (follicle-

stimulating hormone) and LH (luteinising hormone) (Miller and Takahashi 2014).

Likewise, chronic maternal stress compromises normal regulation of hormonal

activity during gestation, because it increases β-endorphin, glucocorticoids, cate-
cholamines and CRH (corticotropin-releasing hormone) levels. An excess of the

aforementioned hormones, in addition to an increase in cortisol levels, breaks

through the placenta and can reduce foetal weight at birth. Catecholamines can

also induce vasoconstriction of blood vessels causing placental hypoxia in the

foetus. Hypoxia can activate HPA axis leading to an abnormal implantation of

the zygote and an abnormal endometrial and placental development (Valsamakis

et al. 2006; Weinstock 2005). Foetal responses to placental hypoxia include

downregulation of insulin, IGF-1 and IGF-2 and increased expression of inhibitory

IGFBPs (Han and Carter 2001), all of these leading to IUGR. Other risk factors that

affect foetal growth could be inflammatory diseases such as rheumatoid arthritis,

inflammatory bowel disease, systemic lupus erythematous and periodontal disease,

as well as maternal vascular disease and thrombophilia. Such factors could lead to

uteroplacental hypoperfusion, thus compromising foetal growth (Murphy

et al. 2006; Bamfo and Odibo 2011).

Another important factor could be an increase of maternal oxidative stress. In

studies with pregnant-IUGR women, an increase in oxidative stress has been

observed (Biri et al. 2007). Also, these women are more susceptible to LDL

(low-density lipoprotein) oxidation. LDL oxidation can lead to placental dysfunc-

tion and foetal growth retardation, as it decreases nutrient supply to the foetus

(Sánchez-Vera et al. 2005). In the same way, it has been observed that in normal

pregnancies, vitamin E levels (important for normal physiological function,

because of its antioxidant actions) and prostacyclin levels (which have a vasodila-

tation action) increase progressively throughout pregnancy. On the other hand,

thromboxane levels (implicated in vasoconstriction) decrease (Wang et al. 1991;

Gagné et al. 2009).

Moreover, in animal models it has been observed that hypoxia induces a

decrease of serum vitamin E levels and an increase in thromboxane production.

These metabolic alterations would be responsible for an abnormal placental devel-

opment and the decrease in steroid production. All these changes could lead to a

foeto-placental vascular resistance and an increase of oxidative stress, which could

be responsible for the appearance of IUGR (Parraguez et al. 2013; Majed and Khalil

2012; Sorem and Siler-Khodr 1997).
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2.3.2 Foetal Factors

Foetal factors are less common. They include aneuploidies (trisomies of chromo-

somes 13, 18 and 21), which make up between 5 and 10% of IUGR cases; foetal

malformations and congenital infections (rubella, cytomegalovirus, toxoplasmosis,

etc.), which are responsible of 1.5% of IUGR cases; and inborn metabolic disorders

(Bamfo and Odibo 2011).

2.3.3 Placental Factors

The placenta has two principal functions: it facilitates the exchange of nutrients,

oxygen and waste products between mother and foetus and acts as an endocrine

organ that integrates signals from the mother and foetus (Murphy et al. 2006). It has

been estimated that the progenitor’s genes account for only 20% of the variation of

human birth weight. Nevertheless, the majority of the variation (62%) is due to the

intrauterine environment. Thus, a suitable placental growth is essential for normal

foetal development. For example, an adequate trophoblastic invasion is necessary.

Trophoblastic tissue is metabolically active and produces hormones, absorbs nutri-

ents and eliminates waste products (Bamfo and Odibo 2011). Therefore, anatomical

abnormalities of the placenta, such as an abnormal insertion of the umbilical cord

and placental thrombosis, decrease uteroplacental blood flow during pregnancy and

consequently oxygen and nutrient transport (Murphy et al. 2006). Placentas from

IUGR pregnancies have been shown to have poor invasion of the trophoblastic cells

into the maternal decidual tissues, particularly the maternal spiral arteries (Setia and

Sridhar 2009; Brosens et al. 2002). Studies looking into the pathological process of

IUGR have pointed to an abnormal placental function as a common mechanism.

However, it is known that the placental dysfunction is often gradual and it can occur

much earlier than any demonstrable IUGR (Voigt and Becker 1992), making the

resolution of this hypothesis difficult. Also, it was observed that approximately

20–30% of dichorionic twin pregnancies present IUGR, as they share placentas and

such could lead to the appearance of stress in uteroplacental circulation,

compromising development and growth of both foetuses (Bamfo and Odibo 2011).

The placenta, as a key organ for foetal growth, has a major role in amino acid

transport, the most important nutrient for foetal life. During pregnancy, there is an

active transport across the placenta from the maternal to the foetal circulation. The

concentration of free amino acids in the placental tissue is higher than the concen-

tration both in foetal and maternal plasma. In IUGR pregnancies, the concentrations

of most essential amino acids (valine, leucine and isoleucine) decreased in foetal

tissues but are significantly higher in maternal tissues. Such observation is a result

of a maladaptation to pregnancy, suggesting the key role of amino acid transport.

Several studies in animals showed a significantly reduced uptake of oxygen,

glucose and essential amino acids in IUGR pregnancies. Also, studies in vitro in

humans showed a reduced uptake of leucine and lysine, suggesting a reduced
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activity of cationic amino acid transporters. Together, these data suggest the key

role of amino acid transport in foetal development and its deficiency in IUGR

pregnancies (Avagliano et al. 2012).

It is known that the placenta plays an important role in the production and

transport of growth hormones that are critical for foetal growth and placental

development (Murphy et al. 2006). It has been described that decreased levels of

PL, which induces early embryonic growth and production of IGF-1 and insulin

(Murphy et al. 2006), are associated with reduced foetal size. The same happens

when oestradiol levels decrease, but in neither cases values are predictive, so the

role of both hormones in the disease’s pathophysiology is unknown (Markestad

et al. 1997). In fact, detailed hormonal relationships of the mother–placenta–foetus

unit are not known.

IGFs also control growth directly, where circulating IGF-1 appears to be virtu-

ally independent of foetal GH secretion (Randhawa and Cohen 2005). However,

under this condition, placental GH may take this role as the prime regulator of

maternal serum IGF-1 during pregnancy (Verhaeghe et al. 2000), being of partic-

ular interest the positive expression of IGF-1R in placenta (Reece et al. 1994) and

the lower expression of placental-derived IGF-1 during IUGR (Koutsaki

et al. 2011). In general, the endocrine milieu of the human foetus with growth

retardation is also characterised by low circulating levels of insulin, IGF-1, IGF-2

and IGFBP-3 and high levels of GH and IGFBP-1 (Tzschoppe et al. 2015; Setia and

Sridhar 2009; De Zegher et al. 1997). At this point, a study in zebrafish demon-

strated that knockdown of IGFBP-1 significantly alleviated the hypoxia-induced

growth retardation and developmental delay. Consistently, overexpression of

IGFBP-1 caused growth and developmental retardation under normoxia conditions

(Kajimura et al. 2005).

2.4 Clinic Course of IUGR

IUGR is the second most frequent cause of perinatal morbidity and mortality, only

preceded by prematurity (Valsamakis et al. 2006). IUGR newborns could suffer

numerous clinical disorders, such as hypoglycaemia, breathing difficulties that

could cause neonatal asphyxia, hypothermia, ventricular haemorrhage and polycy-

thaemia (Maulik 2006; Bamfo and Odibo 2011). All these clinical disorders can

lead to consequences during early life, which could affect estatural and weight

development and may also affect neurological development, resulting in

behavioural anomalies, immature sleep patterns, diminution of visual fixation,

decrease in overall activity, alteration of early mother–child interaction, alteration

of motor skills and hyperactivity (Maulik 2006). It has been observed that children

born small for gestational age had between 5 and 7 times increased risk to develop

cerebral palsy, compared with those whose weight at birth was normal. It is still

unknown whether this abnormal growth is the cause or the consequence of this

disability (Jacobsson et al. 2008; Dahlseng et al. 2014).
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In addition, newborns with IUGR had an increased risk during adulthood of

suffering other clinical disorders, such as cardiovascular disease, insulin resistance,

diabetes and hypertension, all of them related to metabolic syndrome (Valsamakis

et al. 2006; Maulik 2006). As previously stated, kidney growth is under IGF-1

control; and a reduced IGF action, parallel to increased cortisol levels, results in a

smaller number of glomeruli (Vehaskari et al. 2001). Alterations in the renin–

angiotensin system are also frequent, probably downstream to activation of the

HPA axis. These changes together with compensatory responses for the reduced

kidney function probably account for the predisposition to adult hypertension

(Vehaskari et al. 2001).

In the last years, a role for an altered GH/IGF axis in foetal programming in

IUGR is being proposed, constituting the so-called thrifty phenotype hypothesis

(Setia and Sridhar 2009), with an already proven inverse association between IGF-1

levels at 9 months and 17 years. Under this perspective, GH/IGF-1 axis may be

programmed early in life. This foetal programming could be involved in, at least,

two pathological conditions in later life, insulin resistance and hypertension.

Firstly, children with IUGR show an impaired GH/IGF-1 axis, which might be

contributing to reduced insulin sensitivity and IGF-1 resistance, as higher basal and

GH-induced IGF-1 levels are required to achieve a growth velocity similar to that of

other children. Secondarily, this alteration leads to a compensatory

hyperinsulinemia to counteract insulin antagonistic effects of GH (Woods

et al. 2002) and an impaired regulation of glucose transporter-4 expression by

insulin in muscle and adipose tissue (Jaquet et al. 2001).

Moreover, some studies have shown that women who had given birth to new-

borns small for their gestational age (birth weight lower than 2,500 g) have an

increased risk of mortality, due to cardiovascular alterations, such as ischaemic

heart disease. This risk is 7 times higher than in women who had given birth to

newborns normal for their gestational age (Smith et al. 2001).

2.5 Diagnosis

Diagnosis of IUGR is based upon clinical exploration and specific tests (Maulik

2006). When suspected, a complete medical history of the mother should be done,

including the evaluation of risk factors such as medication use, recent infections,

toxic exposure, smoking, alcoholism or drug consumption (Maulik 2006). The

medical history must be completed with physical exploration of abdominal circum-

ference size and uterine fundal height (Maulik 2006). If still suspected, an umbilical

uterine arterial Doppler could be performed in order to establish the diagnosis,

which allows to detect placenta insufficiency (Gheita et al. 2011). Ultrasound

biometry allows to obtain parameters about foetal development such as foetal

abdominal circumference, foetal head circumference and foetal femur length

(Bamfo and Odibo 2011; Gheita et al. 2011).
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However, at present, a suspected diagnosis of IUGR is made based on diverse

criteria established by Gardosi, who defined personalised growth charts that

improve detection of IUGR and help to distinguish slow growth foetuses (Chard

et al. 1992). Deter et al. (1992) also established diverse criteria used to detect

growth anomalies: prenatal growth assessment score (PGAS) and neonatal growth

assessment score (NGAS) (Deter et al. 1992).

3 Conclusions and Perspectives

Intrauterine growth restriction (IUGR) is a relevant obstetric pathology. This

disease is considered the second most frequent cause of perinatal morbidity and

mortality, only preceded by prematurity, having a multifactorial aetiology. In recent

years the understanding and characterisation of the pathophysiology and specific

causes of the disease has become essential in order to reach a useful and successful

therapeutic strategy.

Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with a major role in

foetal and placental growth and development. IGF-1 is produced by almost every

tissue, including the placenta. The placenta is a metabolically active intrauterine

organ. It secretes several hormones (IGF-1, IGF-2, GH, PL, etc.) and facilitates the

exchange of nutrients, oxygen and waste products between mother and foetus. It is

why the placenta plays an important role in foetal and embryonic development.

Hence, suitable placental growth is essential for normal intrauterine development.

Several studies in IGF-1-deficient animals showed the key role of IGF-1 in foetal

growth, liver cirrhosis, aging, vasoprotection, cardioprotection, insulin resistance,

angiogenesis and neurogenesis. Also, several studies in humans have revealed that

IUGR infants have low circulating levels of insulin, IGF-1 and IGF-2 and an

abnormal placental function. Together, these data postulate that the mere IGF-1

deficiency in the gestational state may produce serious intrauterine growth retarda-

tion. Thus, it can be established that IGF-1 low levels could compromise oxygen

and nutrient transport across the placenta, producing an abnormal placental growth

and environment, leading to an abnormal foetal growth and development. There-

fore, IUGR could be considered as a novel condition of IGF-1 deficiency, where

replacement therapy at low doses with this hormone could be a beneficial and useful

therapeutic strategy.

Our group has demonstrated that low doses of IGF-1 in IGF-1-deficient animals

can restore physiological IGF-1 levels and improve insulin resistance, lipid metab-

olism and mitochondrial protection. Low doses of IGF-1 in these animals can have

several beneficial hepatoprotective, neuroprotective, antioxidant and antifibrogenic

effects. In consequence, treatment of IUGR, a novel condition of IGF-1, with low

doses of IGF-1 prior to birth, where the foetus and placenta are growing and

developing, could be beneficial, restoring circulating IGF-1 levels, and could

improve the characteristics of the pathology.
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Our perspective is to design and appropriate IGF-1-deficient mouse model to

determine the pathophysiology of IUGR and to observe if low doses of IGF-1

during pregnancy could restore IGF-1 levels in both mother and foetus and if the

administration of such hormone could improve foetal growth. Also, our perspective

is to design a multicentric study between several hospitals in Monterrey (Nuevo

Leon, Mexico) where we would try to administrate low doses of IGF-1 to pregnant

mothers with possible IUGR and see how this treatment would affect both mother

and foetus.
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